山东省猪源致病性性沙门氏菌的分离鉴定与耐药性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着养猪业的发展,猪病的种类和数量有上升趋势,给养殖业造成巨大的经济损失,沙门氏菌病尤为突出。沙门氏菌极易产生耐药性,近年来临床上的不规范用药进一步加剧了耐药性的发展,沙门氏菌耐药菌株越来越多,耐药谱越来越广,有的菌株甚至对尚未广泛用于兽医临床的新型抗生素也表现出很强的耐药性。另外,动物源性携带耐药质粒的肠道菌可通过畜产品的加工、感染等过程传播给人类,因而耐药性沙门氏菌不但给兽医临床治疗带来了困难,加剧了治疗和用药的恶性循环,而且对人类健康构成了潜在威胁。对此,本研究对山东省不同地区猪源性沙门氏菌病的流行情况和致病性沙门氏菌的耐药性状况进行了较系统的研究。对猪源性沙门氏菌进行分离鉴定、致病性试验,同时对沙门氏菌入侵基因invH及氨基糖甙类药物耐药基因aph(3′)-IIa进行了检测,以期探明山东省不同地区猪源性沙门氏菌病的流行情况和耐药现状,从而为有效控制沙门氏菌病的发生提供可靠的理论依据。本研究共分为三个试验:
     试验一山东省猪源性沙门氏菌的分离鉴定及入侵基因invH的检测
     从山东省具有代表性的七个不同地区的大型猪场的201份检样中分离到135株疑似沙门氏菌,然后通过常规生化鉴定及ATB微生物鉴定系统鉴定,最终确定95株为沙门氏菌;对95株沙门氏菌进行沙门氏菌入侵基因invH的PCR扩增,结果87株分离菌扩出特异性条带,扩增效率为91.6%(87/95)。
     从85株invH基因阳性的沙门氏菌中随机选取25株进行致病性试验,结果发现,25株中有23株有致病性(占92.0%);其中有13株(WJS仔3-2、WWS哺3-1、JZS42<仔>、JZS18<公>、JZS7<保>、JYS133<肥>、LJS5<后>、WJS后1-1、WJS哺2-3、LJS16<保>、PLS24-3<公>、PLS7-1<土>、PLS27-1<后>)对小白鼠的致死率均高于80%,与invH基因的入侵特性相符。
     试验二山东省猪源性沙门氏菌多重耐药性研究
     采用kirby-Bauer琼脂扩散法,对95株沙门氏菌分离株分别选用28种药物进行敏感性试验,结果表明,山东省不同地区猪场中存在的沙门氏菌对27种药物均有不同程度的耐受,其中对苯唑西林、乳酸TMP、舒巴坦、利福平、氟苯尼考、克林霉素、青霉素G、土霉素的耐药性较高,耐10种以上药物的菌株占69.5%;多重耐药率最高的地区为鲁北地区,鲁西南地区,说明这两个地区药物存在滥用现象,这与调查的结果想吻合。
     试验三猪沙门氏菌氨基糖甙类抗生素耐药基因aph(3′)-IIa的检测
     选取经生化鉴定、invH基因鉴定阳性,且经药敏试验对氨基糖甙类抗生素耐药的19株沙门氏菌进行了氨基糖甙类抗生素耐药基因aph(3′)-IIa的检测,结果有14株被检为阳性(14/19),阳性符合率为73.7%,同时对耐药基因aph(3′)-IIa的序列进行了分析,结果与Genbank上发表的AF078924.1、AF188331.1、AY333434.1、AY598820.1、DQ842000.1的耐药基因aph(3′)-IIa的序列比较后发现,同源率为100%。
Recent years, the infection diseases of swine was becoming more and more serious. However, some diseases caused by bacteria, especial Salmonella, are more prevalent and have caused numerous losses in swine industry. Most strains of Salmonella are more and more widespread. The spectrum of the resistence becomes wider and wider. Some strains even could resist the new antibiotics which have not been used in animal. Bacteria with drug-resistant plasmid could be transferred from animal to human, so the abuse of large dosage of antibiotics not only makes it difficult to cure the disease, but also makes it latent harm to humankind. In this paper, we report the isolation, purification, identification, invH gene amplification and pathogenicity of Salmonella in swine. The interrelation between drug-resistance and aminoglycosides-resistance gene was investigated. In order to show the inspection and drug-resistance of Samolella in Shandong province and provide the therotical basis for controlling Salmonlella. The study includes three parts:
     PartⅠ: Separation and identification of pathogenica swine Salmonella and invasion gene of invH
     201 samples were collected from seven large hogpen in different parts of Shandong province and gained 135 bacteria. All were identified by culture, staining, biochemical test and ATB biochemical-system. 95 strains were identified Salmolella in the end; The invH gene of 95 strains were amplified. The result was that 87 strains were identified. The positive compatible rate was 91.6%(87/95).
