新型阻燃沥青的制备及其阻燃机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国山区高速公路的快速发展,公路隧道的数量与规模大幅度增长,沥青路面已经发展成为隧道铺装最主要的结构形式之一。作者通过国内外相关文献调研和本课题组的有关工作,综述了阻燃剂及阻燃技术在高分子领域内的研究进展情况和沥青阻燃技术的最新研究动态,认为通过对无卤环保型沥青阻燃剂进行表面改性,以提高沥青阻燃剂与沥青的相容性,有望发展成为新型的行之有效的沥青阻燃技术。本文采用偶联剂对沥青阻燃剂进行表面改性,研制了新型沥青阻燃剂及阻燃沥青,分析了其阻燃机理,研究了阻燃沥青混合料的技术性能,主要研究内容如下:
     1以界面理论和相容性原理为基础,研制出了两种活性高、与沥青相容性好、阻燃性能优良的新型沥青阻燃剂:经钛酸酯偶联剂表面改性的沥青阻燃剂(简称为BFR-Ti)和经硅烷偶联剂表面改性的沥青阻燃剂(简称为BFR-Si),确定了偶联剂合理用量。采用红外光谱(FTIR)、热重分析(TGA)及电镜扫描(SEM)等测试手段,对阻燃剂的结构和性能进行了分析。结果表明,当沥青阻燃剂的粒度范围为1000~1500目时,其对应的钛酸酯偶联剂和硅烷偶联剂的合理用量分别为沥青阻燃剂的1.6%和0.9%左右;经偶联剂表面改性之后的沥青阻燃剂,在沥青阻燃剂表面形成了新的化学键,其热稳性得到了有效的改善,“团聚现象”基本消失。
     2由BFR-Ti和BFR-Si两种沥青阻燃剂制备了BFR-Ti阻燃沥青和BFR-Si阻燃沥青,研究了沥青阻燃剂粒度和用量对阻燃沥青路用性能及燃烧性能的影响,分别确定了沥青阻燃剂的合理粒度范围和用量;研究了阻燃增效剂硼酸锌(ZB)对以上两种沥青阻燃体系的协同作用,并确定了ZB的合理用量。采用红外光谱(FTIR)、热重分析(TGA)及电镜扫描(SEM)等测试手段,对阻燃沥青的结构与性能进行了分析。结果表明,BFR-Ti和BFR-Si的合理粒度范围均为2000~2500目,合理用量均为沥青的9.0%;硼酸锌(ZB)对BFR-Ti阻燃沥青具有显著的阻燃增效作用,且以2.0%的硼酸锌(ZB)取代等量的BFR-Ti后,综合效果最佳,而硼酸锌(ZB)对BFR-Si阻燃沥青的阻燃增效作用并不明显;沥青阻燃剂用量对阻燃沥青的流变性能有一定影响。
     3通过研究几种阻燃沥青的燃烧行为,分析了阻燃沥青的阻燃机理,并找出了热重分析TGA与锥形量热分析CCT的测试结果之间的相关性,分析了阻燃增效剂ZB对BFR-Ti阻燃沥青的协同作用。结果表明,与SBS改性沥青相比,阻燃沥青的热释放速率(HRR)、质量损失速率(MLR)、有效燃烧热(EHC)以及点燃时间(TIG)等发生了较显著的变化,显示了良好的阻燃性;TGA中的分解温度与相应的CCT中的点燃时间有着较好的相关性,TGA中的高温炭层与CCT中的残炭量及热释放速率同样有着良好的相关性;硼酸锌在BFR-Ti-ZB阻燃沥青的燃烧过程中起到了明显的协同作用,这主要体现在燃烧过程中其烟雾密度和烟雾总量得到了明显的减小;阻燃沥青的燃烧过程中,均有沥青阻燃剂分解吸热、成炭等现象,表明其阻燃机理并不单一。对于BFR-Ti-ZB阻燃沥青而言,由于协同阻燃效应的存在,其阻燃机理虽以凝聚相阻燃机理为主,但兼具协效阻燃和吸热阻燃机理的特征,而其他几种阻燃沥青都是凝聚相阻燃机理和吸热阻燃机理共同作用的结果,但其侧重点不同。
     4通过对比实验,研究了由SBS改性沥青、BFR-Si阻燃沥青、BFR-Ti-ZB阻燃沥青以及国内常用组成不同混合料的技术性能,并通过实体工程,验证了阻燃沥青的路用性能和实际应用情况。结果表明,与SBS改性沥青相比,阻燃沥青混合料的油石比较大,其路用性能除水稳性有一定提高外,其他路用性能变化不大,均能满足规范要求。
With the rapid development of expressways in China, the number and size of highway tunnels have been growing dramatically. As cement pavement has a lot of weaknesses, it has become increasingly unsuitable for modern tunnels and gradually replaced by bitumen pavement in tunnel construction. However, the inflammability of bitumen poses great danger for tunnel operation. Although many extensive researches have been conducted on bitumen flame retardant (BFR), further in-depth studies are still necessary.
