SiO_2基复合薄膜的制备与光学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将纳米尺寸的金属(尤其是Ag和Cu)粒子和氧化物镶嵌于无机介质(如玻璃、陶瓷等)中所形成的纳米复合材料具有不同于块体材料的光学特性,如光学非线性(包括等离子激元共振)、光吸收、光致发光等。由于具有这些性质,这类纳米复合材料在光开关、光波导器件、光滤波器和显示器件等方面有着非常广阔的应用前景。近年来,这类材料的制备及其性能的研究正成为材料科学和物理学领域的重要研究课题。
     采用溶胶-凝胶法和旋涂技术,通过紫外光辐照和热处理得到了不同Ag含量的均匀性良好的Ag/SiO2纳米复合薄膜,薄膜结构致密,基本没有孔洞。薄膜组织中的Ag纳米颗粒分布较均匀,尺寸都非常小。随着nAg/nsi的增加,Ag纳米粒子在420nm左右的紫外-可见吸收逐渐增强,并且出现一定的红移。在nAg/nsi=0.05、0.08的紫外辐照得到的薄膜样品中,分别在640nm和690nm左右存在一个宽吸收峰,是由于少量Ag颗粒较大所致。紫外辐照得到的薄膜样品的光吸收性能要优于300℃热处理1h得到的样品。Raman光谱表明,由于Ag纳米颗粒表面局域电磁场增强造成的表面增强拉曼散射,使得样品的峰强是衬底的5倍。
     利用紫外光辐照还原得到了均匀性良好的Au/SiO2复合薄膜,所得到的Au/SiO2复合薄膜中,纳米颗粒的尺寸比较小,分布均匀;复合薄膜的光吸收性能表明,Au纳米粒子的表面等离子共振吸收峰随着焙烧温度的增加以及nAu/nsi的改变,从585 nm附近逐渐红移至600 nm附近,并逐渐增强。根据Mie理论和Maxwell-Gamett有效介质理论,复合薄膜吸收峰的形状和位置由金粒子的介电常数和介质的介电常数所决定,薄膜的致密化,基质介电常数的增加,nAu/nsi越大,金纳米粒子越大,导致复合薄膜的吸收带红移。
     以AgNO3、HAuCl4和正硅酸乙酯为主要原料,利用溶胶-凝胶法和旋涂技术,通过热处理和紫外光辐照得到了不同nAg/nAu(1:0,2:1,1:2,0:1)的Ag-Au合金/SiO2复合薄膜。从SEM、XRD等表征手段的结果中可以看出所得到的纳米复合薄膜中合金颗粒的尺寸为10 nm左右,所得到的薄膜均匀性好;利用紫外可见分光光谱仪研究了复合薄膜的光吸收性能,结果表明,随着nAg/nAu的降低,吸收峰的位置也由最初的Ag纳米粒子的等离子共振吸收(SPR)峰430 nm附近,逐渐红移到金纳米粒子的等离子共振吸收峰605nm和880nm附近。从光吸收谱可以看出,nAg:nAu=2:1和1:2的两个样品分别在515 nm、730 nm附近和550 nm、730 nm附近处的表面等离子共振吸收峰表明了Au-Ag合金固溶体的形成。
     采用溶胶-凝胶法在玻璃衬底上制备了ZnO/SiO2复合薄膜,研究了温度对ZnO/SiO2复合薄膜的结构及光学性能的影响,考察了ZnO含量对薄膜光学性能的影响。测试结果表明,温度的升高有利于样品的结晶,并能减少结构缺陷,但同时也促使了薄膜内颗粒发生团聚。复合薄膜经400℃热处理后有较好的透过率,样品在蓝光区域有较强的发射峰。ZnO含量的增加能调节薄膜的光学带隙,并增强薄膜在紫外和蓝光区域的光致发光强度。考察了Ag掺杂量对复合薄膜的结构及光学性能的影响。结果表明,经300℃热处理后薄膜中有单质Ag生成,随着Ag含量的增加,Ag与ZnO之间的电子转移及Ag颗粒的变大促使Ag的特征吸收峰呈现红移和宽化。Ag掺入后代替Zn位和间隙位减少空穴浓度和结构缺陷,使得样品位于紫外区和可见光区的发光强度减弱。
The study of the composite films of metal (especially Ag, Au and Cu) nanoparticles and dielectric matrices, are of considerable interest in the world of materials science because of their unique physical and chemical properties, including surface plasmon resonance, surface enhanced Raman, surface enhanced fluorescence, metal nanoshells, and semiconductor quantum dots. Such properties provide excellent potential applications in electronics and passive optical components. They are also useful for photonic and magnetic devices and decorative colored glass wares.