     In the end, Choosing 25 Salmonella which were identified by biochemical test and invH gene PCR to test the pathogen of separated Salmonella. The result was that the strains which include WJS3-2, WWS3-1, JZS42, JZS18、JZS7, JYS133, LJS5, WJS1-1, WJS2-3、LJS16、PLS24-3、PLS7-1、PLS27-1 were pathogenic to white mouse. The death rate was over 80%. At the same time, There were Only two strains of no-pathogen to the white mouse. The payhogenic rate was 92.0% (23/25). The result was matched with the invasion characteristic of invH gene.
     Part II: Inspection of Antibiotic Resistance of pathogenic Salmonella from Swine
     With 27 kinds of drug sensitivity slips of clinical frequently used antibiotic by kirby-Bauer mean to test the drug sensitivity for the isolated 95 strains, we found that the sensitivity drug of the Salmonella isolated from different hogpen was resembled to the drug, and the sensitivity drug of the Salmoella isolated from the same hoghen was the same, too. At the same time, the separated strains of different parts were some difference. Results showed that isolated strains resist 28 types of drugs. The high drug-resistance of all strains was Proctaphlin, Trimethoprin, Sulbactam, Rifampicin, Florfenicol, Clindamycin, Penicilin G, Terramycin. The multi-resistance was over ten-resistance. The percentage of the resistance was 69.5% in the 95 strains. The hightest distances of drug-resistance rate were the north 2 and west-south 2 of Shandong province. The condition were matched with the drugs were abused in the two parts.
     Part III: Study on the molecular epidemiology of aph(3′)-IIa gene of pathogenic Salmonella
     19 strains were choosen from the isolated sample, at the same time, the19 strains were positive by biochemical test, the identificatione by invH gene test and Aminoglycosides-resistance test. The 19 strains were used to test aph(3′)-IIa gene. The result was that 14 positive strains were identificated from the tested strains. Compared to the results of the drug-susceptibility tests, the method of PCR showed 73.7% concordance on positive rate. Detected aph(3′)-IIa gene of 3 strain which were from the 13 positive strains had the same gene sequences as the genes (AF078924.1、AF188331.1、AY333434.1、AY598820.1、DQ842000.1) published in GenBank. The result was that the isogeny rate was 100%.
引文
[1]蔡宝祥主编.家畜传染病学[M].北京:中国农业出版社,1999:5.
    [2]蔡良婉.核酸研究技术[M].北京:科学出版社,1987:116-123.
    [3]沈叙庄.关注对动物使用抗生素与细菌耐药的问题[J].中华儿科杂志,2002,40(8):452-456.
    [4]陈伟伟,林升青,马群飞,等.福建省2000年~2002年是品中沙门氏菌的检测与分析[J].中国食品卫生杂志,2003,15(5):406-409.
    [5]陈兴乐,唐振柱,黄林,等.广西23年食物中毒流行病学评价与干预对策[J].广西预防医学,2004,10(4):200-204.
    [6]巢国祥,徐勤,李禾,等.扬州市六类食品沙门氏菌污染状况及耐药情况研究[J].世界感染杂志,2005,5(2):102-104.
    [7]方定一,杜念兴,吴信法,等.兽医微生物学[M].中国农业出版社, 1988:219-220.
    [8]高裕,瞿国润,唐一鸣.我国部分地区105个禽源性大肠杆菌的药敏试验[J].中国预防兽医学报,1998,20(5):300-301.
    [9]韩文瑜,冯书章.现代分子病原细菌学[M].吉林人民出版,2003: 123- 142.
    [10]魏春红,李毅等.现代分子生物学实验技术[M].高等教育出版社, 2006:30-34.
    [11]郝秀红,马聪.1991~1999年临床常见病原菌及耐药现状.中国抗生物杂志,2001,26(6):447-449.
