长江口及邻近海域大型底栖生物群落生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据2006~2011年长江口及邻近海域范围内的大型底栖生物调查资料,运用方差分析、Bray-Curtis相似性聚类、多维尺度排序、典范对应分析、丰度/生物量比较曲线、大型底栖生物污染指数等方法从时间、空间、沉积物类型和溶解氧等几个不同方面定量分析了长江口及邻近海域的大型底栖生物群落结构的分布格局以及多样性特征,探讨了不同影响因素对大型底栖生物的分布和群落结构的影响,并将大型底栖生物做为目标生物,使用三种不同的评价方法评价了长江口及邻近海域的环境质量,主要研究结果如下:
     从时间对大型底栖生物的影响来看:长江口海域大型底栖生物的种类组成没有显著的季节和年际变化,种类数的高值区也一直在长江口锋面附近。而优势种则随着时间的推移不断变化,群落初期占据绝对优势的竹节虫到后期逐渐消亡,被毛头犁体星虫所取代。生物量无显著的时间差异,但总丰度的时间差异显著。次级生产力也存在显著的时间差异。对于群落结构的分析可知,各个季节群落都可划分为河口群落和近岸群落两类,而夏季和冬季河口群落又可细分为内河群落和河口群落。研究的主要结果表明,长江口大型底栖生物在近年没有显著的年际变化和季节变化,但是优势种有所变化。
     从空间对大型底栖生物的影响来看:将长江口划分为河口区、近岸区和远岸区进行分析,结果发现,不同区域之间的种类数、生物量和密度均存在差异显著,河口区的种类数、密度和生物量均为最低。SIMPER分析结果则表明,不同区域之间的大型底栖生物的优势种不同,其中河口区群落结构相对简单,优势种明显,各个季节优势种不同,近岸区群落结构相对复杂,优势种优势度相对不明显,其中小头虫在各个季节均占优势。远岸区各个季节优势种相对明显,且季节间不同。研究的主要结果表明,人类活动已经对长江口河口区域产生了极大影响,对近岸区也有影响,但影响的程度不大,对远岸区的影响较小。
     从沉积物类型对大型底栖生物的影响来看:四种不同类型的沉积物中总共鉴定出293种大型底栖生物,各不同类型沉积物中,多毛类、软体动物均为其中的主要类群。双因素方差分析表明多毛类、软体动物、甲壳类和棘皮动物和总的物种数均存在显著的底质类型间差异,但除了多毛类外,其他类群的物种数均无显著的季节差异。根据SIMPER分析结果,不同底质类型的沉积物中优势种也有较大区别:粉砂型底质中的主要优势种为小型多毛类和甲壳动物,而砂质泥类型底质的主要优势种则为较大体型的多毛类或大型的棘皮动物和甲壳类等。双因素方差分析表明,无论生物量、密度还是多样性指数,均存在显著的底质类型间差异,生物量从低到高排序依次是粉砂<粉砂质砂<砂质泥<砂质粉砂,而丰度从低到高排序则依次是粉砂<粉砂质砂<砂质粉砂<砂质泥。群落相似性分析则表明,除了秋季以外,其余各个李节均无显著的群落差异。CCA分析表明,不同底质类型的沉积物环境所占主导因子的环境因子不同。粉砂底质的主要环境影响因素是营养盐、盐度、水深和溶解氧(负相关);粉砂质砂区主要环境影响因素是溶解氧和pH值;砂质粉砂区主要环境影响因素是温度;而砂质泥区的主要环境影响因素是磷酸盐、硅酸盐、溶解氧和pH值。研究的主要结果表明,不同沉积物类型中食物可得性的差异、生境异质性和沉积速率是影响大型底栖生物分布的重要因素。
     从溶解氧对大型底栖生物的影响来看:低氧区的多毛类和软体动物物种数、丰度和生物量均显著高于非低氧区,低氧区多毛类和软体动物物种所占百分比高于非低氧区,而甲壳类物种所占百分比则低于非低氧区。根据SIMPER分析结果,低氧区与非低氧区的主要优势种也有很大差别,特别在夏季,低氧区主要优势种为小头虫、中华异稚虫等小型多毛类;而非低氧区的主要优势种不但包括多毛类,纹尾长眼虾也成为主要优势种。聚类分析和多维尺度排序则表明,低氧区群落和非低氧区群落无显著差异,群落相似性分析结果也证明了这一点。典范对应分析结果表明低氧区多毛类的主要影响因子是盐度,甲壳类的主要影响因子是水深、温度和总有机碳等,而非低氧区多毛类的主要影响因子是盐度和水深,甲壳类的主要影响因子则是悬浮物和无机氮。年际变化的分析表明,低氧区生物量、丰度等参数无显著年际变化,但主要优势种发生变化。研究的主要结果表明,短期中度低氧不一定引起大型底栖生物总丰度的下降,但可能引起大型底栖生物群落重建,类群组成发生明显变化。
     利用大型底栖生物,通过多样性指数、MPI指数和ABC曲线三种方法对长江口的环境质量进行评价,结果表明:多样性指数评价情况下,各季节重度污染的站位均在1/3以上,而属于轻度污染和清洁的站位各季节均未超过20个。MPI指数评价的情况下,各季节重度污染的站位则超过了80%,而轻度污染和清洁的站位则不超过10个,根据ABC曲线则表明,只有春季和冬季近岸区的群落处于扰动之中。研究的主要结果表明,三种方法对环境质量的评价各有优缺点,但对于低多样性的长江口海域,使用MPI指数方法可能会过高的估计污染程度。与同期调查的国内其他河口港湾相比,长江口的环境质量在国内仅好于杭州湾和椒江口,因此对于长江口海域的环境保护刻不容缓。
A quantitative analysis on the distribution pattern and diversity of macrobenthos communities in the Yangtze Estuary (YE) and adjacent waters (YEAW) was performed based on survey data from2006to2011, in terms of spatio-temporal properties, sediment types, and dissolved oxygen (DO). Several multivariate methods were applied to explore the macrobenthos distribution and community structure in relation to the environmental factors, such as the analysis of variance, Bray-Curtis similarity-based cluster, multidimensional scaling (MDS), analysis of similarity (ANOSIM), and canonical correspondence analysis (CCA). Besides, all the methods of curve for abundance and biomass comparison (ABC), macrobenthos pollution index (MPI) and diversity index were used to evaluate the environmental quality of the YEAW on the basis of the present macrobenthos data.The main results described as follows.