     Ag/SiO2 composite thin films were prepared by means of sol-gel method and deoxidized using UV radiation, and were characterized by XRD, SEM, IR, UV-Vis, PL and Raman spectroscopy. The results of XRD indicate that the sample exhibits a typical face-centered cubic (fcc) silver phase. The results of SEM show that the composite thin films are very homogeneous and the size of Ag nanoparticles is small. The thickness of the films is about 1μm. The results of the optical absorption spectra show that the intensity of the absorption peaks at 420 nm is increasing with the molar ratio of Ag/Si, and the absorption peaks have some red shift. The PL spectra show that the luminescent intensity at 442 nm is very strong and decreases a little with the increase of nAg/nsi. And some blue shift appears. The results of Raman spectra indicate that the surface enhanced Raman scatter aroused by the enhancing of the surface region electromagnetic field of Ag nanoparticles appears.
     Au/SiO2 composite thin films were prepared by means of sol-gel method and deoxidized using UV radiation, and were characterized by SEM, TEM, XRD and UV-Vis spectroscopy, et al. The results of XRD show that the Au nanoparticles dispersed in amorphous SiO2 exhibit a typical face-centered cubic (fcc) phase. The results of SEM indicate that the composite thin films are very homogeneous and the size of the nanoparticles is small. The results of the optical absorption spectra show that the intensity of the absorption peaks becomes stronger and has some red shift from 585 nm to 600 nm and with the increasing of the temperature and nAu/nSi. And the samples with larger nAu/nSi exhibit absorption at 820 nm,900 nm and 585 nm of near-infrared region.
     Ag-Au alloys/SiO2 composite thin films (nAg/nAu=1:0,2:1,1:2,0:1)were prepared with AgNO3, HAuCl4 and TEOS by means of sol-gel method and deoxidized using UV radiation. The results of SEM and XRD indicate that the composite thin films are very homogeneous and the size of the nanoparticles is about 10 nm. The results of the optical absorption spectra show that the absorption peaks have some red shift from 430 nm belonged to the SPR absorption peak of Ag nanoparticles to 605 nm and 880 nm belonged to the SPR absorption peaks of Au nanoparticles with the increasing of nAg/nAu.The SPR absorption peaks around 515 nm,730 nm and 550 nm,730 nm belonged to the samples (nAg:nAu=2:1,1:2), respectively, show the formation of Ag-Au Alloys dispersed in the SiO2
     Structure and photoluminescent properties of the ZnO/SiO2 composite thin films under the influence of different calcined temperature were studied, and the photoluminescent properties of ZnO/SiO2 composite film with different concentration of ZnO were studied too. The result shows that high calcined temperature is good for the crystallization of samples and the reducing of structural defects. The particles become larger as the calcined temperature rise and partly reunion. The highest transmission composite film is calcined at 400℃. There are strong blue emission peaks of samples. The band gap changed and the emission peak intensity at ultraviolet and blue region increased with the concentration of ZnO increased. Ag-ZnO/SiO2 composite thin films with Ag doped in ZnO layer were prepared. And the structure and photoluminescent properties of composite thin films under the influence of different Ag concentration were also discussed. The result shows that there is diffraction peak of Ag after annealed in air at 300℃as the content of Ag increased, the absorption peaks have red shift and widen because of the electron transfer between Ag and ZnO and the particle size of Ag becoming larger. The photoluminescent intensity of the films in the section of ultraviolet and visible region weakened with the content of Ag increased, and this is owing to the reduction of the hole concentration and the compensation of structural defects caused by the doping of Ag.