     This Paper starts with a literature review on the background of researches on flame retardant and flame-retarding technology in terms of high polymer and latest developments of BFR technology, which shows that it is possible to develop a new effective BFR through surface modification of halogen-free environmental-friendly flame retardant to improve the compatibility between retardant and bitumen. The Paper then presents a study on the development of new BFR and flame retardant bitumen by using coupling agent to modify the surface of flame retardant. Based on the findings, the Paper studies the flame retarding mechanism and analyzes and tests the performance of flame retardant bitumen mixture. The study mainly covers the following contents:
     1. Based on interface theory and compatibility principle, two new bitumen flame retardants with high activity, good compatibility with bitumen, and excellent flame retarding performance, are developed by respectively using Titanate coupling agent and Silane coupling agent to conduct surface modification (these two retardants are called BFR-Ti and BFR-Si throughout the Paper). Then FTIR, TGA and SEM are used to test, describe and represent the structure and property of said retardants. Results show that appropriate ratio of Titanate coupling agent to BFR is around 1.6% and that of Silane coupling agent to BFR is around 0.9%. After surface modification, new chemical bonds have been formed on bitumen surface, effectively improving its thermal stability and largely eliminating the occurrence of agglomeration.
     2. Two flame retardant bitumens are made by mixing bitumen with BFR-Ti and BFR-Si respectively. ZB is then added to test its synergy with the two bitumens and determine the appropriate ratio. FTIR, TGA and SEM are used to test, describe and represent the structure and property of said bitumens. Results show that appropriate granularity range of both bitumens is 2,000-2,500 and ratio of ZB to bitumen is both 9.0%. Results also show that ZB does not produce significant synergy with BRF-Si flame retardant bitumen as a result of chemical reaction between ZB and Silane coupling agent, but the amount of BFR has some relation to the rheological property of flame retardant bitumen.
     3. Inflammation of several flame retardant bitumens is studied to analyze the flame retarding mechanism, identify the correlation between the results of TGA and CCT, and analyze ZB's synergy with BFR-Ti flame retardant bitumen. Results show that in terms of inflammation property, compared to SBS modified bitumen, flame retardant bitumens have demonstrated significant changes regarding HRR, MLR, EHC and TIG and proved to be very flame retardant. Results also show that the breakdown temperature in TGA and corresponding TIG has sound correlation, high temperature carbon layer in TGA and residual carbon & HRR in CCT also have good correlation, and BFR-Ti-ZB flame retardant bitumen has shown significant synergy in the course of inflammation. In the course of inflammation, endothermic decomposition and carbonization occur to all flame retardant bitumen, indicating the flame retarding mechanisms is not single. As a result, the main flame retarding mechanisms is condensed phase flame retarding mechanisms, characterized by synergy and endothermic flame retarding mechanisms. The other flame retardant bitumens are the result of combination of condensed phase and endothermic flame retarding mechanisms.
     4. Tests are conducted to compare the properties of SMA13, AC 13 and GA10 respectively corresponding to SBS modified bitumen, BRF-Si flame retardant bitumen, BFR-Ti-ZB flame retardant bitumen. Real projects are studied to testify the road performance of flame retardant bitumen and its actual applications. Results show that compared to SBS modified bitumen, besides having bigger oil stones and improved moisture stability, flame retardant bitumen mixture boasts similar properties and therefore can meet pavement regulations. In addition, flame retardant bitumen can have satisfactory effect in actual application.