     Regarding the temporal influence on macrobenthos, no significant seasonal and annual variations in the species composition in the YEAW were observed. The high-value region of species number located around the front in the YE. However, the dominants varied with temporal change, and Maldane sp. were found to be the dominant species at the initial stage of community development. These Polychaeta group then gradually died out at the later stage and were finally replaced by Apionsoma trichocephala. No apparent difference was observed in the biomass, whereas the total abundance and secondary productivity show remarkable temporal differences. Community structure analysis reveals that macrobenthos in each season could be divided into estuarine and inshore assemblages. The estuarine community in summer and winter can be further subdivided into riverine and estuarine groups. The results indicated no evident interannual and seasonal variations in macrobenthos in the YE in recent years.
     Regarding the spatial influence on macrobenthos, the Yangtze estuary is divided into estuarine, inshore, and offshore subregion. We found that these three subregions have significant different species number, biomass, and density and the former presenting the lowest values for these community parameters. According to SIMPER analysis results, the dominant species of macrobenthos varied geographically. The community structure in the estuarine region was relatively simple with obvious dominant species, whereas the inshore region showed complicated community structure without absolute dominantsand Capitella capitata dominated in all the seasons. In the offshore region, the dominants were evidently differ in each season. The results indicate thai human activities have a huge impact on the estuanme area, some effects on the offshore area, and minimal influence on the far shore area. Regarding the influence of the sediment types on macrobenthos, a total of293species are identified in four different types of sediment. Polychaeta and mollusca were the main groups in each type of sediment. Two-way analysis of variance indicates that polychaeta, mollusca, crustacea, echinodermata significantly differ from all other groups in terms of the substrate type of sediment. However, the species of other groups except for polychaeta did not show apparent seasonal differences. SIMPER results reveal that different types of sediment are dominated bydifferent species. The dominant species in silt-substrate-typed sediment were small-sized polychaeta and crustacea, whereas the dominants in silt-mud substrate-type sediment were large-sized polychaeta, echinodermata, crustacea, and so on. Two-way analysis of variance also indicates that the biomass, density, and diversity index evidently vary with different substrate types of sediment. The biomass from low to high is silt, silt sand, silt mud, and sandy silt, in turn, whereas the abundance is silt, silt sand, sandy silt, and silt mud, in turn. Community ANOSIM indicates no evident differencein different seasons, except in autumn. CCA shows that themacrobenthos in different sediment types are affected by different environmental factors. The main factors influencing the macrobenthos in silt substrate include nutrients, salinity, water depth, and DO (negative correlation); in silt sand are DO and pH; in sandy silt is temperature; and in sandy mud are phosphate, silicate, DO, and pH. Results demonstrate that variations in food availability in different sediment types, habitat heterogeneity, and deposition rate significantly effect the macrobenthos distribution.