引文
[1]田民波.薄膜技术与薄膜材料.北京:清华大学出版社,2006:1~5
    [2]唐伟中.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,1998:1-3
    [3]陈国平.薄膜物理与技术.江苏:东南大学出版社,1993:1~3
    [4]Ste'phanie Lambert, Caroline Cellier, Eric.M. Gaigneaux.et al. Ag/SiO2, Cu/SiO2 and Pd/SiO2 cogelled xerogel ·catalysts for benzene combustion:Relationships between operating synthesis variables and catalytic activity. Catalysis Communications,2007,8(8):1244-1248
    [5]Kansen Chou, Chenchih Chen. Fabrication and characterization of silver core and porous silica shell nano composite particles. Microporous and Mesoporous Materials,2007,98(1-3):208-213
    [6]Levstik A, Filipic C, Bidault O, et al. Frequency and temperature dependence of the electrical conductivity of KTaO3; Li and PbTiO3; La, Cu:Indication of a low temperature polaron mechanism. Physica B:Condensed Matter,2008, 403(19-20):3608-3611
    [7]Bingshe Xu, Mei Niu, Liqiao Wei, et al. The structural analysis of biomacromolecule wool fiber with Ag-loading SiO2 nano-antibacterial agent by UV radiation. Journal of Photochemistry and Photobiology A:Chemistry,2007,188(1): 98-105
    [8]S.P. Ramnani, Jayashri Biswal, S. Sabharwal. Synthesis of silver nanoparticles supported on silica aerogel using gamma radiolysis. Radiation Physics and Chemistry,2007,76(8-9):1290-1294
    [9]Jeong Ho Ryu, Dong S C, Bong G C, et al. Fabrication of Ag nanoparticles-coated macroporous SiO2 structure by using polystyrene spheres. Materials Chemistry and Physics,2007,101(2-3):486-491
    [10]Guillen C, Herrero J. Structural. Optical and electrical characteristics of ITO thin films deposited by sputtering on different polyester substrates. Materials Chemistry and Physics,2008,112(2):641-644
    [11]Chen X L, Geng X H, Xue J M, et al. Temperature-dependent growth of zinc oxide thin films grown by metal organic chemical vapor deposition. Journal of Crystal Growth,2006,296(1):43-50
    [12]Suryajaya, Nabok A V, Tsargorodskaya A, et al. Electrostatically self-assembled films containing II-VI semiconductor nanoparticles:Optical and electrical properties. Thin Solid Films,2008,516(24):8917-8925
    [13]Bhaskar Chandra Mohanty, Kasiviswanathan S. Thermal stability of silver selenide thin films on silicon formed from the solid state reaction of Ag and Se films. Thin Solid Films,2006,515(4):2059-2065
    [14]Hergen Eilers. Synthesis and characterization of CO2-laser-evaporated ZnS:Mn thin films.Materials Letters,2008, 62(6-7):967-969
    [15]胡永红,容建华,刘应亮等SiO2/Ag核壳结构纳米粒子的制备及表征.化学学报,2005,63(24):2189~2193
    [16]毛从文,蒋新.吸附法原位制备Ag/SiO2纳米复合材料.复合材料学报,2006,23(4):88~94
    [17]Shintaro Miyanishi, Motoji Yagura, Nobuaki Teraguchi, et al. Huge magnetoresistive effects using space charge limited current in ZnO/SiO2 system. Appl. Phys. Lett.,2007,91(19):192104.1-192104.4
    [18]P. C. Lee, D. Melsel. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982,86(17):3391-3395
    [19]顾大明.次磷酸盐液相还原法快速制备纳米银粉.精细化工,2002,19(11):634-635,674
    [20]郭立俊.魏红彬.银纳米粒子的制备及溴离子对其表面性质的影响.河南大学学报(自科版),2000,30(3):20-23.
    [21]张庆敏,李彦,黄福志等.聚氧乙烯类表面活性剂体系中银纳米颗粒的合成.物理化学学报,2001,17(6):537-541
    [22]钟福新,蒋治良,李芳等.纳米银胶的光化学制备及其共振散射光谱研究.光谱学与光谱分析,2000,20(5):724~726
    [23]Jin R. C., Cao Y W., Mirkin C. A., et al. Photoinduced conversion of silver nano-spheres to nanoprisms. Science,2001, 294(5548):1901-1903
    [24]Jin R. C., Cao Y C., Hao E. C., et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003,425(6957):487-490
    [25]Yugang Sun, Younan Xia. Shape-controlled synthesis of gold and silver nano-particles. Science,2002,298(5601): 2176-2179
    [26]Masaharu Tsuji, Yuki Nishizawa, Masayuki Hashimoto, et al. Syntheses of silver nanofilms, nanorods, and nanowires by a microwave-polyol method in the presence of Pt seeds and polyvinylpyrrolidone. Chemistry Letters,2004,33(4): 370-371
    [27]Yingjie Zhu, XianLuo Hu. Microwave-assisted polythiol reduction method:a new solid-liquid route to fast preparation of silver nanowires. Materials Letters,2004,58(9):1517-1519
    [28]Yujie Xiong, Yi Xie, Guoan Du, et al. Ultrasound-assisted self-regulation route to Ag nanorods. Chemistry Letters, 2002,31(1):98-99
    [29]Granqvist C G, Hunderi O. Optical properties of Ag-SiO2 Cermet films:A comparison of effective-medium theories. Phys. Rev. B,1978,18:2897-2902.
