基于GIS的流域侵蚀产沙模型研究——以晋西王家沟流域为例
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤侵蚀模型在空间尺度上可以划分为坡面、小流域和区域3个不同层次。在坡面尺度上,主要考虑坡面侵蚀的垂直分带性及其相互影响;小流域尺度上,不但考虑坡面侵蚀的特点,还要考虑坡面来水来沙对沟道侵蚀产沙的影响、重力侵蚀及泥沙输移情况;在区域尺度上则主要考虑小流域各自的侵蚀产沙特点及其相互影响。因侵蚀的空间尺度不同,在建立土壤侵蚀模型时,要考虑由于空间变化所引起的侵蚀因子对侵蚀产沙响应的不同。
     本项研究在分析国内外土壤侵蚀产沙模型基础上,依据大量小流域野外试验小区观测与模拟降雨资料,充分考虑到了空间尺度对流域侵蚀产沙的影响,特别是流域在面积上的变化对侵蚀产沙的影响。以羊道沟几十年的研究成果为基础,将ERODE模型进一步简化,采用流域离散的尺度转换方法,以王家沟支沟小流域为基本计算单元,以沟间地和沟坡地为次单元,将整个流域划分为40个沟间地、40个沟坡地及其它们组成的40个小流域和一个输水通道进行分别计算,其中涉及降雨因子、地貌因子、治理因子、植被覆盖因子、耕作措施因子和土壤因子,共6个主要因子,分别计算各个因子的侵蚀产沙响应系数,对羊道沟基础模型进行修正,从而得到一个包含8个参数,4个修正系数和13个公式的具有物理基础的分布式水力侵蚀产沙模型。利用较大尺度王家沟1963-1968年22次天然降雨资料,对模型进行了检验,模型的预测精度在55%以上。
     通过对小流域侵蚀产沙模型的研究,结果表明:
     从研究意义方面,本模型采用水文学中流域离散的方法可以充分利用小流域的侵蚀产沙规律来预测较大流域侵蚀产沙;利用分形理论对间接表征面积特征的地貌信息维数引入模型计算当中,反映出了流域空间变化对侵蚀产沙的影响。本模型为从已控区域侵蚀产沙推测未控区域侵蚀产沙,在理论、方法和实践上都作了有益的尝试,为较小尺度向较大尺度流域上的侵蚀产沙预测提供一定的借鉴;
     在模型结构方面,采用以沟间地和沟坡地为最基本的计算单元,以水沙汇流关系为主线,建立基于小流域的、次降雨的流域侵蚀产沙模型,能更好地反映出黄土丘陵沟壑区的侵蚀产沙规律;
     在研究手段方面,充分利用了GIS强大的空间分析和数据处理功能强,从DEM数据中提取子流域不同地貌部位的地形表面信息,如:平均坡度、沟壑密度、切割裂度、流域面积和坡沟比例等,并且对其中的关系进行分析,揭示出了一定的规律。
According to the spatial scale, almost all of the soil erosion models can be classified as field-scale models; catchment-scale models and region-scale models. Each type of erosion models has its instinctive characteristics. As to the field scale, the analysis of the erosion process on field vertical zones and the interaction between them is very important. In addition to the analysis of soil erosion on hill slopes, effects of runoff and sediment from hill slope on erosion and sediment yield of the followed gully zone and the erosion caused by gravitation are complex and pivotal in the catchments scale. In this scale, the sediment delivery is of significant importance to the erosion modeling. Establishing region scale erosion model, the relationship and the interaction of the subordinate drainages together with the style of the runoff yield and runoff concentration should be taken into account.