     Regarding the influence of DO on macrobenthos, the species number, abundance, and biomass of polychaeta and mollusca in hypoxic zones are much higher than in non-hypoxic zones. A higher percentage of polychaeta and mollusca exists in hypoxic zones, whereas higher crustacea exists in non-hypoxic zones. SIMPER analysis results show that the dominant species are different between these two zones. Especially in summer, the dominant species in hypoxic zones were small-sized polychaeta (e.g., C. capitata and Heterospio sinica). However, dominant species in non-hypoxic include not only polychaeta but also the Ogyrides striaticauda. Both the analysis of clusterand MDS indicate that communities in these two zones have no significant difference, which is also confirmed through the ANOSIM. CCA results indicate that the polychaeta in hypoxic zones is principally affected by salinity, whereas crustacea is depth, temperature, total organic carbon, and so on. In non-hypoxic, the polychaeta is mainly influenced by salinity and depth, whereas crustacea is suspended matter and inorganic nitrogen. Annual variation analysis shows no, and so on. Variations in the dominant species are observed, although there was no evident annual variation in biomass and abundance. These findings indicate that a short-term, moderately low-oxygen supply does not necessarily lead to decreased total abundance of macrobenthos but can result in the community reconstruction and evident variation in assemblage composition.
     Three methods (diversity index, MPI, and ABC curve) were used to study the effects of pollution on macrobenthos. Diversity index evaluation shows that the stations presented heavy pollution in each season is above one third, whereas the slight pollution and cleanness is below20stations. MPI evaluation indicates that the heavy-pollution stations in each season is>80%, whereas the influence of slight-pollution and cleanness is below10stations. ABC curve reveals that the community in the offshore area is disturbed only in spring and winter. These results indicate that the three methods used to evaluate environmental quality have both merits and demerits. However, the MPI method may overestimate the pollution degree in the YE with low diversity. Compared with other domestic estuaries and harbors investigated at the same period, environmental quality of the YE is only better than that of Hangzhou Bay and Jiaojiang Estuary. Therefore, the environmental protection in the YE allows of no delay.
引文
Alfaro A C. Benthic macro-invertebrate community composition within a mangrove/ seagrass estuary in northern New Zealand. Estuarine, Coastal and Shelf science, 2006,66:97-110.
    Anderson B S, Hunt J W, Phillips B M, et al. Sediment quality in Los Angeles Harbor, USA:A triad assessment. Environmental Toxicology and Chemistry,2001,20: 359-370.
    Astin L E. Developing biological indicators from diverse data:The Potomac Basin-wide Index of Benthic Integrity (B-IBI). Ecological Indicators,2007,7: 895-908.
    Azovsky A I. Size-dependent species-area relationships in benthos:is the world more diverse for microbes? Ecography,2002,25,273-282.
    Balloch D, Davies C E, Jones F H. Biological Assessment of Water Quality in Three British Rivers:The North ESK (Scotland), The Ivel (England) and the TAF (Wales). Water Pollution Control,1976,75(1):92-114.
    Barbour M T, Gerritsen J, Snyder B D, et al. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers:Periphyton, benthic macroinvertebrates and fish, second edition. EPA841-B-99-002. U.S. Environmental Protection Agency; office of Water,1999:1-10.
    Bergen M, Weisberg S B, Smith R W, et al. Relationship between depth, sediment, latitude, and the structure of benthic infaunal assemblages on the mainland shelf of southern California. Marine Biology,2001,138:637-647.
    Berlow E L. From canalization to contingency:historical effects in a successional rocky intertidal community. Ecological Monographs,1997,67(4):435-460.
    Beukema J J, Drent J, Honkoop P J C. Maximizing lifetime egg production in a Wadden Sea population of the tellinid bivalve Macoma balthica:a trade-off between immediate and future reproductive outputs. Marine Ecology Progress Series,2001,209:119-129.
    Beukema J J, Essink K, Dekker R. Long-term observations on the dynamics of three species of polychaetes living on tidal flats of the Wadden Sea:the role of weather and predator-prey interactions. Journal of Animal Ecology,2000,69:31-44.
    Beukema J J, Essink K, Michaelis H. The geographic scale of synchronized fluctuation patterns in zoobenthos populations as a key to underlying factors: climatic or man-induced. ICES Journal of Marine Science,1996,53:964-971.
    Bishop M J, Powers S P, Porter H J. Benthic iological effects of seasonal hypoxia in a eutrophic estuary predate rapid coastal development. Estuarine, Coastal and Shelf Science,2006,70:415-422.
    Blackstock J. Biochemical metabolic regulatory responses of marine invertebrates to natural environmental change and marine pollution. Oceanography and Marine Biology, Annual Review,1984,22:263-313.
    Blanchard D, Bourget E. Scales of coastal heterogeneity:influence on intertidal community structure. Marine Ecology Progress Series,1999,179:163-173.
    Bonzini S, Finizio A, Berra E, et al. Effects of river pollution on the colonisation of artificial substrates by macrozoobenthos. Aquatic Toxicology,2008,89(1):1-10.