    [30)周鹏,游海洋,王松有等.金属插层对一维光子晶体中光传输特性的影响.物理学报,2002,51(10):2276-2280.
    [31]孙喜莲,洪瑞金,齐红基等.磁控溅射不同厚度银膜的微结构及其光学常数.物理学报,2006,55(9):4923~4927
    [32]Turkevitch J,Stevenson P C,Hillier J.Nucleation and growth process in the synthesis of colloidal gold. Discussion of the Faraday Society,1951,11:55-75
    [33]Frens G. Regulation of the particle size in monodisperse gold suspensions. Nature:Physical Science,1973,241(105): 20-22
    [34]Brown K. R., Natan M. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir, 1998,14(4):726-728
    [35]Stremsdoerfer G., Perrot H, Martin J. R., Clechet P. Autocatalytic deposition of gold and palladium onto N-GAAS in acid media. J. Electrochem. Soc.,1988,135:2881-2885
    [36]朱梓华,朱涛,刘忠范.大粒径单分散金纳米粒子的水相合成.物理化学学报,1999,15(11):966~970
    [37]Jana N. R., Gearheart L., Murphy C. Seeding growth for size control of 5-40nm diameter gold nanoparticles. Langmuir,2001,17(22):6782-6786
    [38]Hernandez J, Solla-Gullon J, Herrero E, et al. Characterization of the surface structure of gold nanoparticles and nanorods using structure sensitive reactions. J Phys Chem B,2005,109(26):12651-12654
    [39]Yu Y Y, Chang S S, Lee C L, et al. Gold nanorods:electrochemical synthesis and optical properties. J Phys Chem B, 1997,101(34):6661-6664
    [40]Song D K I, Lenggoro W, Hayashi Y, et al. Changes in the shape and mobility of colloidal gold nanorods with electrospray and differential mobility analyzer methods. Langmuir,2005,21(23):10375-10382
    [41]Joseph Y, Besnard L, Rosenberger M, Guse B, et al. Self-assembled gold nanoparticles/alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties. J. Phys. Chem. B, 2003,107(30):7406-7413
    [42]Takeda Y, Kishimoto N. Nonlinear optical properties of metal nanoparticle composites for optical applications. Nuclear Instruments and Methods in Phys Res B,2003,206:620-623
    [43]Wang P, Lu Y H, Tang L, et al. Surface-enhanced optical nonlinearity of a gold film. Opt. Commun.,2004,229(1-6): 425-429
    [44]Yang Y, Hori M, et al. Self-assembled 3-dimensional arrays ofAu@SiO2 core-shell nanoparticles for enhanced optical nonlinearities. Surf. Sci.,2005,579(2-3):215-224
    [45]Kondu Y, Takayanagi K. Gold nanobridge stabilized by surface structure. Physical Review letter,1997, 79(18):3455-3458
    [46]Maye M M, Lou Y Zhong C J. Core-shell gold nanoparticle assembly as novel electrocatalyst of co oxidation. Langmuir,2000,16(19):7520-7523
    [47]Luo J, Maye M M, Lou Y et al. Catalytic activation of core-shell assembled gold nanoparticles as catalyst for methanol Electrooxidation. Catalysis Today,2002,77(1-2):127-138
    [48]Zhang Y, Asahina S, Yoshihara S, et al. Oxygen reduction on au nanoparticledeposited boron-doped diamond films. Electrochimica Acta,2003,48 (6):741-747
    [49]Zhonglin Wang. Zinc oxide nanostructures:growth, properties and applications. J. Phys. Condens. Matter,2004,16: 829-858
    [50]Brian A, Korgel. Nanosprings take shape, Science,2005,309(5471):1683-1684
    [51]Chen Y, Bagnall D M, Zhu Z, et al. Growth of ZnO single crystal thin films on c-plane (0001) sapphire by plasma enhanced molecular beam epitaxy. Appl Phys Lett,1997,70 (17):2230-2232
