黄土丘陵区植被次生演替草灌阶段的土壤条件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被恢复重建是黄土高原生态建设的首要任务。有关该区植被恢复演替对土壤质量的影响已有大量研究报道,但土壤质量如何影响植被恢复演替尚缺乏足够的研究资料。为此,本论文以陕北黄土丘陵区土壤-植被系统为研究对象,采用空间序列代替时间序列,选取草灌植被过渡阶段的典型植物群落,通过根区取样,野外调查试验和室内分析相结合,系统分析了5种草本群落和7种灌木初期的不同层次土壤物理属性、养分状况和微量元素含量,研究了植被次生演替过程中草灌阶段的土壤条件及关键土壤因子,对于科学认识土壤-植被的互动效应,人工调控加速研究区植被恢复演替进程有重要的科学和实际意义。主要结论如下:
     1.探讨了黄土丘陵区不同地貌类型下植被自然恢复演替的群落特征,进一步揭示了沟缘线植被的植物篱廊道作用和沟谷地植被的斑块分布格局。封禁约20年后沟谷地植被演替表现出健康演替趋势。灌乔物种已有一定数量和分布,在植物群落多样性和结构等方面有着重要影响。沟谷地植被群落呈斑块格局分布。微域范围上沟谷地地形和土壤的异质性对植物群落形成和演替有重要的影响。不同沟向沟谷地的灌乔植物种的重要值构成上存在一定差异,南北沟向较西东沟向分配均匀。
     2.明确了植被次生演替草灌阶段土壤物理性质特征。植被次生演替草本群落演替阶段,土壤物理性质得到一定的改善,且表层土壤物理性质的改善效果较好;但土壤物理性质变化与演替时间不呈线性关系变化。随草本群落演替,不同土壤物理因子的变化趋势存在差异;天然草地的土壤物理性质好于人工草地。在植被次生演替灌木初期,除土壤含水量外,土壤容重、孔隙度、稳定入渗和水稳性团聚体均好于白羊草地,表明草本演替阶段对土壤的改善作用为灌木的发育定居提供了土壤物理条件基础。灌木树种不同对定居所需适宜土壤物理条件不同。
     3.明确了植被次生演替草灌阶段的土壤养分特征。随草本群落演替,土壤养分状况总体上呈改善趋势,不同土壤养分因子剖面变化规律不同,土壤养分状况受群落优势种的控制作用大于演替时间。草本阶段对土壤养分的提高幅度是有一定限度的。灌木初期土壤养分状况总体好于草本阶段,表明灌木初期对土壤养分条件的要求高于草本群落。灌木树种在定居环境的选择和适应性及与对土壤养分因子利用和改造强度上存在着差异。
     4.明确了植被次生演替草灌阶段土壤有效态微量元素特征。在草本阶段,不同土壤有效态微量元素含量不同,表现为Mn> Fe> Cu> Zn;不同有效态微量元素土层间变化的趋势不同,在0~10与10~20cm土层间,Zn和Mn含量变化存在极显著差异,而Cu和Fe含量变化无显著差异;随草本群落演替,有效锌和锰的含量呈增加趋势,有效铜含量呈波动型变化,有效铁含量呈先增后减。植被次生演替到灌木初期,不同土壤有效态微量元素含量不同,表现为Mn>Cu>Fe>Zn;不同有效态微量元素土层间变化存在一定差异,在0~10与10~20cm土层间,Zn含量变化存在极显著差异,而Cu、Mn和Fe含量变化无显著差异;不同灌木树种对土壤有效态微量元素含量的要求和适宜性存在差异。植被次生演替灌木初期阶段,各土壤有效态微量元素(除有效铜外)与各土壤养分因子和pH值间存在较为显著的线性相关关系。
     5.明确了植被次生演替草灌阶段的土壤条件,初步识别出草-灌演替阶段的关键土壤因子。在植被次生演替灌木初期,土壤物理因子(土壤含水量除外)和养分因子的最小临界值总体上要高于草本阶段,各土壤养分因子(全磷除外)在灌木初期的变化幅度要明显大于草本阶段。灌木初期土壤有效态锰的最小临界值要高于草本阶段,土壤pH值和有效态微量元素的变化幅度总体上大于草本阶段。从土壤养分累积、土壤物质交换环境和土壤通透性3方面的主成分因子信息可基本反映出草本阶段的土壤条件信息;从营养元素有效性、土壤养分累积、土壤通透性3方面的主成分因子信息可基本反映灌木初期的土壤条件信息。其中,有机质、pH值和孔隙度等因素对草本群落阶段的土壤条件的影响较大,可能是该阶段草本群落演替的关键土壤因子;有效锌、土壤磷元素、容重等因素对灌木初期的土壤条件影响较大,可能是对该阶段灌木树种定居发育产生重要影响的关键土壤因子。
Vegetation restoration is the key task of ecological construction in the loess plateau of China. There has been many research and publications about the impact of vegetation restoration on soil quality in this region. However, quite fresh research was done on how soil quality affects on vegetation restoration. In this thesis, taking the soil-vegetation system as the research object, using an approach of spatial sequence instead of temporal sequence, through sampling in the root zone of selected typical vegetation communities in herb and early shrub succession stages, combining with field investigations and laboratory test, we studied soil physical properties, nutrients and trace elements in the soil profile of the five kinds of herbal community and seven kinds of shrub trees. Based on this, suitable soil condition and the key soil factors for the secondary succession from herb to shrub were identified. The research was meaningful for understanding the interactive effects of soil and vegetation, and the results could be a reference for artificial controlling of speed up the process of vegetation restoration succession. Main conclusions are as follows:
     1. The characteristics of vegetation community restoration in the different types of landforms were clarified in the hilly-gully loess region of China. The corridor function of vegetation fence along the edge of the gully and the patch distribution of vegetation in the gully were demonstrated. With hill closing measurement carried out about 20 years, vegetation succession has expressed a healthy proceeding succession trend with a great abundances and diversity. At present in the side of life forms of plant communities, herbage plants were the major, especially perennial herbage, while shrub and arbor trees also have importance position. Shrub