安宁河断裂带晚第四纪变形的数字地形分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GIS的发展,促进了地学研究从定性研究向半定量定量化方向的发展。应用地貌理论进行活动构造研究是一种比较成熟、传统的方法。地形分析是地貌研究的重要手段,数字地形分析(Digital Terrain Analysis, DTA)是在数字高程模型DEM上进行地形属性计算和特征提取的数字地形信息处理技术,是DEM应用范围的拓广和延伸。
     本文基于DTA技术进行安宁河断裂带构造地貌的定量研究并对其垂直位错进行宏观上的分析。安宁河断裂位于青藏高原东缘、横断山脉中段的东部,构造上属扬子地台西缘的康滇台背斜,是南北向构造带的主干断裂之一,是晚第四纪以来活动较为强烈的活动块体边界断裂带.它北接鲜水河活动断裂,南接则木河活动断裂,东邻大凉山断裂,是川滇活动块体的东边界的中部,具有承上启下的作用。
     文中利用spot立体像对提取DEM和正射影像,以安宁河为研究区,采用检查点法对DEM进行精度评价,算出RMSE为15.64m,符合精度要求。
     利用高差阴影法识别断层,基于类似恢复古地貌面的原理,得到了研究区最大阶地面(古阶地面),在此基础上进行断层两侧的趋势面分析,宏观上来分析断层逆冲作用引起的地形的改变,同时对一些垂直位错表现明显的断层,做垂直于断层方向的剖面组,剖面线间隔50m,以更细致的去识别断层垂直位错量。由断层两侧的趋势面分析得到的断层面两侧的垂直位错最大值为43m,最小值为3m,平均位错大致为20-5m,而由垂直于断层方向的剖面组得到的位错量最大值为35m,最小值为1m。
     微观地形地貌形态的划分是宏观地形地貌形态划分的延续和深化,是获取局部专题地形信息的手段之一,文中归纳总结了微观地形地貌形态划分方法。最后通过试验分别对安宁河北段的紫马跨区和南段的泸沽至西昌区的阶地地貌进行划分。紫马跨地区进行阶地划分和变形分析,得到过断裂次级冲沟阶地同步位错,并与实测结果进行对比,,得到了三级阶地形成以来安宁河断裂的左旋位错应为85.4±2m,与全站仪实测位移量基本一致,相差约2米,有较好的一致性。
     基于DEM对安宁河南端泸沽至西昌地区的阶地进行提取和统计分析,可知安宁河两侧阶地分布明显不对称,位于同一段的河流阶地,东侧同级阶地高度大于西侧,安宁河东侧阶地坡度分布要大于西侧,河谷东西两侧阶地坡向有很大差异,河谷东侧各级阶地总体坡向为南-南西方向,而西侧各级阶地总体坡向为北-北东方向。综上可知安宁河东岸主要表现为以上升为主的构造运动,上升运动的幅度由北向南变缓,河谷两岸阶地的不对称发育,表明了这些阶地主要为构造成因阶地,而东岸的多级阶地也表明了多期的构造抬升。基于DEM和正射影像对安宁河南段的整体区域地貌和微构造地貌的变形进行分析(主要包括冲沟水平位错),冲沟水平位错量从上百米到几十米不等,表明了强烈隆升背景上断块间的差异运动,以及安宁河活动断裂所具有的左旋走滑兼挤压和局部张性特征。
The development of GIS promotes the development of research on geology moveing from qualitative to semi-quantitative or quantitative direction. Using geomorphological theory to study active tectonics is a relatively mature and traditional methods. Terrain analysis is an important means of geomorphological research, digital terrain analysis (Digital Terrain Analysis, DTA) is a digital terrain information processing technology ,which calculate terrain attribute and extract feature in the digital elevation model DEM, is the Extending of scope of application on DEM .
     Based on DTA techniques, we do the quantitative research on morphotectonics of Anninghe fault zone and vertical dislocation analysis on the macro level. Anninghe fault zone located at the eastern edge of Tibet Plateau, the eastern part of the middle mountains , belonging to KangdianTai anticline located at west edge of Yangzi Platform, is one of the main fault of North-South tectonic belt and active block boundary fault zone with strong activities since late quaternary. It north to Xianshuihe fault, south to Zemuhe fault, east to Daliangshan fault, is the central part of eastern boundary of Sichuan-Yunnan active block with the important role.
     In this paper, based on the spot we extract DEM and orthoimage. In the study area Anninghe, We use checkpoints to evaluate the precision of the DEM, the calculated RMSE is15.64m,and the precision is satifactory for requirement.