    [52]Cao H, Zhao Y G, Liu X, et al. Effect of external feedback on lasing in random media. Appl Phys Lett,1999,75 (9): 1213-1215
    [53]Zu P, Tang Z K, Kawasaki M, et al. Ultraviolet spontaneous and stimulated emissions form ZnO micro-crystallite thin films at room temperature. Solid State Communications,1997,103 (8):459-463
    [54]Fabricius H, Skettrup T, Bisgaard P. Ultraviolet detectors in thin sputtered ZnO films. Appl. Optics,1986,25(16): 2764-2767
    [55]Liu Y, Gorla C R, Liang S, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. J. of Elec. Materials,2000,29(1):60-65
    [56]Jia Wang, Liqiang Jing, Lianpeng Xue, et al. Enhanced activity of bismuth-compounded TiO2 nanoparticles for photocatalytically degrading rhodamine B solution. Journal of Hazardous Materials,2008,160(1):208-212
    [57]R.M. Ferullo, Garda G R, Belelli P G, et al. Deposition of small Cu, Ag and Au particles on reduced SiO2. Journal of Molecular Structure:THEOCHEM,2006,769(1-3):217-223
    [58]Mingwei Zhu, Guodong Qian, Zhiyu Wang, et al. Fabrication of nanoscaled silica layer on the surfaces of submicron SiO2-Ag core-shell spheres. Materials Chemistry and Physics,2006,100(2-3):333-336
    [59]Sudipto Pal, Goutam De. A new approach for the synthesis of Au-Ag alloy nanoparticle incorporated SiO^ films. Chem. Mater,2005,17 (24):6161-6166
    [60]何峰,李钱陶,张兆艳.表面掺银浮法玻璃的光致发光性能.硅酸盐学报,2003,31(7):711-714
    [61]张兆艳,薛理辉,冯小平.纳米银晶粒镶嵌氧化硅薄膜的光致发光.材料科学与工程,2001,19(2):26~29
    [62]史彦莉,张校刚,力虎林.掺Eu及Ag微粒的Si02凝胶在多孔阳极氧化铝中的荧光增强.高等学校化学学报,2001,22(5):821-823
    [63]Dong Chen, Linlin Li, Jianshu Liu, et al. Synthesis and self-assembly of monodisperse silver-nanocrystal-doped silica particles. Journal of Colloid and Interface Science,2007,308 (2):351-355
    [64]Jeong Ho Ryu, Dong S C, Bong G C, et al. Fabrication of Ag nanoparticles-coated macroporous SiO2 structure by using polystyrene spheres. Materials Chemistry and Physics,2007,101(2-3):486-491
    [65]Li Jin, Kun Qian, Zhiquan Jiang, Weixin Huang. Ag/SiO2 catalysts prepared via y-ray irradiation and their catalytic activities in CO oxidation. Journal of Molecular Catalysis A:Chemical,2007,274(1-2):95-100
    [66]Zhenping Qu, Mojie Cheng, Chuan Shi, Xinhe Bao. Low-temperature selective oxidation of CO in H2-rich gases over Ag/SiO2 catalysts. Journal of Molecular Catalysis A:Chemical,2005,239(1-2):22-31
    [67]Xiaoping Jin, Yu Cong, Zhijiang Zhou, Xiaodong Wang, Tao Zhang. A novel deposition method for preparation of Ag/SiO2 catalyst in microemulsions.催化学报,2005,26(7):536~538
    [68]曾若生,詹拥共,杨莹莹等.以NaCl改性的Ag/SiO2催化苯乙烯环氧化反应的研究.应用化工,2006,35(2):140~142
    [69]刘云颖,李东亮,马彩莲等.载银纳米二氧化硅抗菌粉体材料的制备.无机盐工业,2006,38(1):23~26
    [70]Jilai Gong, Yi Liang, Yong Huang, et al. Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools. Biosensors and Bioelectronics,2007,22(7):1501-1507
    [71]张芸,张波萍,焦力实等.Au/SiO2纳米复合薄膜的微结构及光吸收特性研究.物理学报,2006,55(4):2078-2083
    [72]Jian Xu, Carole C. Perry. A novel approach to Au@SiO2 core-shell spheres. Journal of Non-Crystalline Solids,2007, 353(11-12):1212-1215
    [73]王毅,谈勇,丁少华等.Au和SiO2多壳结构的制备和表征.化学学报,2006,64(22):2291-2295
    [74]胡永红,容建华,刘应亮等.SiO2/Au核壳结构纳米粒子的制备及表征.无机化学学报,2005,21(11):1672~1676