    [12]黄瑞,秦爱兰,林发榕.耐药质粒在肠道杆菌间的接合传递研究[J].苏州医学院学报,1999,19(8):1-5.
    [13]胡子鉴,张婴元.耐氟喹诺酮类大肠埃希氏菌的感染与寄殖[J].中国抗感染化疗杂志,2002,2(2):59-62.
    [14]戴俊,文亚林,张晓英.一起由鸭沙门氏菌引起的食物中毒调查[J].使用实用兽医学,2002,9(3):241.
    [15]李树民,李铁征,冯书章.沙门氏菌的研究进展[J].中国微生物学会兽医微生物专业委员会2003年学术年会.53-58.
    [16]刘中富.宜昌市40年细菌性食物中毒分析与控制的探讨[J],中国卫生监督杂志,2002,1:44-46.
    [17]刘渠,刘衡川,李灶平,等.食品中沙门氏菌的耐药性研究[J].现代预防受医学,2004,31(3):330-332.
    [18]刘衡川,叶梅君,余倩,等.沙门氏菌食物中毒菌株的质粒图谱及耐药谱分析[J],现代预防兽医学,1996,23(2):81-83.
    [19]马孟根,王红宁,余勇,李成忠,张东,杨云飞,刘世贵.猪源性沙门氏菌耐药基因的分析[J].畜牧兽医学报,2006,37(1):65-70.
    [20]马越,陈鸿波.1998~2000年沙门氏菌属耐药性变迁[J].中国抗感染化疗杂志,2002,2(2):84-87.
    [21]孟琳.鸡沙门氏菌引起食物中毒[J].现代预防医学,2004,31(1): 30.
    [22]倪语星,洪秀华主编.细菌耐药性监测抗感染治疗[J].人民军医出版社,2002,4(1):11-12.
    [23]潘志明,焦新安,刘文博,等.鸡白痢沙门氏菌耐药性的检测研究[J].畜牧兽医学报,2002,33(4):377-383.
    [24]沈依群,赵敏,等.氨基糖甙类抗生素的耐药机制及控制耐药性的策略[J].国外医药抗生素分册,2002,5(23):118-119.
    [25]宋丹妮,谢惠媛.对当前抗生素滥用现状的一些看法[J].广东微量元素科学,2005,12(11):64-67.
    [26]孙树汉主编.基因工程原理与方法[M].北京:人民军医出版社, 2001.
    [27]唐银,杨大庆.鲍曼不动杆菌质粒指纹图谱分析及质粒与其耐药性关系的研究[J].中国现代医学杂志,2004,14(16):49-52.
    [28]唐之华,陈民钧.用DNA杂交技术检测临床分离菌株的两种氨基糖甙类耐药基因[J].中华微生物学和免疫学杂志,1990,10(4):233-235.
    [29]汤景元,姜平邓雨修,等.猪繁殖与呼吸综合征病毒和致病性沙门氏菌的混合感染[J].中国兽医学报,2005,4:20-25.
    [30]王鲁溪,宋树川,杨韶宇.一起B群沙门氏菌食物中毒的调查分析[J].中国公共卫生管理,2005,21(5):433.
    [31]王茂起,冉陆,陶勇。规模化猪场致病性大肠杆菌、沙门氏菌药敏区系调查[J].西南农业学报,2000,13:84-90.
    [32]王茂起,冉陆,王竹天,等.2001年中国食源性致病菌及其耐药性主动检测研究[J].卫生研究,2004,33(1):49-54.
    [33]王茂起,王竹天,包大跃,等.中国2000年食品污染状况检测与分析[J].中国食品卫生杂志,2000,14(2):3-8.
    [34]王红宁,刘书亮,陶勇,等.规模化猪场致病性大肠杆菌、沙门氏菌药敏区系调查[J].西南农业学报,2000:13:84-91.
    [35]王禹国,吴才仰,潘群慧.一起由肠炎沙门氏菌引起的食物中毒[J].现代预防兽医学报,2003,30(1):28.
    [36]吴智睿.2005年抗菌药物研究与临床应用进展学术研讨会. 2005:3 -6.
    [37]吴承龙.细菌R质粒在菌群中的转移及细菌耐药性扩散。中国人兽病杂志.1998,14(6):49-50.
    [38]吴聪明,陈杖榴.细菌耐药性扩散的机制[J].动物医学进展,2003, 24 (4):6-11.