and arbor trees have importance influenced on the diversity and structure of plant communities and so on. Patch pattern of vegetation distribution was prominence in the gullies. Differences were found between the construction pattern of importance values of shrub and arbor trees in different direction gullies. We also found that the South-north gully was more uniform than the west-east gully. There were some differences in the similarity of vegetation species in different gully direction; however, these differences were mainly affected by some coexistence species and ancient species.
     2. The characteristics of soil physical properties of herb and early shrub stage in vegetation secondary succession were clarified. In the herb stage of vegetation secondary succession, the soil physical properties have been improved, and improvement effect of the physical properties of the soil surface was better than the other soil layers. But there was no linear relationship between the changes of soil physical property and succession time. With the herb community succession, the trend of different soil physical changes. Soil physical properties of natural grassland were better than artificial grassland. With the exception of soil moisture, soil bulk density, porosity, stability, infiltration and water stable aggregates of shrub were better than Bothriochloa ischaemum. It showed that improvement of soil physical properties by herb communities succession provided a basic soil physical conditions for shrub trees ecesis and development. Different shrub trees needed different proper soil physical condition of ecesis.
     3. The characteristics of the soil nutrient of herb and shrub stage in vegetation secondary succession were clarified. With the herb community succession, soil nutrients showed an improving tendency in general. Different soil nutrient factors in the profile varied differently. It seems that soil nutrient status was controlled by the dominant species of the community rather than successional time. Soil nutrient status of early shrub was better than herb stage. It demonstrated that it needs more restricted nutrient condition in early shrub stage than herb stage. Different shrub trees had different condition on selection and adaptability of ecesis.
     4.The characteristics of the soil available trace elements of herb and shrub stage in vegetation secondary succession were understood. In the herb stage, contents of different kinds of soil available race elements were different. It showed that Mn> Fe> Cu> Zn. Between 0~10cm and 10~20cm soil layers, changes of contents of Zn and Mn were significantly different, however, no significant difference was found in the contents of Cu and Fe. With the herb community succession, available Zn and Mn contents showed an increasing trend, available Cu content had a waving change, available Fe content appeared the trend from increasing to decreasing. In the early shrub stage, contents of different kinds of soil available race elements were different. It showed that was Mn> Cu> Fe> Zn. Changes trend of different kinds of soil available race elements in the profile were different. Between 0~10cm and 10~20cm soil layers, the change of available Fe content was significant, the change of available Cu, Mn and Fe content were not significant. Different shrub trees were difference in the need and adaptability of the soil available trace elements contents. In the early shrub stage, there was a significant linear relationship between soil available trace elements and soil nutrient, as well as soil pH, but except available Cu.