    [75]Kun Qian, Zhiquan Jiang, Weixin Huang. Effect of oxygen treatment on the catalytic activity of Au/SiO2 catalysts. Journal of Molecular Catalysis A:Chemical,2007,264(1-2):26-32
    [76]索掌怀,金明善,鲁继青等.Au/SiO2催化剂上丙烯空气氧化制丙烯醛.石油化工,2005,34(10):932~937
    [77]Jin Kawakita, Tadashi Shinohara, Seiji Kuroda, et al. Fabrication of nano-sized oxide composite coatings and photo-electric conversion/electron storage characteristics. Surface and Coatings Technology,2008,202(16): 4028-4035
    [78]Keh-moh Lin, Paijay Tsai. Parametric study on preparation and characterization of ZnO:Al films by sol-gel method for solar cells. Materials Science and Engineering B,2007,139(1):81-87
    [79]Batista P D, Drescher B, Seidel W, et al. ZnO/SiO2 microcavity modulator on silicon. Appl. Phys. Lett.,2008,92(13): 133502.1-133502.3
    [80]L'ivia Nasz'alyi, Florence Bosc, Abdeslam El Mansouri, et al. Sol-gel-derived mesoporous SiO2/ZnO active coating and development of multifunctional ceramic membranes. Separation and Purification Technology,2008,59(3): 304-309
    [81]Bhaskar Chandra Mohanty, Kasiviswanathan S. Thermal stability of silver selenide thin films on silicon formed from the solid state reaction of Ag and Se films. Thin Solid Films,2006,515(4):2059-2065
    [82]Zhang Xintong, Akira Fujishima, Jin Ming, et al. Double-Layered TiO2-SiO2 Nanostructured Films with Self-Cleaning and Antireflective Properties. J.Phys.Chem.,2006,110(50):25142-25148
    [83]袁吴,李庆华,沙菲等.超低介电常数介孔氧化硅薄膜的制备及表征.无机化学学报.2007,23(9):1587~1592
    [84]黄剑峰.溶胶-凝胶原理与技术.北京:化学工业出版社,2005:12~20
    [85]Lu J G; Fujita S, Kawaharamura T. Roles of hydrogen and nitrogen in p-type doping of ZnO. Chemical Physics Letters, 2007,411(1-3):68-71
    [86]Lima S A M, Cremona M, Davolos M R. Electroluminescence of zinc oxide thin-films prepared via polymeric precursor and via sol-gel methods. Thin Solid Films,2007,516(2-4):165-169
    [87]Srinivasan G, Gopalakrishnanc N, Yu Y S. Influence of post-deposition annealing on the structural and optical properties of ZnO thin films prepared by sol-gel and spin-coating method. Superlattices and Microstructures,2007, 43(2):112-119
    [88]Zerdali M, Hamzaoui S, Teherani F H, et al. Growth of ZnO thin film on SiO2/Si substrate by pulsed laser deposition and study of their physical properties[J]. Materials Letters,2006,60(4):504-508
    [89]He X L, Wu J H, Wu L N, et al. Structure, morphology and optical properties of SiO2-x thin films prepared by plasma-assisted pulsed laser deposition.Applied Surface Science,2008,254(6):1730-1735
    [90]Chengtao Yang, Zeyu Zeng, Zhu Chen, et al. Characterization of ZnO thin films deposited on diamond-like carbon coated onto Si and SiO2/Si substrate. Journal of Crystal Growth,2006,293(2):299-304
    [91]Parmod Sagara, Shishodia P K, Mehra R M. Influence of pH value on the quality of sol-gel derived ZnO films. Applied Surface Science,2007,253(12):5419-5424
    [92]Lin J C, Yates M Z. Growth of Oriented Molecular Sieve Thin Films from Aligned Seed Layers. Chem. Mater.,2006, 18(17):4137-4141
    [93]Liu Zhifeng, Li Junwei, Ya Jing, et al. Mechanism and characteristics of porous ZnO films by sol-gel method with PEG template. Materials Letters,2008,62(8-9):1190-1193