引文
[1]欧育湘等.阻燃高分子材料[M].北京:国防工业出版社2001:2-3
    [2]欧育湘等.实用阻燃技术[M].北京:化学工业出版社2002:133-135
    [3]Weber M. Mineral flame retardants——overview and future trends[J]. Ind Miner,2000(2):19-28
    [4]肖鹏,腾人瑞.无卤阻燃原理及无卤阻燃技术的发展方向.阻燃材料与技术.1997,12(1):1-4
    [5]Wang LS, Wang X.L, Yan GL, Synthesis, characterization and flame retardance behaviour of poly(ethylene terephthalate) copolymer containing triaryl phosphine oxide[J]. Polym Degrad Stab 2000. vol(69):127-130
    [6]Marosi G, Anna P, Marton A, Bertalan G, Flame-retarded polyolefin systems of controlled interphase[J]. Polym Adv Technol.2002,V(13):1103-1111
    [7]杨海洋,肖鹏,胡炳环.无卤阻燃剂的研究进展.塑料工业[J].2006,34(5):69-72
    [8]王永强.阻燃材料及应用技术[M].北京:化学工业出版社,2003:8-21
    [9]Day M, Suprunchuk T, and Wiles DM, Burning characteristics of beds and bedding -situation and developments[J]. Fire Mater 1983, V21(7):159-162
    [10]Ban DM, Wang YZ. A novel non-dripping oligomeric flame retardant for polyethylene terephthalate[J]. Eur Polym J 2004, V40(8):909-1913
    [11]Wu B, Wang YZ. Kinetics of thermal oxidative degradation of phosphorus- containing flame retardant copolyesters[J]. Polym Degrad Stab,2002, V76(3):401-409
    [12]崔隽,姜洪雷等.阻燃剂的现状与发展趋势[J].山东轻工业学院学报,2003,17(1):14-17
    [13]薛恩钰,曾敏修.阻燃科学及其应用[M].北京:国防工业出版社,1988
    [14]He Pingsheng. Curing Studies on Epoxy System with Fillers[J]. JMaterSei,1989,24:2951-2954
    [15]C. Arvind Patel. An Irmovative Stoocy to Evaiuate Fillers[J]. Elastomersand Plasties,1999, V31(5): 213-231
    [16]Marosi G, Marton A, Anna P. Ceramic precursor in flame retardant systems[J]. Polym Degrad Stab, 2002,V77(2):259-265
    [17]ShuiYu Lu, Ian Hamerton. Recent development in the chemistry of halogen free flame retardant polymers[J]. Progress in Polymer Science,2002, V27 (8):1661-1712
    [18]王建棋,无卤阻燃聚合物基础与应用[M].科学出版社:北京,2005
    [19]] Hietaniemi J, Kallonen R, Mikkola E. Burning characteristics of selected substances:production of heat,smoke and chemicals species [J]. Fire Mater,1999, V23(4):171-185.
    [20]瞿保钧,陈伟.低烟无卤阻燃聚烯烃的研究进展和应用前景.功能高分子学报,2002,15(3)361-365
    [21]Gilman J W, Lomakin S, Kashiwagi T, et al. Characterization of flame-retarded polymer combustion chars by solid-state 13C and 29NMR and EPR[J]. Fire Mater,1998,22(2):61-67.
    [22]史翎,段雪.阻燃剂的发展及在塑料中的应用[J].塑料,2002,34(3):11-15
    [23]ShuiYu Lu, Ian Hamerton. Recent development in the chemistry of halogen free flame retardant polymers[J]. Progress in Polymer Science,2002,52(8):1661-1712
    [24]夏英.硼酸锌在膨胀型无卤阻燃ABS中的协同作用[D].大连:大连理工大学,2007
    [25]张月琴,叶旭初.硼酸锌的性质、制备及阻燃应用[J].无机盐工业,2007,33(12):13-16
    [26]郝冬梅, 刘彦明等.分子筛在无卤膨胀阻燃体系中的协效催化作用[J].工程塑料应用,2008,36(3):19-21
    [27]韦平, 王建祺.4A分子筛对聚磷酸铵/季戊四醇膨胀阻燃剂协同作用的TGA/XPS研究[J].北京理工大学学报,2002,25(2):123-125
    [28]Levchik S V, Camino G, et al. Mechanism of action of phosphorus-based flame retardants in nylon 6:I Ammonium polyphosphate[J].Fire and Materials,1995,V19(1):1-10
    [29]王锦成,杨科.4A分子筛/膨胀型阻燃剂在NR中的应用性能研究[J].化工新型材料,2009,32(5):95-98.