    On the base of reviewing the existing soil erosion and sediment yield models, according to field observation and artificial rainfall data in research region, we analyzed deeply and describe quantitatively factors, which had affected on soil erosion and sediment yield, such as the factor of the rainfall, physiognomy, coverage, cultivation, management, and soil, especially the factor of the special scale. Based on the soil erosion and sediment yield of the hill slop and gully in the Yangdaogou small basin, used the ERODE model as reference, taken small watershed as the basic analysis unit, the Wangjiagou watershed was divided as 40 plots of slope fields, 40 plots of gully fields and 40 basic units, constructed by the proper hillslop and gully, and one channel that used to delivery runoff and sediment. This model includes eight parameters of models, four modificatory coefficients and thirteen relevant equations. The model, based on certain physics process, was designed to estimate single storm responses in runo
    ff and sediment yield. Using 22 natural rainfall data from 1963 to 1968 in Wangjiagou, a lager scale area compared with the Yangdaogou watershed, we tested the model; the prediction precision is above 55%, so this model had a certain practical value.
    The study indicated the following results:
    Firstly, We engaged the mathod of watershed divition that was always used in the field of hydrology to simulate the runoff and sediment yield in the lager area based on the laws in certain smaller watershed. Using the fractal theory and taking the fractal dimention that stand for the characteristic of area, one aspect of the physiognomy, we got some result from this method that reflect the influence of the spatial transfer on runoff and
    
    
    
    sediment yield. This study has some significance on the research of modeling the runoff and sediment yield concerned with the spatial scale transfer and this study can be taken as a valuable attempt on the theory, method and practice to predict the soil erosion in larger catchments based on the experiments and data in small-scale watershed.
    Secondly, as to model structure, we adopted the small watershed as the basic basin and the hillslop and gully as the subordinate unit, by analysis the relationship of the runoff and sediment between the upper filed and the down zones, then we have build the soil erosion and sediment yield models based on the watersheds and each single storm, which could reflect soil erosion and sediment yield rules of loess Plateau much better.
    Thirdly, as to research meaning, we made full use of the powerful capability of spatial analysis and data procession, extracted deeper information automatically from the digital elevation model (DEM), such as the mean slope, gully density, degree of cutting, watershed area and the proportion of gully to slope, then analized the interrelation of them, from withch some laws abstained.
引文
1.丁晶,王文圣,金菊良.论水文学中的尺度分析[J].四川大学学报(工程科学版),2003,35(3):9-13
    2.马修军,谢昆青.GIS环境下流域降雨侵蚀动态模拟研究-以PCRaster系统和LISEM模型为例[J],环境科学进展,1999,7(5):138-144
    3.马蔼乃.土壤侵蚀因子提取及建模应用[J].中国水土保持,1990,(3):33-36
    4.中国科学院,中华人们共和国水利部.中国标准土壤侵蚀图册[M].北京:中国标准出版社,2001:1-5
    5.方学敏,万兆惠,匡尚富.黄河中游淤地坝拦沙机理及作用[J].水利学报.1998,10:49-52
    6.王人潮.农业资源信息系统[M].北京:中国农业出版,2000:25-26
    7.王万忠,焦菊英,赫小品.黄土高原暴雨空间分布的不均匀性及点面关系[J].水科学进展,1999,10(2):165-169
    8.王飞,李锐,杨勤科等.水土流失研究中尺度效应及其机理分析[J].水土保持学报,2003,17(2):167-180
    9.王礼先,张忠,陆守一,谢宝元.流域管理信息系统.北京:中国林业出版社[M],1994,2-70
    10.王兴奎,钱宁等.黄土丘陵沟壑区高含沙水流的形成及汇流过程[J].水利学报,1982,(7):26-35
    11.王国庆,王云障.产汇流及产沙输沙数学模型研究综述[J].西北水资源与水工程,1998,9,(3):27-31
    12.包为民,陈耀艇.流域水耦合模拟物理概念模型[J].水科学进展,1994,5(4):287-192
    13.艾南山,陈嵘,李后强.走向分形地貌学[J].地理学与国土研究,1999,15(1):92-96
    14.任立良,刘新任.数字高程模型子流域水系拓扑结构计算中的应用[J].水科学讲展,1999,10(2):29-34
    15.刘志,姜忠善.黄土高原小流域土壤侵蚀信息系统建立与应用的研究1土壤侵蚀信息系统设计[J].水土保持研究,1996,3(2):170-173
    16.刘国东,丁晶.BP网络用于水文预测的几个问题探讨[J].水利学报,1999,1:65-69.