    [94]Shane O'Brien a, Koh L H K, Gabriel M, et al. ZnO thin films prepared by a single step sol-gel process. Thin Solid Films,2008,516(7):1391-1395
    [95]Mie G. Beitrage zur optik truber medien, speziel kolloidaler metallosungen. Annalen Physik,1908,25(4):377-445
    [96]杨光,陈正豪.掺Ag纳米颗粒的BaTi03复合薄膜的非线性光学特性.物理学报.2007,56(2):1182~1187
    [97]Houng B, Huang C J. Structure and properties of Ag embedded aluminum doped ZnO nanocomposite thin films prepared through a sol-gel process. Surface and Coatings Technology,2006,201(6):3188-3192
    [98]Xu Jin, Zhang Ziyu, Zhang Yang, et al. Ef f ect of Ag doping on optical and electrical properties of ZnO thin films. Chin Phys Lett,2005,22(8):2031-2036
    [99]Kumar N, Kaur R, Mehra R M. Photoluminescence studies in sol-gel derived ZnO films. Journal of Luminescence, 2007,126(2):784-788
    [100]万齐欣,熊志华,饶建平等.Ag掺杂ZnO的第一性原理计算.半导体学报.2007,28(5):696-700
    [101]Khomchenko V S, Kryshtab T G, Savin A K, et al. Fabrication and properties of ZnO:Cu and ZnO:Ag thin films Superlattices and Microstruct. Superlattices Microstruct,2007,42(1-6):94-98
    [102]Deng R, Zou Y M, Tang H G. Correlation between electrical, optical properties and Ag2+ centers of ZnO:Ag thin films. Physica B:Condensed Matter,2008,403(12):2004-2007
    [103]张德恒,王卿璞,薛忠营.不同衬底上的ZnO薄膜紫外光致发光.物理学报,2003,52(6):1484-1487
    [104]林碧霞,傅竹西,贾云波.非掺杂ZnO薄膜中紫外与绿色发光中心.物理学报,2001,50(11):2208-2211
    [105]Vanhensden K, Seager C H, Warren W L, et al. Correlation between Photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett.,1996,68(3):403-405 [106]Vanhensden K, Seager C H, Warren W L, et al. Mechanisms behind green Photoluminescence in ZnO phosphor powders. Appl.Phys.Lett.,1996,79(3):7953-7990 [107]LIU M, KTTAI A H, MASCHER P. Point defects and luminescence centers in zincoxide and Zinc oxide doped with manganese. Journal of Luminescence,1992,54(1):35-42 [108]Xu P S, Sun Y M, et al. The electronic structure and spectral properties of ZnO and its defects. Physica B,2003,199: 286-290
    [109]袁昊,李庆华,沙菲等.超低介电常数介孔氧化硅薄膜的制备及表征.无机化学学报.2007,23(9):1587~1592
    [110]Daisuke Nakagawa, Katsuhiro Kutsuki, Tomoya Ono, et al. First-principles study of leakage current through thin SiO2 films. Physica B,2006,376-377:389-391
    [111]Nieto J P, Jeannerot L, Caussat B. Modelling of an industrial moving belt chemical vapour deposition reactor forming SiO2 films. Chemical Engineering Science,2005,60(19):5331-5340
    [112]Umberto Martinez, Livia Giordano, Gianfranco Pacchioni. Nature of point defects on SiO2/Mo(112) thin films and their interaction with Au atoms. J.Phys.Chem.B,2006,110(34):17015-17023 [113]Kananshima T, Okuyama M, Hamakawa Y. Theoretical Analysis of Oxygen-Excess Defects in SiO2 Thin Film by Molecular Orbital Method. Japanse Journal of Applied Physics,1996,35(2B):1445~1449
    [114]方容川.固体光谱学.合肥:中国科学技术大学出版社,2003:171~177
    [115]Lima S A M, Cremona M, Davolos M R. Electroluminescence of zinc oxide thin-films prepared via polymeric precursor and via sol-gel methods. Thin Solid Films,2007,516(2-4):165-169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700