    [30]吴志平.超细硼酸锌对LDPE_IFR体系的协效阻燃和抑烟作用研究[D].2006
    [31]赵伟,王丽.硼酸锌在LDPE阻燃中的协效作用[J].塑料科技,2006,34(1):43-46
    [32]张亨.硼酸锌的性质、生产及阻燃应用.合成材料老化与应用[J],2002,31(4): 39-42
    [33]林晓丹,贾德民.硼酸锌在膨胀型阻燃聚丙烯中的协同阻燃机理研究[J].塑料工业,2002,31(2):43-44
    [34]吕海波,孙伟,邱丽萍.膨胀型阻燃剂在聚丙烯中的应用[J].合成树脂及塑料,2005,22(3):36-39
    [35]G.F.Levchik, A.F.Selevich, S.V.Levchik, et al. Thermal behaviour of ammonium Polyphosphate-norganic comPound mixtures[J]. Thermoehimiea Aeta,1994, V239(7):41-49
    [36]G.F.Levchik, S.V.Levchik, et al. Mechanisms of action in flame retardant reinforced nylon6[J]. Polym.degrad.stab,1996, V54(2-3):361-363
    [37]欧玉春.界面改性剂在聚丙烯/高岭土二相复合体系中的作用[J].高分子学报,1996,27(1):59-63
    [38]LGB Oretti. Effectof Tetramethylthiunn DisulPhideon Bistrlethoxy(silylProPyl) TetrasulPhaneas. CouPling Agenifor Silieain Polyiso Prene Plasties[J].RubberandComposites,2000, V29(3):144-148
    [39]王正洲,瞿保钧,范维澄等.表面改性剂在氢氧化镁阻燃聚乙烯体系中的应用[J].功能高分子学报,2001,14(1):45-48.
    [40]卢寿慈等.界面分选原理及应用[M].北京:冶金工业出版杜,1992
    [41]Zhao Zhen, Zhang Wenlong. Applications and Research Progresses of Coupling Agents[J]. Plastics Additives,2007(3):4-10
    [42]陈开俊.水镁石应用研究现状[J].矿产保护与利用,1996,26(2):33-35
    [43]赵贞,张文龙.偶联剂的研究进展和应用[J].塑料助剂,2007,11(3):4-10
    [44]杜高翔,郑水林.超细水镁石的硅烷偶联剂表面改性[J].硅酸盐学报,2005,37(5):659-664
    [45]杜高翔,郑水林,李杨.阻燃用氢氧化镁及水镁石粉体的表面改性研究现状[J].非金属矿,2002,25(增刊):10-13
    [46]史亚君.硅烷偶联剂的界面性能研究及机理探讨[J].国外建材科技,2005(4):73-74
    [47]梁少俊等.钛酸酯表面处理碳酸钙的研究[J].无机盐工业,1997,27(5),31-32
    [48]张云怀.粉煤灰微珠/有机高分子复合材料及其偶联剂界面作用的研究[D].重庆:重庆大学,2004
    [49]郑水林.粉体表面改性[M].北京:中国建材工业出版社.1995: 23-30
    [50]华仲强.硅烷偶联剂/二氧化硅界面层的表征研究[J].复合材料学报,1988,5(3):47-49
    [51]廖建国,王学江.硅烷偶联剂对纳米羟基磷灰石表面改性的研究[J].无机材料学报,2008,23(1):29-33
    [52]M.L. Vadala. Block copolysiloxanes and their complexation with cobalt nanoparticles[J]. Polymer, 2004,V45(22):7449-7461
    [53]徐惠,孙涛.硅烷偶联剂对纳米TiO2表面改性的研究[J].涂料工业,2008,37(4):2-5
    [54]高红云,张招贵.硅烷偶联剂的偶联机理及研究现状[J].江西化工,2003,10(2):30-34
    [55]Qin Kunhua, Ma Wenshi. Preparation and Characterization of Nanoized Fe3O4 Magnetic Particles Modified by Silane[J]. Silicone Material,2008 (2):11-15
    [56]陆银平,刘钦甫.硅烷偶联剂改性纳米高岭土的研究[J].非金属矿,2008,33(5):6-10