    [39]徐建国.分子医学细菌学[M].北京:科学出版社,2000:8-30.
    [40]徐士新.国外对抗菌药物耐药性的研究和相关规定[J].中国兽药杂志,2001,35(5):51
    [41]朱力军.动物性大肠杆菌耐药性的变化趋势[J].中国兽医杂志, 2001, 35(2):16-l8.
    [42]杨帆,王红宁.细菌耐药机理及控制对策研究进展[J].四川畜牧兽医科学,2003,30(1):32-34.
    [43]张韩杰,吕桂霞,葛春旭,等.山东省部分地区鸡大肠杆菌的药敏试验[J].山东畜牧兽医,2002,5(3):6-7.
    [44]赵静,杨汉春,李华,等.用聚合酶链式反应检测猪源大肠杆菌间的结合及表达[J].中华微生物学和免疫学杂志,2000,20(4):323-326.
    [45]张冰冰,金华瑞,张燕,等.内蒙地区2002年生献鸡肉中食源性致病菌污染情况调查[J].中华卫生监督与健康杂志,2004,3(9):769-770.
    [46]钟传德.猪沙门氏菌的临床分离鉴定及耐药性消除研究[J].中国抗生素杂志,200,4(5):27-28.
    [47] Shaw KJ等.氨基糖甙类耐药基因的分子生物学及各类氨基糖甙修饰酶间的关系.国外医学抗生素分,1994,15(3):182-188.
    [48] Adam PR, Jonathan P, Michael W, et al. Transfer of a conjugative trans- posion, Tn5397 in a mode lorabio film [J]. FEMS Mi-cryobiology Letter.1999, 177:63-66.
    [49] Alessandra Carattoli, Laura Villa, Cristina Pezzella, etc al. Expanding Drug Resistance through Integron Acquisition by IncFI Plasmids of Salmonella enterica Typhimurium. Emerging Infectious Diseases. 2001, 7(3):444-447.
    [50] Alekshun MN, Levy ST. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob AgentsChemother, 1997, 41(10):2067-2075.
    [51] Althouse C,Patterson S,Fedorka-Cray P. TyPe I fimbriae of Salmonella enterica Serovar typhimurium bind to enterocytes and contribute to colonization of swine in vivo. Infect. Immun. 2003, 11:6446-6452.
    [52] Amyes S G B, Gemmell C G. Antibiotic resistance in bacteria. Microbiol.1992, 36:4.
    [53] Ana Maria Cordano, Rafael Virgilio. Evolution of Drug Resistance in Salmonella panama Isolates in Chile [J]. Antimicrobial agents and chemotherapy.1996, 40(2):336-341.
    [54] Anonymous. Summary of Notifiable Diseases. Morb. Mort. Wkly. Rep. 1998, 47:90-92.
    [55] Bangtrakulnonth A, Pornruangwong S, Kusum M. Prevalence of Salmonella in humans during 1988-1993.Southeast Asian J. Trop. Med. Public Health,1995,26:52-53.
    [56] Baucheron S, Imberechts H, Chaslus-Dancla E, et al. The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204. Microb Drug Resist, 2002, 8(4):281-289.
    [57] Beatriz Guerra, Sara M Soto, Jose M Arguelles etc al. Multidrug resistance Is Mediated by Large plasmids carrying a Class I Integron in the Emergent Salmonella enterica serotype. Antimicrob Agents Chemother ,2001,4:1305-1308.
    [58] Bei W C, He Q G, Yan L. Construction and characterization of a live, attenuated apxIICA inactivation mutant of Actinobacillus pleuropneumoniae lacking a drug resistance marker. FEMS Microbiol.Lett. 2005,243:21-27.
    [59] Botteldoom N, Herman L, Rijipens N. Phenotypic and molecular typing of Salmonella strains reveals different contamination sources in two commercial pig slaughterhouses. Aoppl. Environ. Microbiol. 2004,70: 5305-5314.
    [60] Bushman F. Lateral DNA transfer: mechanisms and consequences, Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N Y.2002.
    [61] BulteM, Jakob P。The use of a PCR-generated invH probefor the detection of Salmolella spp. In artificially and naturally contaminated foods.[J]. Food Microbiol, 1995,26(3):335-344.