    17.刘宝元,史培军.WEPP水蚀预报流域模型[J].水土保持通报,1998,18(5):6-12
    18.刘宝元,谢云,张科利.土壤侵蚀预报模型[M].北京:中国科学技术出版社,2001:1-5
    19.刘高焕,刘俊卫,朱会义.基于GIS的小流域地块单元划分与汇流网络计算[J].地理科学进展,2002,21(2):139-145
    20.刘清泉,陈力,李家春.坡度对坡面土壤侵蚀的影响分析[J].应用数学和力学,2001,22(5):449-457
    21.刘德平.分形理论在水文过程形态特征分析中的应用[J].水利学报,1998,(2):20-25
    
    
    22.吕一河,傅伯杰.生态学中的尺度及尺度转换方法[J].生态学报,2001,21(12):2096-2105
    23.吕玉玺.土壤可蚀性因子K的初步研究[J].水土保持学报,1992,6(1):63-70
    24.朱红春,汤国安,张友顺,易红伟,李明.给予DEM提取黄土丘陵沟壑区沟沿线[J].水土保持通报,2003,23(5):43-45
    25.朱湖根.土壤侵蚀量及其水动力因子间的灰关联分析[J].中国水土保持,1992,(5):38-40
    26.江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报.1996,2(1):1-10
    27.江忠善.黄土地区天然降雨雨滴特征研究[J].中国水土保持,1983,(3):32-36
    28.汤国安,陈正江,赵牡丹等.ArcView地理信息系统空间分析方法[M].科学出版社,2002,164-165
    29.牟金泽,孟庆牧.论流域产沙量计算中的泥沙输移比[J].泥沙研究,1982,1(2):223-230.
    30.西峰水保站.南小河沟流域综合治理增产减沙效益分析[J].山西水土保持科技,1976(2):1-10
    31.许炯心,孙季.水土保持措施对流域泥沙输移比的影响[J].水科学进展,2004,15(2):29-34
    32.吴礼福.黄土高原土壤侵蚀模型及其应用[J].水土保持通报,1996,16(5):29-35
    33.张小峰,许全喜,裴莹.流域产流产沙BP网络预报模型的初步研究[J].水科学进展,2001,12(1):17-22
    34.张丽萍,马志正.流域地貌演化的不同阶段沟壑密度与切割深度关系研究[J].地理研究,1998,27(3):273-278
    35.张科利,曹其新,细山田健三,永田雅辉.神经网络理论在土壤侵蚀预报方面应用的探讨[J].土壤侵蚀与水土保持学报,1995,1(1):58-63
    36.李义天,李荣,黄伟.基于神经网络的水沙运动预报模型与回归模型比较及应用[J].泥沙研究,2001,(1):30-37
    37.李长兴,沈晋,范荣生.黄土地区小流域降雨空间变化特征分析[J].水科学进展,1995,6(2):127-132
    38.李昌志,刘兴年,曹叔尤,张之湘.不同沙源条件下地区前期降雨与小流域产沙关系的对比研究[J].水利学报,2001,(12):74-78
    39.李勇,张建辉,杨俊诚,夏侯国风.陕北黄土高原陡坡耕地土壤侵蚀变异的空间格局[J].水土保持学报,2000,14(4):17-21
    40.杨艳生.区域性土壤流失预测方程的初步研究[J].土壤学报,1990,27(1):73-78
    41.杨勤科,李锐.中国水土流失和水土保持定量研究进展[J].土壤保持通报,1998,1(5):13-18
    42.辛晓平,徐斌,单保庆,等.恢复演替中草地斑块动态及尺度转换分析[J].生态学报,2000,20(4):587-593
    43.陆中臣.流域侵蚀产沙和物质输移[J].地理研究,1989,(2):25-28
    44.陈一兵,K.O.Trouwborst.土壤侵蚀建模中ANSWERS及地理信息系统的应用研究[J].土壤侵蚀与水土保持学报,1997,3(2):1-13
    
    
    45.陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988:1-50
    46.陈永宗,曾伯庆,蔡强国.晋西黄土高原土壤侵蚀规律试验研究文集.北京:水利电力出版社,1990:116-139
    47.陈同善.无定河流域淤地坝调查[J].中国水土保持,1984,(3):26-30