     5. Suitable soil condition and the key soil factors for the secondary succession from herb to shrub were identified. In the early shrub stage of vegetation secondary succession, minimum critical values of soil physicals (except soil moisture) and soil nutrient factors were higher than herb stage in general. The range of the soil nutrient contents (except total phosphorus) in the early shrub was bigger than herb stage. The minimum critical value of soil available Mn in the early shrub was higher than herb stage. The range of the soil pH and the soil available trace elements were in general bigger than herb stage. The three factors of soil nutrient accumulations, environment of soil material exchange and soil permeability, which were identified using principal analysis, could basically reflected soil condition information of the herb stage. Availability of nutrient elements, soil nutrient accumulations and soil perviousness could basically reflected soil condition information of the early shrub stage. Organic matter, pH and porosity had great influence on soil condition of the herb community stage and might be the key soil factors in the herb stage. Available Zn, soil P elements and bulk density had significant influence on soil condition of the early shrub stage, which might be the key soil factors in the early shrub stage.
引文
[1] 任 海, 蔡锡安, 饶兴权, 等. 植物群落的演替理论[J]. 生态科学, 2001, 20(4): 59-67
    [2] Mcintosh R P. Succession and ecological theory in forest succession and application [M]. New York: Springer - Verlag, 1981, 10-23
    [3] 周灿芳. 植物群落动态研究进展[J]. 生态科学, 2000, 19 (2): 53-59
    [4] Pickettsta, White P S. The ecology of natural disturbance and patch dynamics [M].New York: Academic Press.1985
    [5] 肖化顺,陈端吕. 植物群落的现代演替理论浅析[J]. 中南林业调查规划, 2006 ,25 (3): 60-62
    [6] 彭少麟. 南亚热带森林群落动态学[M]. 北京: 科学出版社, 1996 .
    [7] Clements F E. plant succession: An analysis of the development of vegetation [M]. Publication. Carnegie Institution of Washington. 1916, 242.
    [8] Mcintosh R P. The background of ecology [M]. Cambridge: Cambridge University Press, 1985.
    [9] 刘建国. 当代生态学博论[M]. 北京: 中国科学技术出版社,1992.
    [10] Tilman D. The resource-ratio hypothesis of plant succession [J]. American Naturalist,1985,125: 827- 852.
    [11] Pickett S T A. A hierarchical consideration of causes and mechanism of succession [J]. Vegetation, 1987, 69: 109-114.
    [12] 范竹华,法永乐,李 梅,等. 生态演替螺旋式上升理论探析[J]. 农业与技术. 2005, 25(1): 99- 101.
    [13] Knap. 植被动态[M]. 李 博译. 北京: 科学出版社,1985.
    [14] WRI, IUCN and UNDP. Global biodiversity strategy: Guideline for action to save、Study and use biotic wealth and equitably. Washington, D. C. 1992.
    [15] 李裕元, 邵明安. 子午岭植被自然恢复过程中植物多样性的变化[J]. 生态学报,2004, 24(2): 252-260
    [16] Ruiz-Jae’nMC, Aide T M. Vegetation structure, species diversity, and ecosystem processes as measures of restoration success [J]. Forest Ecology and Management, 2005, 218: 159-173
    [17] Youn G T P . Restoration ecology and conservation biology [J]. Biological Conservation, 2000, 92: 73-83
    [18] Zhang J Y, Zhao H L, Cui J Y, et al. Effects of clonal plants on community structure and function along a restorational gradient in Horqin sandy land [J]. Scientia Silvae Sinicae, 2005, 41 (1): 5-9
    [19] 高贤明,黄建辉,万师强,等.秦岭太白山弃耕地植物群落演替的生态学研究Ⅱ演替系列的群落α多样性特征[J]. 生态学报,1997, 17 (6): 619-626
    [20] 谢晋阳, 陈灵芝. 中国暖温带若干灌从群落多样性问题的研究[J]. 植物生态学报, 1997, 21 (30): 197-207
    [21] Huston MA, Aarssen LW, Au stin MP, et al. No consistent effect of plant diversity on productivity [J]. Science, 2000, 289: 1255
    [22] Loreau M, Naeem S, Inchausti P, et al. Biodiversity and ecosystem function: Current knowledge and future challenges [J]. Science, 2001, 294: 804-808
    [23] 张继义,赵哈林,张铜会,等. 科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态[J]. 植物生态学报,2004, 28 (1) : 86-92
    [24] 林露湘,曹 敏,唐 勇,等. 西双版纳刀耕火种弃耕地树种多样性比较研究[J]. 植物生态学报,2002, 26(2): 216-222
    [25] 欧祖兰,李先琨,苏宗明,等. 广西阳朔岩溶植被演替过程种群变化及物种多样性[J]. 生态科学,2005, 24(4): 295-297
    [26] Margalef R. Oncerta in unifying principles in ecology [J]. Am. Nat., 1963. 97: 357-374
    [27] Odum E P. The strategy of ecosystem development [J]. Science, 1969, 164: 262-270
    [28] 李永宏. 内蒙古典型草原地带退化草原的恢复动态[J]. 生物多样性, 1995, 3 (3) : 125-130
    [29] Wang G H, Zhou G S, Yang L M, et al. Distribution, species diversity and life-form spectra of plant communities a long an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China [J]. Plant Ecology, 2003, 165: 169-181.