    [57]Bokobza Liliane,Chauvin Jen Paul. Reinforcement of natural rubber use of in situgenerated silicas and nanofibres of sepiolite[J]. Polymer,2005, V46 (12):4144-4151
    [58]周亚民.硅烷偶联剂改性超细Ti02的研究[J].东莞理工学院学报,2008,15(5):21-24
    [59]徐庆,张慎靖.硅烷偶联剂对凹凸棒土的化学改性[J].石化技术与应用,2008,26(6):523-525
    [60]S.K.Liao, S.C.Jang, M.F.Lin. Phase Behavior and Mechanical Properties of Siloxane-Urethane Copolymer[J]. Journal of Polymer Research,2005, V12 (2):103-112
    [61]吴叙勤.硅烷偶联剂与Si02表面化学反应的研究[J].复合材料学报,1985,2(4):1-7
    [62]千叶直树.通过钛酸酯偶联剂进行的表面改性[J].橡胶参考资料,1993,23(6):22-27
    [63]杜仕国.钛酸酯偶联剂在塑料中的应用[J].化工新型材料,1994,17(1):12-14
    [64]张云怀.钛酸酯活化粉煤灰微珠填充PVC板材中的研究.工程塑料与应用,2001,29(3):34-35
    [65]张立新.钛酸酯偶联剂的应用[J].辽宁化工,2005,34(6):268-270
    [66]罗士平,周国平等.钛酸酯偶联剂对无机填料表面改性的研究[J].合成材料老化与应用,2001,30(1):9-14
    [67]舒均杰.纳米碳酸钙表面改性及其机理研究[D].湘潭:湘潭大学,2007
    [68]王成毓.功能性纳米碳酸钙的仿生合成及表征.[D].吉林:吉林大学,2007
    [69]Felix N N, John C B. Adhesion Promotion of Poly(pheny-lene Sulfide) to Aluminum Treated with Silane Coupling Agents[J]. Journal of Adhesion Sci Technol,2006, V20(2):197-208
    [70]蒋培玉,沈斐敏.公路隧道事故预防分析.安全与环境工程,2009,16(2):66-70
    [71]周胤德,忻元发等.由近年国际重大公路长隧道事故检讨隧道安全设施[J].岩石力学与工程学报,2004,23(12):4882-4887
    [72]张厚记.沥青路面的矿物组分阻燃机理与技术研究[D].武汉:武汉理工大学,2007
    [73]F.H.Amundsen, GRanes. Studies on traffic accidents in Norwegian road tunnels[J]. Tunnelling and Underground Space Technology,2000, V15(1):3-11
    [74]Walters Robert B. Flame retarded asphalt blend composition[P]. US Patent,04659381,1987
    [75]Walters Robert B, Schmidtline Paul J. Flame retarded asphalt composition [P]. US Patent,05462588, 1995
    [76]Jolitz Randal J., Kirk Donald R. Flame Retardant Asphalt Composition [P]. US Patent,05102463,1992
    [77]Jolitz Randal J., Kirk Donald R. Flame Retardant Asphalt Composition [P]. US Patent,05026747,1991
    [78]Brown Steve, Mead Natalie, et. Bauxite flame-retardant fillers for insulators or sheathing [P]. US Patent,06252173,2001
    [79]Joseph Graham. Flame resistant asphalt compositions [P]. US Patent,04512806,1985
    [80]Kalkanoglu Husnu M. Halogen-free flame-retardant bitumen roofing composition [P]. US Patent, 05437923,1995
    [81]Slusher Carter C., Ogren Eric A., et. Flame retardant modified asphalt-based material and products therefrom[P]. US Patent,05516817,1996