     We use height difference shadow image method to identify faults .Based on the similar principles of restoration of the ancient topography surface, we get the biggest terrance surface (the ancient terrance surface)of the study area.on the basis, we do the trend surface analysis on both sides of fault ,and analyse changes in terrance caused by the role of fault thrust on macro-level.Through the perpendicular profile group of some obvious vertical dislocation of faults , profile interval 50m, we can more detailed identify vertical dislocation of the fault . Through the trend surface analysis on both sides of the fault, we can get the result that the maximum of the vertical dislocation is 42.8m, the minimum is 2.7m, the average dislocation roughly between 20-5m, and through the profile group direction from perpendicular to the fault we can get the result that the maximum of the vertical dislocation 35m, the minimum is 1m.
     The dividing of micro-topography is the continuation and in-depth of that of macro-topography and one of the means to obtain information on local terrain feature, providing special topographic informatioan for number of research domain.In this paper ,we summarized the method of micro-topography dividing. Finally, through tests we divide terrace topography in northen Anninghe Zimakua region and the Southern section of Aninghe Lugu -Xichang. In Zimakua Region.Through terrace division and deformation analysis ,we get the synchronized dislocation of terrace througu sub-fault ,and compare it with measured results, a better consistency.
     We do the extraction and statistical analysis of terrance based on DEM in lugu-Xichang region southern Anninghe, we can see that the terraces in both sides of Anninghe distribute unsymmetrically obviously, as for terrace located in the same section of river, on the eastern side the same level terrace is higher than terrace on the west side, slope of terraces on east side is greater than the west, slope of terraces are very different on both sides of the river, the aspect of terrace in east side of the river is South - southwest direction, while the west is North - North Eastern direction. From above all,we can know that on the eastern bank of the river present as ascending tectonic movement, movement degree become slow from north to south, east-west asymmetry during terrace development show that the terrace are structural terraces, while the multi-level terraces on the east coast of river also shows that a number of tectonic uplift period.We make an analysis on the dislocatation of the whole region landform and micro-structural geomorphylogy in Anninghe southern lugu-xichang Based on DEM and the orthoimage (including the gully horizontal dislocation) ,horizontal dislocation of the gully range from hundreds meters to tens meters, all of these show that the differences between fault-block movement against the background of a strong uplift of, as well as the sinistral strike-slip、extrusion and partial tensional characteristics of Anninghe active fault
引文
1陈立春,陈桂华,陈立泽等.柯坪塔格推覆系活动构造的ETM影像特征与解译[J],地震地质,2006.
    2陈桂华,徐锡伟,闻学泽等.数字航空摄影测量方法在活动构造中的应用[J],地球科学-中国地质大学学报,2006.
    3陈健飞等译.地理信息系统导论.北京:科学出版社[M],2004.
    4邓起东,中国活动构造研究[J],地质评论,1996.
    5邓起东,陈立春,冉勇康.活动构造定量研究与应用[J].地学前缘,2004 11(4):383-392.
    6高玄或.地貌基本形态的主客分类法.山地学报[J],2004 22 (3 ) : 261266.
    7宫鹏,数字表面模型与地形变化测量[J],第四纪研究,2000
    8黄玉琪.SPOT影像的DEM自动生成[J].测绘通报,1998(9):13-16.
    9李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2001.
    10刘学军.基于规则格网数字高程模型解译算法误差分析与评价.博士学位论文,武汉:武汉大学,2002.
    11刘静,丁林,曾令森,等.青藏高原典型地区的地貌量化分析——兼对高原“夷平面”的讨论[J].地学前缘,2006 13(5):285-299.
    12刘少峰,王陶,张会平等.数字高程模型在地表过程研究中的应用[J].地学前缘2005,12(1)303-309.
    13间国年,钱亚东,陈钟明.基于栅格数字高程模型提取特征地貌技术研究[J].地理学报,1998 53(6) : 562=569.
    14间国年,钱亚东,陈钟明.基于栅格数字高程模型自动提取黄土地貌沟沿线技术研究.地理科学,1998. 18(6) :567-573.
    15潘保田,高红山,李吉均.关于夷平面的科学问题一兼论青藏高原夷平面[J].地理科学,2002, 22(5):520-526.
    16潘保田,李吉均,李炳元.青藏高原地面抬升证据讨论.兰州大学学报(自然科学版) [J],2000, 36(3):100-111
    17裴锡瑜,王新民,张成贵.晚第四纪安宁河断裂分段的基本特征[J].四川地震,1997(4): 52—61.