    [30] Harris J A, Birch P, Palmer J. Reclamation of damaged land for nature conservation [J]. HMSO: London, 1996
    [31] 刘美珍, 蒋高明, 于顺利,等. 浑善达克退化沙地恢复演替18年中植物群落动态变化[J]. 生态学报,2004, 24(8): 1734-1740
    [32] 白文娟, 焦菊英. 黄土丘陵沟壑区退耕地主要自然恢复植物群落的多样性分析[J]. 水土保持研究,2006, 13(3): 140-143
    [33] 王国梁, 刘国彬, 侯喜禄. 黄土高原丘陵沟壑区植被恢复重建后的物种多样性研究[J]. 山地学报. 2002, 20(2): 182-187
    [34] 杨洪晓,卢 琦,吴 波,等. 高寒沙区植被人工修复与种子植物物种多样性的变化[J]. 林业科学, 2004, 40 (5): 45-49
    [35] Cowan I R. Stomatal behavior and environmental [J]. Advance Botany Research, 1977, 4: 117-228.
    [36] Bazzaz F A. The physiological ecology of plant succession [J]. Annu. rev. Ecology System, 1979, 10: 351-371
    [37] Von Caemmerer S, Farquhar GD. Some relationships between the biochemistry and the gas exchange of leaves [J]. Planta, 1981, 153: 376-385.
    [38] Bazzaz F A and Carlson R G. Photosynthetic acclimation to variability in the environment of early and late successional plants. Oecologia, (Berlin), 1982, 54: 313-316
    [39] Macdonald S E, Chinnappa C C. Population differentiation for phenotypic plasticity in the Stellarialongipes complex [J]. Amer J Bot, 1989, 76: 1627-1637
    [40] Colema J S, Connaughay K D, Ackerly D D. Interpreting phenotypic variation in plants [J]. Trends Ecology Evolution, 1994, 9(5): 187-191
    [41] Tan, G. C-H, B. -L. Ong & I. M. Turner. The photosynthetic performance of six early successional tropical tree species [J]. Photosynthetica, 1994, 30: 201-206.
    [42] Bazzaz F A. Plants in changing environments: linking physiological, population, and community ecology [J]. New York: Cambridge University Press, 1996: 264-280
    [43] 张祝平. 鼎湖山厚壳桂群落光合特性的研究[J]. 热带亚热带森林生态系统研究, 1989, 5 (5): 37-43
    [44] 刘美珍,蒋高明,李永庚,等. 浑善达克沙地三种生境中不同植物的水分生理生态特征[J]. 生态学报, 2004, 24(7): 1465-1471
    [45] 王爱民, 祖元刚. 大兴安岭不同演替阶段白桦种群光合生理生态特征[J]. 吉林农业大学学报 2005, 27 (2): 190-193
    [46] 史刚荣,李 慧. 淮北相山恢复演替群落优势树种的水分生理生态研究[J]. 植物研究,2006, 26(6): 722-727
    [47] 张 军, 黄永梅, 焦会景,等. 毛乌素沙地油蒿群落演替的生理生态学机制[J]. 中国沙漠,2007, 27(6):977-983
    [48] 丁圣彦,宋永昌. 浙江天童常绿阔叶林演替系列优势种光合生理生态的比较[J]. 生态学报,1999, 19(3): 318-325
    [49] 安 慧,上官周平. 黄土高原植被不同演替阶段优势种的光合生理特性[J]. 应用生态学报,2007, 18 (6): 1175-1180
    [50] 李庆康,马克平. 植物群落演替过程中植物生理生态学特性及其主要环境因子的变化[J]. 植物生态学报,2002 , 26 (增刊): 9-19
    [51] 张庆费, 宋永昌, 由文辉. 浙江天童植物群落次生演替与土壤肥力的关系[J]. 生态学报,1999,19(2): 174-178
    [52] Berendse, F. Organic matter accumulation and nitrogen mineralization during secondary succession in healthland ecosystem[J]. Journal of Ecology, 1990, 78: 413-4278.