    [62] Brun-Buisson, C., P. Legrand, A. Philippon, F. Montravers, M. Ansquer, and J. Duval. Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniac. Lancet ii. 1987,30:302-306.
    [63] Call D R, Bakko M J et al. Antimicrobial Agents and Chemotherapy, 2003, 47(10):3290-3295.
    [64] Charlotte S. Microbes overcome natural antibiotic Might we create superbugs that resist our bodies' ancient defences.2005, 10:1038.
    [65] Chen S, Zhao S H, White D G, et al. Characterization of antimicrobial resistant Salmonella serovars isolated from retail meats [J]. Applied and Environmental Microbiology. 2004, 70(1):1-7.
    [66] Chen Y H, Peng C F, Tsai J J. Epidemiological study of human salmonellosis during 1991~1996 in southern Tainwan, Kaohsiung. J. Med. Sci.1999, 15:127-136.
    [67] Cheung P Y, Chan C W, Wong W. Evaluation of two real-timepolymerase chain reaction pathogen detection kits for Salmonella spp. in food. Lett. Appl. Microbiol.2004, 39:509-515.
    [68] Chiu C H, Lin T Y, Qu J T. Predictors for extraintestinal infections of non-typhoidal Salmonella in patients without AIDS. Int. J. Clin. Pract. 1999,53:161-164.
    [69] Chiu C H, Su L H, Chu C S. Salmonella enteica serotype Choleraesuis: epidemiology, pathogenesis, clinical disease and treatment. Clin. Microbiol. Rev.2004, 17:311-322.
    [70] Cirz R T, Chin J K, Andes D R. Inhibition of mutation and combating the evolution of antibiotic resistance. PLOS. Biol.2005, 3(6):176.
    [71] Connie E B, Pina M F. Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicro. Chemother.1999,42(4):846-849.
    [72] Courvalin P. Transfer of antibiotic resistance genes between gram- positive and gram-negative bacteria [J]. Atimicrob Agents Chemother. 1994. 38: 1447-1451.
    [73] Cruchaga S, Echeita A, Aladuena A, et al. Antimicrobial resistance in Salmonella from humans, food and animals in Spainin 1998 [J]. J Antimicrob Chemother, 2001, 47:315.
    [74] David G White, Ph D, Shaohua Zhao, et al. the isolation of antibiotic-resistant Salmonella from retail groud meats [J]. The New England Journal of Medicine, 2002, 345(16):1147-1154.
    [75] David G W, Shaohua Z, Patrick F M, Sherry A, Sharon F, Julie S, Missy B, Lisa K N. Characterization of integron mediated antimicrobial resistance in Salmonella isolated from diseased swine. Can. J. Vet.Res.2003, 67:39-47.
    [76] Ding H, Demple B. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc Natl Acad Sci USA, 2000, 97(10):5146-5150.
    [77] Dorthe Sandvang. Novel Streptomycin and Spectinomycin Resistance Gene as a Gene Cassette within a Class I Integron Isolated from Escherichia coli. Antimicrob Agents Chemother, 1999, 43(12):3036- 3038.
    [78] Ebel, E W Schlosser. Estimating the annual fraction of eggs contaminated with Salmonella enteritidis in the United States [J].Int J Food l、microbiol, 2000,61:51-62.
    [79] E John Threlfall. Antimicrobial drug resistance in Salmonella: problems and perspective in food-and water-borne infections [J]. FEMS microbiology,2002, 26:141-148.
    [80] Eaves DJ, Ricci V, Piddock LJV. Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica serovar typhimurium: role in multiple antibiotic resistance. Antimicrob Agents Chemother, 2004, 48(4) :1145-1150.
    [81] Fabio Tosini, Paolo Visca, Ida Luzzi, and Anna Maria Dionisi, Cristina Pezzella, Andrea Petrucca, Alessandra Carattoli. Class I Integron-Borne Multiple-Antibiotic Resistance Carried by IncFI and IncL/M Plasmids in Salmonella enterica Serotype Typhimurium. Antimicrob Agents Chemother, 1998, 42: 3053-3058.
    [82] Fank M A, Monton L, Mary C E, Aroon B, Thongchai C, Rene S H, Henrik C W. Antimicrobial susceptibility and occurrence of resistancegenes among Salmonella enterica serovar Weltevreden from different countries. J. Antimicrob. Chemother. 2003,52:715-718.