    48.陈国祥,谢树楠,汤立群.黄土高原地区流域侵蚀产沙模型研究[J].郑州:黄河水利出版社,1996
    49.陈浩.降雨特征和上坡来水对产沙的综合影响[J].水土保持学报,1992,6(2):17-23
    50.陈浩.流域坡面与沟道的侵蚀产沙研究[M].北京:气象出版社,1990:160-164
    51.承继诚.坡地流水作用的分带性(中国地理学会1963年年会论文集).北京:科学出版社,1965,99-104
    52.郑粉莉,康绍忠.黄土坡面不同侵蚀带侵蚀产沙关系及其机理[J].地理学报,1998,53(5):422-428
    53.金争平,史培军等.黄河黄甫川流域土壤侵蚀系统模型和治理模式[M].北京:海洋出版社,1992:45-98
    54.金争平,赵焕勋,和泰等.皇甫川小流域土壤侵蚀量预报方程研究[J].水土保持学.1991,5(1):8-18
    55.柯克比 M J,摩根 R P C,王礼先译.土壤侵蚀[M].北京:水利电力出版社,1987,1-69
    56.胡世雄,勒长兴.坡面土壤侵蚀临界坡度问题的理论与实验研究[J].地理学报,1999,54(4):347-355
    57.胡良军,李锐,杨勤科.基于GIS的区域水土流失评价研究[J].土壤学报,2001,38(2):167-175
    58.胡良军,李锐,杨勤科等.基于GIS的区域水土流失评价模型[J].应用基础与工程科学学报.2000,8(1):1-8
    59.赵文武,傅伯杰,陈利顶.尺度推绎研究中的几点基本问题[J].地球科学进展,2002,17(6):5-911
    60.赵海仙.王家沟流域坝地发展潜力及坝系相对稳定分析[J].山西水土保持科技,1999,(3):19-22
    61.闾国年,钱亚东,陈钟明.基于栅格数字高程模型自动提取黄土地貌沟沿线技术研究[J].地理科学,1998,18(6):567-573
    62.唐政洪,蔡强国,许峰,等.不同尺度条件下的土壤侵蚀实验检测及模型研究[J].水科学进展,2002,13(6):781-787
    63.唐政洪,蔡强国.侵蚀产沙模型研究进展和GIS应用[J].泥沙研究,2002,5:59-66
    64.夏军.水文尺度问题[J].水利学报,1993,5:32-37
    65.曹银真.黄土地区重力侵蚀的机理及预报[J].中国水土保持,1981,(4):36-40
    66.黄杏元.地理信息系统概论[M].高等教育出版社,1989:1-56
    
    
    67.曾伯庆.晋西黄土丘陵沟壑区水土流失规律及其治理效益[J].人民黄河,1980(2):34-39
    68.曾茂林,朱小勇,康玲玲,左仲国.水土流失区淤地坝的拦泥减蚀作用及发展前景[J].水土保持研究,1999,6(2):126-133
    69.焦菊英,王万忠,李靖,郑宝明.黄土高原丘陵沟壑区淤地坝的减水减沙效益分析[J].干旱区资源与环境,2001,15(1):78-83
    70.焦菊英,刘元宝等.小流域沟间与沟谷地径流泥沙来量的探讨[J].水土保持学报,1992(2):24-28
    71.谢平,孙志.分散型流域地貌汇流模型的总体构想[J].水电能源科学,2001,19(2):28-31
    72.雷阿林,唐克丽.土壤侵蚀模型实验的原形选定问题[J].水土保持学报,1995,9(3):60-65
    73.蔡崇法,丁树文.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究.水土保持学报,2000,14(2):19-24
    74.蔡强国,王贵平,陈永宗著.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,1998:1-100
    75.蔡强国,陆兆熊,王贵平,吴淑安,马绍嘉,人类活动对黄土高原小流域侵蚀产沙的影响.晋西黄土高原土壤侵蚀管理系统与地理信息系统应用研究[M].北京:科学出版社,1992:198-211
    76.蔡强国,陆兆熊.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型.地理学报,1996,51(2):108-117
    77.蔡强国,吴淑安,马绍嘉等.花岗岩发育红壤坡地侵蚀产沙规律试验研究[J].泥沙研究,1996,(1):89-96