    [53] 许明祥,刘国彬. 黄土丘陵区刺槐人工林土壤养分特征及演变[J]. 植物营养与肥料学报,2003, 11(4): 40-46
    [54] 曲国辉,郭继勋. 松嫩平原不同演替阶段植物群落和土壤特性的关系[J]. 草业学报,2003,12(1):18-22
    [55] 牛德奎,郭晓敏. 红壤侵蚀区植被重建与可持续发展[J]. 水土保持研究,1998, 5 (2): 90-94
    [56] Bradford M A, Jones T H, Bardgett R D, et al. Impacts of soil faunal community composition on model grassland ecosystems [J]. Science, 2002, 198: 615- 618
    [57] 王文颖,王启基,王 刚. 高寒草甸土地退化及其恢复重建对土壤碳氮含量的影响[J]. 生态环境, 2006, 15 (2 ): 362-366
    [58] 徐国良,周国逸,莫江明,等. 鹤山丘陵退化生态系统植被恢复的土壤动物群落结构[J]. 生态学报,2005, 25 (7) : 1670-1677
    [59] Hooper D U, Bignell D E, Brown V K, et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems [J]. Bio Science, 2000, 50: 1049-1061
    [60] 李 艳,李 鹏,赵 忠,等. 退耕地植被恢复演替的生态环境效应研究进展[J]. 西北农林科技大学学报(自然科学版),2007, 35(8): 155-159
    [61] 贾国梅,王 刚,陈芳清. 子午岭植被演替过程中土壤生物学特性的动态[J]. 生态环境 2007, 16(5): 1466-1469
    [62] 杨玉盛,何宗明,邱仁辉,等. 严重退化生态系统不同恢复和重建措施的植物多样性与地力差异研究[J]. 生态学报,1999, 19(5): 490-494
    [63] 张全发,郑 重,金义兴. 植物群落演替与土壤发育发展之间的关系[J]. 武汉植物学研究, 1990, 8(4): 325-334
    [64] 王风玉,周广胜,贾丙瑞,等. 水热因子对退化草原羊草恢复演替群落土壤呼吸的影响[J]. 植物生态学报,2003, 27(5): 644-649
    [65] Bormann, B. T. & R. C. Sidle. Change sin productivity and distribution of nutrient sin chrono sequence at Glacier Bay, National Park, Alaska [J]. Journal of Ecology, 1990, 78: 561-578.
    [66] Crocker, R. L. & J. Major. Soil development in relation to vegetation and surface age at Glacier Bay, Alaska [J]. Journal of Ecology, 1955, 43: 427-448.