    [82]Grube Louis L., Frankoski Stanley P. Flame retardant bitumen [P]. US Patent,05110674,1992
    [83]J.hietaniemi, R.Kallonenr, et. Burning Characteristics of Selected Substance:Production of Heat, Smoke and Chemicals Species[J]. Fire Matter,1999 (4):171-185
    [84]Smith CS, Metcalfe E. A study of fire-retardant mechanisms in the gas phase by FTIR spectroscopy[J]. Polym Int,2000, V49(6):1169-1176
    [85]杨树人.阻燃沥青及其混合料的研究现状[J].石油沥青,2007,21(4):1-5
    [86]付永然,林元奎.阻燃沥青的研究进展与建议[J].石油沥青,2006,20(6):69-71
    [87]吴少鹏.阻燃改性沥青油毡的研究[J].新型建筑材料,1997,34(8):34-35
    [88]李祖伟,陈辉强.沥青阻燃改性技术研究及其阻燃机理[J].长沙交通学院学报,2002,18(12):44-47
    [89]陈辉强,陈仕周.沥青阻燃改性技术研究[J].公路交通技术,2003,19(4): 19-20
    [90]何唯平等.一种阻燃改性沥青混合料[P].中国专利:1580129A,2005
    [91]鲁春红,于光喜,何唯平等.环氧型焦油沥青阻燃涂料[P].中国专利:1590486A,2005
    [92]黄绍龙,陈蔚,何唯平.阻然改性沥青马蹄脂碎石(SMA)混合料[P].中国专利:1827696A,2006
    [93]丁庆军,胡曙光等.一种防火降噪隧道路面材料的制备方法[P].中国专利:1760279A,2006
    [94]杨群,郭忠印等.隧道路面阻燃多孔沥青混凝土性能研究[J].同济大学学报,2005,30(3):316-320
    [95]郭进存,廖克俭,戴跃玲.阻燃沥青的研制[J].辽宁石油化工大学学报,2005,25(2):5-8
    [96]余剑英,吴少鹏等.一种无卤阻燃聚合物改性沥青及其制备方法[P].中国专利:861689,2006
    [97]余剑英等.阻燃沥青的制备与性能研究[J].石油沥青,2005,19(4):11-13
    [98]余剑英,吴少鹏等.阻燃SBS改性沥青的制备及性能[J].中国公路学报,2007,20(3):35-39
    [99]张厚记,胡曙光.碱性矿物纤维增强沥青混合料的研究[J].武汉理工大学学报.2006,28(4):36-38
    [100]马昌喜,广晓平,钱勇生.长公路隧道交通安全研究[J].灾害学,2008,23(3):82-86
    [101]Farradyne P.B.Traffic Incident Management Handbook[M]. New York:U·S·Federal Highway Administration,2000:162-171
    [102]Margie Peden, Richard Scurfield, David Sleet, et al. World report on road traffic injury prevention [R]. Geneva:World Health Organization,2004
    [103]郭忠印,方守恩.道路安全工程[M].北京:人民交通出版社,2003: 2-8
    [104]公路隧道设计规范(JTJ 026-90)[M].北京:人民交通出版社,1990
    [105]蒋树屏.我国公路隧道工程技术现状与展望[J].公路隧道,2000(1): 1-5
    [106]胡源,李纯,时虎.热分析技术在阻燃材料研究中的应用[J].火灾科学,1999,8(1):74-77
    [107]龚景松.沥青燃料的热解特性研究[J].冶金能源,2002,21(4):31-34
    [108]樊军,杨群,等.沥青氧指数测试方法[J].解放军理工大学学报,2004,20(12): 30-32
    [109]王许云,张军.应用锥形量热法评价聚合物复合材料热释放速率.复合材料学报,2004,21(4)1:65-169
    [110]郝权,蒋曙光.锥形量热仪在火灾科学研究中的应用.能源技术与管理,2009,31(1):80-83
    [111]舒中俊;徐晓楠.基于锥形量热仪试验的聚合物材料火灾危险评价研究.高分子通报,2006,19(5):39-46
    [112]蔡竹聪,阳君等.改性沥青浇注式混凝土在隧道路面的应用研究[J].公路交通科技,2005,21(3):49-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700