    [83] Fralick JA. Evidence that TolC is required for functioning of the MarP AcrAB efflux pump of Escherichia coli. J Bacteriol, 1996, 178:5803-5805.
    [83] Frech G, Schwarz S. Molecular analysis of tetracycline resistance in Salmonella enterica subsp. Enterica Serovar Typhimurium. Enteritidis, Dublin, Choleraesuis, Hadar and Saintpaul: Construction and application of specific gene probes [J]. J Appl Microbiol, 2000, 89(4): 633.
    [84] Gilligan K, Shipley M, Sriles B, et al. Identification of Sraphylococcus aurous enter toxins A and B genes by PCR-ELISA[J]. Molecular and cellular Probes.2000,14(2):71-78.
    [85] Glynn MK, Bopp C, Dewitt W, et al. Emergence of multidrug resistant Salmonella enterica serotype typhimurium DT104 infections in the United States. N Engl J Med, 1998, 338:1333-1338.
    [86] Gold H S, Moellering R C. Antimicrobial-drug resistance. N. Engl. J. Med.1996, 335:1445-1453.
    [87] Hargett Bean NT, Pavia AT, Tauxe RV. Salmonella isolates from humans in United States 1984-1986[J]. MMWR Surveill Summ, 1988, 37(SS22):25-31.
    [88] Hegde SS, Dam TK, Brewer CF, Themodynamics of aminoglycoside and acy-coenzyme a binding to the Salmonella enterica AAC(6′)-Iyamin-oglycoside N-acetyltransferase. Biochemistry, 2002, 41(23) :759-765.
    [89] Honore N, Marchal G, Cole ST. Novel mutation in 16SrRNA associated with streptomycin dependence in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 1995, 39:769.
    [90] Hon W C, Mc Kay GA, Thompson PR, et al. Structure of an enzyme required for am inoglycoside resistance reveals homulogy to eukatiotic protein kinases [J]. Cell, 1997, 89:887.
    [91] Hogue A.,P White, J Guard-Petter, et al. Epidemiology and control of egg-associated Salmonella Enteritidis in the United States of America [J]. Rev Sci Tech Off Int Epiz, 1997, 16:542-553.
    [92] Humphrey T, Salmonella, stress responses and food safety. Nat. Rev. Microbiol.2004, 2:504-509.
    [93] Jaceques Breuila, Anne Brisaboisc, Isabelle Casmid, et al. Antibiotic Resistance in Salmonella Isolated from Humans and Animals in France: Comparative from 1994 to 1997. Journal of Antimicrobial Chemotherapy, 2000, 46:965-971.
    [94] James A Karlowsky, Mark E Jones, Clyde Thounsberry, Ian R Friedland, and Daniel F Sahm. Trends in Antimicrobial Susceptibilities among Enterobacteriaceae Isolated from Hospitalized Pateents in the United Stateds from 1998 to 2001. Antimicrob Agents Chemother. 2003,47: 1672-1680.
    [95] Johanden K, Storgaard M, Carstensen N, et al. An international study on the occurrence of multiresistant bacteria and aminoglycoside consump- tion patterns [J]. Infection.1988,16(5):313.
    [96] Karlowsky JA, Hoban DJ, Zelenitsky SA, et a l. Altered denA and anr gene expresion in aminoglycoside adaptive resistance in Pseudomonasaeruginosa [J]. J Antimicrob Chemother, 1997, 40:371.
    [97] Kingsley RA, Humphries AD, Weening EH, et al. Molecular and phenotypic analysis of the C554 island of Salmonella enterica serotype typhimurium: identification of intestinal colonization and persistence determinants [J]. Infect Immun, 2003,71(2):629-640.
    [98] K Tayfun Carli, Can Bora Unal, Vildan Caner et al. Detection of Salmonella in chicken feces by a combination of tetrathionate broth enrichment, capillary PCR, and capillary gel electrophoresis[J]. Clinical microbiology,2001,1871-1876.
    [99] Laura J V, Piddock, David G W, Karl G. Evidence for an efflux pump mediating multiple antibiotic resistance in Salmonella enterica serovar Typhimurium. Antimicrob. Agents. Chemother. 2004,44(11): 3118- 3121.
    [100] Lee C, Lang Lois B E, Dawson K. Detection of tetracycline resistance Determinants in pig isolates from tree herds with different histories of antimicrobial agents exposure [J]. Appl Environ Microbiol, 1993, 59(5):1467.