    [67] 高贤明,马克平,黄建辉,等. 北京东灵山地区植物群落多样性的研究Ⅺ.山地草甸β多样性[J]. 生态学报, 1998, 18: 24-32
    [68] MacArthur, R. H. & J. H. Connell. The biology of populations [J]. New York: Wiley and Sons Press. 1966, 200
    [69] 王海涛,何兴东,高玉葆,等. 油蒿演替群落密度对土壤湿度和有机质空间异质性的响应[J]. 植物生态学报,2007, 31 (6): 1145-1153
    [70] 杨小波,吴庆书. 海南岛热带地区弃荒农田次生植被恢复特点[J]. 植物生态学报,2000, 24(4): 477-482
    [71] Aerts R, Chapin F SⅢ . The mineral nutrition of wild plants revisited: a reevaluation of processes and patterns [J]. Advances in Ecological Research, 2000, 30: 1-67
    [72] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 11001-11006
    [73] Dzwonko, Z. & S. Gawronski. The role of woodland fragments, soil types, and dominant species in secondary succession on the western Carpathian foothills [J]. Vegetatio, 1994, 111: 149-160
    [74] Finzi, A. C. &C. D. Canham. Sapling growth in response to light and nitrogen availability in a southern New England forest [J]. Forest Ecology and Management, 2000, 131: 153-165
    [75] Bazzaz, F. A. , J . S. Coleman & R. Morses. Growth response of seven major co-occurring tree species of northeastern united states to elevated CO2 [J]. Canadian Journal of Forest Research, 1990, 20: 1479-1487
    [76] Vitousek, P.M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests [J]. Ecology, 1984, 65: 285-298
    [77] Güsewell S. N∶ P ratios in terrestrial plants: variation and functional significance [J]. New Phytologist, 2004, 164: 243-266
    [78] Güsewell S, Koerselman W, Verhoeven J T A. Biomass N∶ P ratios as indicators of nutrient limitation for plant populations in wetlands [J]. Ecological Monographs, 2003, 13: 372 - 384
    [79] Koerselman W, Meuleman A F M. The vegetation N∶ P ration: a new tool to detect the nature of nutrient limitation [J]. Journal of Applied Ecology, 1996, 33: 1441- 1450
    [80] Tessier J T, Raynal D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation [J]. Journal of Applied Ecology, 2003, 40: 523 - 534
    [81] Verhoeven J T A , Koerselman W, Meuleman AFM. Nitrogen or phosphorus limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes [J]. Trees, 1996, 11: 494 - 497
    [82] Critchley C N R, Chambers B J, Fowbert J A, et al. Association between lowland grassland plant communities and soil properties [J]. Biological Conservation, 2002, 105: 199-215
    [83] 阎恩荣,王希华,周 武. 天童常绿阔叶林演替系列植物群落的N∶ P化学计量特征[J]. 植物生态学报,2008, 32 (1): 13-22
    [84] 刘光崧主编. 土壤理化分析与剖面描述[M]. 北京:中国标准出版社,1996
    [85] 黄自强. 黄土高原水土保持近期方略[J]. 水土保持学报,2002, 16(5): 82-85
    [86] 焦菊英. 黄土高原沟沿线的廊道防蚀效应探析[J]. 水土保持通报,2006, 26(5): 108-111
    [87] 齐矗华. 黄土高原侵蚀地貌与水土流失关系[M]. 西安:陕西人民教育出版社,1993. 58-92