    78.曹文洪.土壤侵蚀的坡度界限研究[J].水土保持通报,1993,13(4):1-5
    79.蔡强国,陈浩.影响降雨击溅侵蚀过程的多元正交试验研[J].地理研究,1989,8(4):28-36
    80.穆宏强,夏军,王中楷.分布式流域水文生态模型的理论框架[J].长江职工大学学报,2001,18(1):1-5
    81.靳长兴.论坡面侵蚀的临界坡度[J].地理学报,1995,50(3):234-239
    82.钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1986:201-500
    83.吴普特.动力水蚀实验研究[M].西安:陕西科学技术出版社,1997:1-23
    84.郑粉莉.发生细沟侵蚀的临界坡长与坡度[J].中国水土保持,1989(8):23-34
    85.刘海涛,秦其明.基于WEBGIS的土壤侵蚀模型的研究及应用[J].水土保持学报,2001,15(3):52-55
    86. Andrew A Millward, Janet E Mersey. Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 1999(38): 109-129
    87. Baffaut C, Nearing M A, Govers G. Statistical distributions of soil loss from runoff plots and WEPP model simulations. Soil Sci Soc Am J, 1998,(62): 756-763
    
    
    88. Biesemans J, Meirvenne Van M, Gabriels D. Extending the RUSLEwith the Monte Carlo error propagation technique to predict long-term average off-site sediment accumulation. Journal of Soil and Water Conservation, 2000, 55(1): 35-42
    89. Chaves H M L. Uncertainly analysis of the WEPP soil erosion model. Transactions of the ASAE, 1991, 34(6): 2437-2444
    90. Cohrane T A, Flanagan D C. Assessing water erosion in small watersheds using WEPP with GIS and digital elevation models. Journal of Soil and Water conservation, 1999,54(4):678-685
    91. De Roo A J, L Hazelhoff, A Burrouph. Soil erosion modelling using "ANSWERS" and geographical information systems. Earth Surface Processes and Landforms, 1989, (14): 517-531
    92. De Roo A P J. LISEM: a single event physical-based hydrologic and soil ersion model for drainage basins Ⅰ: Theory, input and output. Processes, 1996,10(8): 1119-1126
    93. Dumanski J, Consept, objective and structure of the Canada soil information. Canadian journal of soil science, 1975, (55): 181-189
    94. Foster G R, L J Lane. User requirements USDA-water erosion prediction project (WEPP), NSEAL Report No.1.west lafayette, 1987:1-20