    [101] Levesque C, Piche L, Larose C, Roy P H. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents. Chemother.1995, 39:185-191.
    [102] Malorny B, Hoonfar J, Bunge C, et al. Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standars[J]. Appl Environ Microbiol, 2003, 69(1):290-296.
    [103] Massi MN, Shirakawa T, Gotoh A et al. Rapid diagnosis of typboid fever by PCR assay using one pair of primers from flagellin gene ofSalmonella Typhi [J]. Infect Chemonther, 2003, 9(3):233-237.
    [104] Mead P S, L Slutsker, V Diet. L F, et al. J Food Prot, 19991, 54:563- 568.
    [105] Melissa K, Philip JC. Ibrahim M. Assessment of archived paraffin- embedded cervcal condyloma tissues for mycoplasma-conserved DNA using sensitive PCR-ELISA[J]. Gynecologic Oncology,1998, 71(2): 254-257.
    [106] Mendez B, Jachibana C, Levy S B. Heterogeneity of tetracycline resistance determinants [J]. Plasmids, 1997, 3:99
    [107] Miller GH, Sabatelli FJ, Hare R S, et al. The most frequent aminogly- coside resistance mechanisms changes with time and geographic area: a reflection of aminoglycoside usage patterns[J]. Clin Infect Dis, 1997, 1:S46
    [108] Mingeot-Leclercq MP. Glupczynski Y, Tulkens PM. Aminoglycosides: activity and resistance. Antimicrobial Agent and Chemotherapy. 1999, 43(4):727-737.
    [109] Nassib TA, EI-Din MZ, EI-Sharoud WM. Assessment of the presence of Salmonella spp. in Egyptian dairy products using various detection media [J]. Lett Appl Microbiol, 2003,37(5):405-409.
    [110] National Committee for Clinical Laborator Standars Method comparison and bias estimation using patient samples approved guideline [S]. EP6-A, NCCLS,1995.
    [111] Oliveira S, Blackall P J, Pijoan C. Characterization of clinical isolates of Escherichia coli showing high levels of fluoroquinolone resistance. Microbiology. 1996, 34(3):597-602.
    [112] Okusu H, Ma D, Nikaido H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple antibiotic resistance (Mar) mutants. J Bacteriol, 1996, 178:306-308.
    [113] Peters E D J, M A Leverstein-van Hall, A T A Box, J Verhoef, and A. C. Fluit. Novel gene cassettes and integrons. Antimicrob Agents Chemother, 2001, 45:2961-2964.
    [114] Peter V Adrian, Christopher J Thomson, Keith P Klugman. Gene Cassettes for Trimethoprim Resistance, dfr13, and Streptomycin- Spectinomycin Resistance, addA4, Inserted on a Class I Integron. Antim-icrobial Agents and Chemotherapy.2000,44(2):355-361.
    [115] Pomposiello PJ, Demple B. Identification of SoS-regulated genes in Salmonlla enterica serotype typhimurium. J Bacteriol, 2000, 182 (1): 23-29.
    [116] Powers T, Noller H F. Selective perturbation of G530 of 16SrRNA by translational miscoding agents and a streptomycin- dependence mutation in protein S12[J]. J Mol Biol. 1994, 235:156.
    [117] Prammananan T, Sander P, Springer B, et al. RecA-mediated gene corrversion and aminoglycoside resistance in strains beterozygous for rRNA.Antimicrobial Agent and Chemotherapy. 1999, 43(3):447-453.
    [118] Qian P, Li X, Tong G. High-level expression of the ORF6 gene of porcinereproductive and respiratory syndrome virus (PRRSV) in Pichia pastoris. Virus Genes.2003, 27:189-196.
    [119] Rajashekara G, Haverly E, Halvorson DA, et al. Multidrug resistant Salmonella typhimurium DT104 in poultry. J Food Protect, 2000, 63(2):155-161.
    [120] Ramos J M, Ales J M, Cuenca-Estrella M. Changes in susceptibility of Salmonella enteritidis Salmonella typhimurium and Salmonella Virchow to six antimicrobial agents in a Spanish hospital Epidemiol. Infect. 2003, 101:302-308.
    [121] Sano T, Smith CL, Canter CR Immuno-PCR: very sensitive antigen detection by meants of specific antibody-DNA conjugates[J]. Science,1992,258:120-122.