    [88] 吴钦孝,杨文治. 黄土高原植被建设与可持续发展[M]. 北京:科学出版社,1998, 16-35
    [89] 陈云明,梁一民,程积民. 黄土高原林草植被建设的地带性特征[J]. 植物生态学报,2002, 26 (3): 339-345
    [90] 杜 峰, 山 仑, 梁宗锁. 陕北黄土丘陵区撂荒演替研究-群落组成与结构分析[J]. 草地学报,2005, 13(4): 328-333
    [91] 马长明,袁玉欣. 国内外退耕地植被恢复研究现状[J]. 世界林业研究,2004, 17(4): 24-27
    [92] 侯扶江,肖金玉,南志标. 黄土高原退耕地的生态恢复[J]. 应用生态学报,2002, 13 (8): 923-929
    [93] 景福军,张德罡,尚占环,等. 黄土高原弃耕地不同地形下植物群落演替初期的群落结构及多样性研究[J]. 甘肃农业大学学报,2005, 40(2): 233-238
    [94] 赵广琦,杜增平. 陕北西阳湾植被恢复的特点初探[J]. 西北林学院学报,2002, 17 (2): 10-13
    [95] 朱桂林,山 仑,刘国彬. 弃耕演替与恢复生态学[J]. 生态学杂志,2004, 23 (6): 94-96
    [96] 焦菊英,马祥华,白文娟,等. 黄土丘陵沟壑区退耕地植物群落与土壤环境因子的对应分析[J]. 土壤学报,2005, 42(5): 744-752
    [97] 白文娟, 焦菊英,马祥华,等. 黄土丘陵沟壑区退耕地自然恢复植物群落的分类与排序[J]. 西北植物学报, 2005, 25 (7) : 1317-1322
    [98] 杜 峰, 山 仑, 陈小燕,等. 陕北黄土丘陵区撂荒演替研究-撂荒演替序列[J]. 草地学报,2005, 12(4): 328-333
    [99] 卜耀军,温仲明,焦 峰,等. 黄土丘陵区人工与自然植物群落物种多样性研究—以安塞县为例[J]. 水土保持研究,2005, 12(1): 4-6
    [100] 贾燕锋,焦菊英,张振国,等. 黄土丘陵沟壑区沟沿线边缘植被特征初步研究[J]. 中国水土保持科学,2007, 5(4): 39-43
    [101] 冀长甫,李志华. 山丘区沟道治理与开发利用试验研究[J]. 水土保持通报,1997, 17(4): 16-20
    [102] 刘黎明,李 蕾,赖 敏. 西部地区生态退耕的“效益问题”及其评价方法探讨[J]. 生态环境,2005,14(5): 794-797
    [103] 王继军,谢永生,卢宗凡,等. 退耕还林还草下生态农业发展模式初探[J]. 水土保持学报,2004, 18(1) : 134-137
    [104] 黄奕龙,陈利顶,傅伯杰, 等. 黄土丘陵小流域沟坡水热条件及其生态修复初探[J]. 自然资源学报,2004, 19(2): 183-189
    [105] 张慧芳. 黄土高原沟区水土保持生态建设关键技术[J]. 山西科技, 2007(2): 139-140
    [106] 程积民,万惠娥,胡相明. 黄土丘陵区植被恢复重建模式与演替过程研究[J]. 草地学报,2005, 13(4): 324-328
    [107] 吴钦孝,赵鸿雁,韩 冰. 黄土丘陵区草灌植被的减沙效益及其特征[J]. 草地学报,2003, 11(1): 23-26
    [108] 刘国彬, 杨勤科, 陈云明, 等. 水土保持生态修复的若干科学问题[J]. 水土保持学报,2005, 19(6): 126-130
    [109] 卫正新,李树怀,梁象武,等.晋西黄土丘陵沟壑区沟坡防护林造林技术研究[J]. 山西水土保持科技,1997, 75(1): 9-12
    [110] 孙长忠,黄宝龙,陈海滨,等. 黄土高原沟坡次生植被与土壤营养现状的关系[J]. 林业科学研究,1998, 11(3): 330-334
    [111] 周 明. 论黄土高原沟壑区沟坡土地资源的开发[J]. 陕西师大学报(自然科学版),1994, 22(2):64-69
    [112] 马克平. 生物多样性的测定. 见:钱迎倩主编. 生物多样性研究的原理与方法[M]. 北京:中国科学技术出版社, 1994. 141-165
    [113] Mahn E G.. Structural changes of weed communities and populations [J]. Vegetatio, 1984, 58: 79-85
    [114] Puricelli E C, Tuesca D H. Weed density and diversity under glyphosate-resistant crop sequences [J]. Crop Protection, 2005, 24: 533-542
    [115] 王国梁, 刘国彬, 刘 芳,等. 黄土沟壑区植被恢复过程中植物群落组成及结构变化[J]. 生态学报, 2003, 23 (12): 2550-2557
    [116] 张春霞, 郝明德, 王旭刚,等. 黄土高原沟壑区小流域土壤养分分布特征[J]. 水土保持研究,2003, 10(3): 78-80
    [117] 秦 钟, 周兆德. 土壤物理性质变化简析[J]. 海南大学学报(自然科学版), 2002, 20(4): 379~385
    [118] 李潮海, 王 群, 郝四平. 土壤物理性质对土壤生物活性及作物生长的影响研究进展[J]. 河南农业大学学报,2002, 36(1): 32-37
    [119] 王 益,刘 军,王益权. 黄土高原土壤物理性质对养分迁移速率的影响[J]. 水土保持通报,2005, 25(4): 20-23
    [120] 魏义长,康玲玲,王云璋,等. 水土保持措施对土壤物理性状的影响——以黄土高原水土保持世界银行贷款项目区为例[J]. 水土保持学报,2003, 17(5): 114-116