    18钱洪,唐荣昌,文德华,黄祖智.安宁河断裂带北段的最新地面活断层与地震潜在能力研究[J].地震地质,1992
    19冉勇康,程建武,宫会玲,陈立春.安宁河断裂紫马跨一带晚第四纪地貌变形与断层位移速率[J].地震地质,2008 30(1):86-98.
    20冉勇康,陈立春,程建武,宫会玲.安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为[J].中国科学D辑,2008 38(5):543– 554.
    21汤国安,赵牡丹.地理信息系统[M].北京:科学出版社,2000.
    22汤国安,刘学军,间国年.数字高程模型及其地学分析的原理与方法[M]..北京:科学出版社,2005.
    23汤国安,陈正江等. ArcView地理信息系统空间分析方法[M]..北京:科学出版社,2002.
    24汤国安,赵牡丹等.DEM提取黄土高原地面坡度的不确定性[J].地理学报,2003,58 (6 ) : 824-830.
    25唐新明,林宗坚,吴岚.基于等高线和高程点建立DEM的精度评价方法探讨闭[J].遥感信息,1999(3):7-10
    26王新民,张成贵,裴锡瑜.晚第四纪安宁河断裂的新活动与特征[J].四川地震,1997,(3): 8—16
    27王新民,张成贵,裴锡瑜.晚第四纪安宁河活动断裂的构造活动与演化[J].四川地震, 1998,(4):1—12
    28王新民,张成贵,裴锡瑜.安宁河活动断裂带的新活动性[J].四川地震, 1998(4):13~33.
    29王义祥.基于地理信息系统的祁连山数字地形分析和隆升机理研究。博士学位论文,兰州:兰州大学,2007.
    30吴忱,张秀清,马永红.华北山地地貌面与新生代构造运动[J],1996,华北:地震科学
    31燕琴,张剑清.结合AI方法解求SPOT影像外方位元素[J].遥感信息,2000(4):42-43.
    32张会平,刘少峰,孙亚平等.基于SRTM—DEM区域地形起伏的获取及应用国土资源遥感[J],2006.67(1)31-35
    33张会平,杨农,张岳桥.岷江水系流域地貌特征及其构造指示意义[J].第四纪研究,2006
    34张会平,杨农,刘少峰,张岳桥.数字高程模型(DEM)在构造地貌研究中的应用新进展地质通报,2006,25(6)660-669
    35张岳桥,杨农,孟晖,陈文.四川攀西地区晚新生代构造变形历史与隆升过程初步研究[J],中国地质,2004 ,32(2)23-33
    36周荣军,何玉林,杨涛.鲜水河-安宁河断裂带磨西-冕宁段的滑动速率与强震位错[J].中国地震,2001,17(3):253~262.
    37 Balázs Székely.2004.DEM-based morphometry as a tool for reconstructing primary volcanic landforms:examples from the B?rzs?ny Mountains[J],Hungar.Geomorphology , 63(1-2) :25-37.
    38 Burrough,P.A.Principles of Geographic Information Systems for land Resources Assessment(Oxford:Cl arendon Press),1986.
    39 Burrough.P.A ,Mcdonnell.R.A. Principles of Geographical Information System .Oxford, UK: OxfordUniversity Press, 1998.
    40 Burrough.P.A, MacMillan.R.A. High-resolution landform classification using fuzzy K-means.Sets and System, 2000, 113(I):37-52.
    41 Dhont D,Chorowicz J,Yucrur,et a1.Polyphased block tectonics along the North Anatolian Fault in the Tosya basin area (Turkey)UI.Tectonophysics,1998.
    42 England P, Molnar P.Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 1990, 18: 1173-1177.
    43 Evans, LS.An intergrated system of terrain analysis and sloping mapping[J].. GeoMorphology.Suppl, 1980,36: 274-295.
    44 Fielding E J,Isacks B,Barazangi M,et a1. How flat is Tibet?[J].Geology,1994,22:163—167.
    45 Fielding E J.2000. Morphotectonic evolution of the Himalayas and Tibetan Plateau[A].In:Summerfield M A ed.Geomorphology and global tectonics[M].London:JohnWiLey& SomPress, Ltd.201-222.