    [122] Ribot EM, WI erzba RK, Angulo FJ, et al. Salmonella enterica serotype typhimurium DT104 isolated from humans, United States, 1985, 1990, and 1995.Emerg Infect Dis, 2002, 8(4):387-391.
    [123] Shaw KJ, Rather PN, Hare RS, et al. Molecular genetics of aminogy- coside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiological Reviews. 1993,57(1):138-163.
    [124] Shearer AEH, Strapp CM, Joerger RD. Evaluation of polymerase chain reaction-based system for detection of Salmonella enteritidis, Escherichia coli O157:H7, Listeria spp. and Listeria monocytogenes on fresh fruits and vegetables [J]. J Food Prot, 2001, 64:788-795.
    [125] Sheng C, Zhao S, Whit D G. Characterization of multiple antimicrobial resistant Salmonella serovars isolated from retail meats. Appl. Environ. Microbiol.2004, 70:1-7.
    [126] Shenghui Cui, Beilei Ge, Jie Zheng, et al. Prevalence and Antimicrobial Resistance of Campylobacter spp. and Salmonella Serovars in Orgenic Chickens from Maryland Retai Stores [J]. Applied and Environmental Microbiology, 2004, 71(7):4108-4111.
    [127] Smith B P, Roden L, Thurmond M C, Dilling G W, Konrad H, Pelton J A, Picanso J P. Prevalence of Sslmonella in cattle and in the environment on California dairies. Vet. Med. Assoc. 1994, 205:467-471.
    [128] Tauxe, R. V. Salmonella: A postmodern pathogen [J].J Food Prot, 1991, 54:563-568.
    [129] Tenover F C, K L Phillips, T Gilbert, P Lockhart, P J O'Hara, and J J Plorde. Development of a DNA probe from the deoxyribo- nucleotide sequence of a 3-N-aminoglycoside acetyltransferase[AAC(3)-I] resistance gene. Antimicrob Agents Chemother, 1989, 33:551-559.
    [130] Threfall E J, Rowe B, Ward L R. A comparison of multiple drug resista- nce in Salmonella from humans and food animal in Englang and Wales,1981 and 1990. Epidemiol. Infect. 1993, 111:189-197.
    [131] Tuchili L M, Kodama H, Iaumoto Y, et al. Detection of Salmonella gallinarum and S.typhimurium DNA in experimentally infected chicks by PCR[J]. Vet Med Sci,1995,57(1):59-63.
    [132] U.S. Department of Agriculture. Pathogen reduction: hazard analysis and critical control point (HACCP) systems. Fed Reg. 1995, 60:6774- 6889.
    [133] Walker R A, Saunders N, Lawson A J, Lindsay E A, Dassama M, Ward L R, Woodward M J, Davies R H, Liebana E, Threlfall E J. Use of a lightcycler gyrA mutation assay for rapid indentification of mutations conferring decreased susceptibility to ciprofloxacin in multiresistant Salmonella enterica serotype typhimurium DT104 isolates. J. Clin. Microbiol. 2001, 39(4):1443-1448.
    [134] White DG, Goldman JD, Demple B, et al. Role of the acrAB locus in Organic solvent tolerance mediated by over-expression of marA, soxS, or robA in Escherichia coli. J Bacteriol, 1997, 179:6122-6126.
    [135] Wills R W, Gray J T, Fedorka-Cray, P J. Synergism between porcine reproductive and respiratory syndrome virus (PRRSV) and Salmonella choleraesuis in swine. Vet. Microbiol. 2000, 71:177-192.
    [136] Windhorst H W. Patterns of pig meat production and trade. Proceedings of the 18th IPVS Congress.2004, Volume 1. Hamburg, Germany.
    [137] Wolf E, Vassilev A, Makino Y, et al. Crystal structure of a GCN5- related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N- acetyltransferase [J]. Cell, 1998, 94:439.
    [138] Zaporojets D, French S, Squires CL, Products transcribed from rearranged genes of Escherichia coli can assemble to form functional ribosomes [J]. J Bacteriol, 2003, 185(23):6921-6927.
    [139] Zhao S, Qaiymi S, et al. Characterization of Salmonella enterica Serot- ype Newport Isolated from Humans and Food Animals[J]. J Clin Microbiol, 2003, 41(12):5366-5371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700