    [121] 何东进,洪 伟,胡海清,等. 武夷山风景区森林景观土壤物理性质异质性及其分形特征[J]. 林业科学,2005, 41(5): 175-179
    [122] Guerif J. Factors influencing compaction-induced increases in soil strength [J]. Soil & Tillage Reaserch. 1990, 16: 167-178
    [123] E Amezketa. Soil aggregate stability: a review [J]. Journal of sustainable agriculture, 1999, 14 (2/3): 83-151
    [124] 孙 波,张桃林,赵其国. 我国中亚热带缓丘区红粘土红壤肥力的演化———Ⅰ物理学肥力的演化[J]. 土壤学报,1999, 36 (2): 35-47
    [125] 卢金伟,李占斌. 土壤团聚体研究进展[J]. 水土保持研究,2002, 9 (1): 81- 85
    [126] 杜 峰, 山 仑, 梁宗锁,等. 陕北黄土丘陵区撂荒演替过程中的土壤水分效应[J]. 自然资源学报,2005,20(5): 669-678
    [127] 杨 弘,李 忠,等. 长白山北坡阔叶红松林和暗针叶林的土壤水分物理性质[J]. 应用生态学报,2007, 18 (2): 272-276
    [128] 张雅楠,黄兴法,毛丽丽,等. 土壤入渗性能自动测量系统原理与应用研究[J]. 农业工程学报,2007,23(4): 99-104
    [129] 陈 瑶,张科利,罗利芳,等. 黄土坡耕地弃耕后土壤入渗变化规律及影响因素[J]. 泥沙研究,2005,5: 45-50
    [130] 王国梁,刘国彬,周生路.黄土丘陵沟壑区小流域植被恢复对土壤稳定入渗的影响[J].自然资源学报,2003, 18(5): 529-535
    [131] 安树青,王峥峰,朱学雷,等. 土壤因子对次生森林群落演替的影响[J]. 生态学报, 1997, 17 (1) : 45-50
    [132] 王政权, 王庆成. 森林土壤物理性质的空间异质性研究[J]. 生态学报, 2000, 20 (6) : 945-950
    [133] 王国梁,刘国彬,许明祥. 黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J]. 水土保持通报,2002, 22 (1): 1-5
    [134] 温仲明, 焦峰, 刘宝元. 黄土高原森林草原区退耕地植被自然恢复与土壤养分变化[J]. 应用生态学报, 2005, 16 (11): 2025-2029
    [135] 马祥华, 焦菊英. 黄土高原植被恢复与土壤环境相互作用研究进展[J]. 水土保持研究,2004, 11(4): 157-161
    [136] 巩 杰, 陈利顶, 傅伯杰,等.黄土丘陵区小流域植被恢复的土壤养分效应研究[J]. 水土保持学报,2005, 19(1): 93-96
    [137] 郝文芳,梁宗锁,陈存根,等. 黄土丘陵沟壑区弃耕地群落演替与土壤性质演变研究[J]. 中国农学通报,2005, 21(8): 226-231
    [138] West D C, et al. Forest succession concept and applications[J]. Springer-Verlag, New York. 1981, 185-211
    [139] 熊 毅, 李庆逵. 中国土壤[M]. 北京: 科学出版社, 1987
    [140] 谢佰承, 张春霞, 薛绪掌. 土壤中微量元素的环境化学特性[J]. 农业环境科学学报,2007, 26 (增刊) : 132-135
    [141] 张秀芝,鲍征宇,马忠社,等. 系统微量元素的生物有效性研究现状[J]. 地球与环境,2006, 34(3): 15-22
    [142] Chlopecka A. Assessment of form of Cd, Zn and Pb in contaminated calcareous and gleyed soils in Southwest Poland [J]. The Science of the Total Environment, 1996, 188: 253-262
    [143] Kabata-Pendias A. Soil–plant transfer of trace elements—an environmental issue [J]. Geoderma, 2004, 122: 143-149
    [144] Lonegran. Copper in Soil and Plants [M]. New York: Academic Press, 1981, 69-95
    [145] 张永娥,王瑞良,靳绍菊. 土壤微量元素含量及其影响因素的研究[J]. 土壤肥料,2005 (5): 35-37
    [146] Perrott KW, Smith B F L. The reaction of fluoride with soils and soil minerals [J]. J Soil Sci, 1976, 27: 58
    [147] 吴彩霞,傅 华,裴世芳,等. 不同草地类型土壤有效态微量元素含量特征[J]. 干旱区研究,2008, 5(1): 137-144
    [148] 莫润苍、邹邦基. 土壤铜锌锰铁形态分布及其有效性[J]. 热带亚热带土壤科学,1997, 6(3): 171-175
    [149] 张福锁. 锌在植物细胞原生质膜稳定性方面的作用[J]. 土壤学报,1993, 30 (增刊): 104-110
    [150] 许振英. 十多年来我国畜牧学科中微量元素研究[J]. 中国动物营养学报, 1989, 1 (1): 1-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700