    46 Fielding E J. Tibetan uplift and erosion [J].Tectonophysics,1996 ,260:55—84.
    47 Florinsky LV.Quantitative topographic method of fault morphology recognition, geomorph-ology, 1996 16:103-119.
    48Gugan,DJ& L.J.Dowman..Accuracy and Completeness of Topographic Mapping from SPOT Imagery[J] .Photogrammetric Record ,1988, 12(72):787-796
    49 Hosokawa,Hoshi.Landform classification method using self-organizing map and its application to earthquake damage evaluation. International Geoscience and Remote Sensing Symposiun, 2001, 4:1684-1686.
    50 Igor V,Florinsky. Quantitative topographic method of fault morphology recognition[J].geomorphology, 1996,16:103-119. 551 Keller,E.A.. Investigation of active tectonics: use of surfacial earth processes. In: R.E. Wall-ace(Editor) [J].Active Tectonics. National Academy Press,Washington,1986, 136-147.
    52 Kühni A ,Priffner OA . The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: topographic analysis from 250-m DEM[J].Geomorphology, 2001,41:285-307.
    53 Kirby E,Whipple K,Tang W ,et a1.Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferencesfrom bedrock channel longitudinal profiles[J].Joumal of Geophysical Research,2003,108(B4):2217—2223
    54 Johansson M.Analysis of digital elevation data for palaeosurfacesin south-western Sweden[J].Geomoph -ology,1999,6:279—295.
    55 Lattman, L.H. Techinque of mapping geologic fracture traces and lineaments on aerialphotographs. Photogramm. Remote Sensing,, 1958,4:568-576.
    56 Lee J. Digital analysis of viewshed inclusion and topographic features on digital elevation models[J].Photogrammetric Engineering and Remote Sensing,1994,60(4): 451-456.
    67 McMillan M E.Basin fill,erosion surface and tilted markers:Evidence of Late Cenozoic tectonic uplit of the Rocky Mountain orogenic plateau[D],Doctor Thesis,University of Wyoming,2003,1-118.
    58 Milne, J.D.G., Clayden,B, Singleton,P.L,Wilson,A.D.Soil Description Handbook. Manaaki Whenua Press, Landcare Research, Lincoln, New Zealand. 1995
    59 M.P Bishop, J.F.Shroder Jr,B.L..Hickman, SPOT PanchromaticImagery and Neural Networks for Information Extraction in a Complex Mountain Environment[J]. Geocarto International, V14 (2), 1999.
    60 Oguchi T,Aoki T,Matsuta N.Identification of an active fault in the Japanese A1ps from DEM—based hill shading[J].Computers& Geosciences. 2003,29:885-891.
    61 P A.Shary, Land Surface in Gravity Point Classification by a Complete System of Curvature[J].Mathematic Geology, 1995.V 27, No.3 .
    62 Peucker, T.K. and Douglas, D.H.. Detection of surface specific points by local parallelproc-essing ofdiscrete terrain elevation data Computer Graphics and ImageProcessing 4, 1974pp.375-387.
    63 Phylosophov,V.P..Brief Manual on the Morphometric Method for Tectonic Structure Search[J]. Saratov University Press. Saratov, 1960,pp,94.
    64 Rodriguez F,Marie E,Courjault-Rade P,et a1. The Black Top Hat function applied to a DEM:A tool to estimate recent incision in a mountainous watershed (Estibère Watershed. Central Pyrenees) [J].Geophysical Research Letters,2002,9(6):91-94.
    65 Schowengerdt R.A.,and Glass, C.E. Digitally processed topographic data for regional tectonic evaluation[J]. Geo. Soc. Am. Bull., .1983, 4:549-556.
    66 Slemmons and Depolo,1986. Evaluation of active fautling and associated hazards. In:R.EWallace(Edi tor)Active Tectonics. National Academy Press, Washington, pp. 45-62.
    67 Shary,P.A.The second derivative topographic method. In: L.N. Stepanov(Editor), The GeoMetry of the Earth Surface Structures[J]. Pushchino Research Centre Press, Pushchino, 1991, 30-60.
    68 Small E E,Andeson R S.Pleistocene relief production inLaramide mountain ranges,western United States[J].Geology,1998,26:123-126.
    69 Takashi O, Tatsuto A., Nobuhisa M. Identification of an active fault in the Japanese Alps from DEM-based hill shading[J].Computers&Geosciences, 2003, 885-891.
    70 Thelin, G.P, Pike,R.J. Landforms of the conterminous United States-a digital shaded-relief portrayal.1991. Manual of US Geological Survey Map 1-2206.
    70 Zhou Lin,Takashi Oguchi. Drainage density, slope angle,lands from high resolutionDEM. Geomorpholo -gy and relative basin position in Japanese bare2004. 63: 159-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700