    95. Hans S, Sandra B. Scaling issues in watersheds assessments [J]. Water Policy,2001, (3):475-489.
    96. Hua Lu, Gallant, J C, Prosser, I P, et al. Prediction of Sheet and Rill Erosion Over the Australian Continent, Incorporating Monthly Soil Loss Distribution[M]. 2 CSIRO Land and Water Technical Report[C],2001:1-30
    97. Joao E M, S J Walsh. GIS implications for hydrologic modeling: simulation of nonpoint pollution generated al a consequence of watershed development scenarios. Comput. Environ. Urban.System. 1992, (6): 43-63
    98. John Boardman, David Favis-Mortlock. Modelling Soil Erosion by Water. cooperation with NATO Scientific Affairs Division, 1998,(1): 1-527
    99. Johnson L E, Maphyd: A digital map based hydrologic modelling system. Photogram. Eng. Remot.Scense, 1989, (55): 911-913
    100. Kirkby, MJ, AC Imeson,G. Bergkamp. Scaling up processes and models from the field plot to the watershed and regional areas[J]. Soil and Water Conservation,1996,51(5):391-396.
    101. L T Trana, M A Ridgleyb, L Ducksteinc, R.Sutherlandb. Application of fuzzy logic-based modeling to improve the performance of the Revised Universal Soil Loss Equation, Catena 2002, 47:203-226
    102. Loch R J, Rosewell. Laboratory methods or measurement of soil erodibilities factors for the USLE. Journal of Soil Research, 1992, 30(2): 233-240
    103. Mellerwicz K T. Soil conservation planning at the watershed level using the USLE with GIS and microcomputer technologies: A case stud. Journal of Soil and Water Conservation, 1994, 49(2): 194-200
    
    
    104. Morgan R P C. The European Soil Erosion Model (EUROPEM): a dynamic approach for predicting sediment transport from field and small catchment. Earth surface Pand Landform. 1998, 23: 527-544.
    105. Nash J E, Sutcliffe J. River flow forecasting through conceptual models, part1-a discussion of principle. Journal of Hydrology, 1970,10(3):282-290
    106. R E Braziera, J S Rowan, S G Anthony and P F Quinn. "MIRSED" towards an MIR approach to modeling hillslope soil erosion at the national scale. Catena, 2001, 42(1): 59-79
    107. Reubold W U L, Teselle G W. Soil geographic date bases. Journal of soul and water conservation, 1986, 44(1): 28-29
    108. S M de Jong, M L, Paracchini F, Bertolo S, Folving J, Megier A P J. de Roo.Regional assessment of soil erosion using the distribution model SEMMED and remotely sensed data. Catena, 1999,(37): 291-308
    109. Saleh A, Arnold J G.. Application of SWAT for the upper north Bosque river watershed. Transactions of the ASAE, 2000,43(5):1077-1087
    110. Sten B,Graham L.P. On the scale problem in hydrological modeling[J]. Journal of Hydrology, 1998, (211):253-265.
    111. Victor Jetten, Ad de Roo, David Favis-Mortlock. Evaluation of field-scale and catchment-scale soil erosion models. Catena,1999 (37):521-541
    112. W R Osterkamp. Effects of scale on interpretation and management of sediment and water quality[M], IASH Publication, 1995, (226):275-284
    113. Williams J R, Renard. EPIC-A new method for assessing erosion's effect on soil productivity. Journal of Soil and water Conservation, 1983, 38(5): 381-383
    114. Wood E F, Sivapalan M, Bevn K J, el at. Effects of spatial variability and scale with implication to hydrologic modeling[J]. Journal of. Hydrology, 1988,(102):29-47.
    115. Wood E E Effect of soil moisture aggregation on surface evaporative fluxes[J]. Journal of Hydrology, 1997, 190:397-412.
    116. Y Zhang, J Yuan, and B Liu, [Advance in researches on vegetation cover and management factor in the soil erosion prediction model], Chinese Journal of Applied Ecology, 2002; 13(8): 1033-1036
    117. Yoder D, and J Lown. The feature of RUSLE: Inside the new Revised Universal Soil Loss Equation. Journal of Soil and Water Conservation, 1995, (50): 485-489
    118. Zhaoyin Wang, Bingnan Lin, Franz Nestmann. Prospects and New Problems of Sediment Research. International Journal of Sediment Research, 1997, 12(1): 1-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700