    Bormann F H, Likens G E. Pattern and Process in a Forested Ecosystem. Springer-Verlag, New York,1981.
    Breitburg D L. Development of a subtidal epibenthic community:factors affecting species composition and the mechanisms of succession. Oecologia,1985,65(2): 173-184.
    Brey T, Clarke A. Population dynamics of marine benthic invertebrates in Antarctic and subantarctic environments:are there unique adaptations? Antarctic Science, 1993,5(3):253-266.
    Brey T. Estimating productivity of macrobenthic invertebrates from biomass and mean individual weight. Meeresforschung,1990,32(4):329-343.
    Carballo J L, Naranjo S. Environmental assessment of a large industrial marine complex based on a community of benthic filter-feeders. Marine Pollution Bulletin,2002,44:605-610.
    Casado-Martinez MC, Smith BD, DelValls TA, et al. Biodynamic modelling and the prediction of accumulated trace metal concentrations in the polychaete Arenicola marina. Environmental Pollution,2009,157:2743-2750.
    Clark D, Lamare M, Barker M. Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH:a comparison among a tropical, temperate, and a polar species. Marine Biology,2009,156:1125-1137.
    Clarke K R, Green R H. Statistical design and analysis for a" biological effects "study. Marine ecology progress series,1988,46:213-226.
    Clarke K R, Warwick R M. A taxonomic distinctness index and ite statistical properties. Journal of Applied Ecology,1998,35:523-531.
    Clarke K R, Warwick RM. Changes in marine communities:an approach to statistical analysis and interpretation.2nd Edition. PRIMER-E:Plymouth, UK.2001.
    Clocrn J, Alpine A. Potamocorbuia amurensis, a recentiy inurodueed Abian clam, has had dramatic effects on the phytoplankton biomass and production in northern San Francisco Bay. Journal of Shellfish Research,1991,10(1):258-259.
    Coleman N, Cuff W, Moverley J, et al. Depth, sediment type, biogeography and high species richness in shallow-water benthos. Marine and Freshwater Research, 2007,58:293-305.
    Colen C V, Backer A D, Meulepas G, et al. Diversity, trait displacements and shifts in assemblage structure of tidal flat deposit feeders along a gradient of hydrodynamic stress. Marine Ecology Progress Series,2010,406:79-89.
    Como S, Magni P. Temporal changes of a macrobenthic assemblage in harsh lagoon sediments. Estuarine, Coastal and Shelf Science,2009,83:638-646.
    Conlan K, Aitken A, Hendrycks E, et al. Distribution patterns of Canadian Beaufort Shelf macrobenthos. Journal of Marine Systems,2008,74:864-886.
    Connell J H, Slatyer R O. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist,1977,111: 1119-1144.
    Cortelezzi A, Capitulo A R, Boccardi L et al. Benthic assemblages of a temperate estuarine system in South America:Transition from a freshwater to an estuarine zone. Journal of Marine Systems,2007,68:569-580.
    Craft C, Reader J, Sacco J N, et al. Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes. Ecological Applications,1999, 9(4):1405-1419.
    Crawford O, Degraer S, Mallefet J, et al. Macrobenthos of shipwrecks within and around the Belgian waters as a potential food resource for fish populations, in: Zintzen V. Biodiversity of shipwrecks from the Southern Bight of the North Sea. 2007,269-281.
    Dauer D M, Alden R W. Long-Term Trends in the Macrobenthos and Water Quality of the Lower Chesapeake Bay(1985-1991). Marine Pollution Bulletin,1995,30(12): 840-850.
    Dauer D M, Rodi A J, Ranasinghe J A. Effects of Low Dissolved Oxygen Events on the Macrobenthos of the Lower Chesapeake Bay. Estuaries,1992,15(3): 384-391.
    Dauer D M. Biological criteria, environmental health and estuarine macrobenthic community structure. Marine Pollution Bulletin,1993,20:249-257.
    Dauvin J C, Rueller T, Desroy N, et al.The ecologieal quaiily status of the Bay of Seine and the Seine estuary:Use of biotic indices. Marine Pollution Bulletin, 2007,55:241-257.
    Dauwe B, Herman P M J, Heip C H R. Community structure and bioturbation potential of macrofauna at four North Sea stations with contrasting food supply. Marine Ecology Progress Series,1998,173:67-83.
    Davis M L, Berkson J, Kelly M. A production modeling approach to the assessment of the horseshoe crab (Limulus polyphemus) population in Delaware Bay. Fishery Bulletin,2006,104:215-225.
    Day R W, Osman R W. Predation by Patiria miniata (Asteroidea) on bryozoans:prey diversity may depend on the mechanism of succession. Oecologia,1981,51(3): 300-309.
    De Biasia A M, Bianchi C N, Morri C. Analysis of macrobenthic communities at different taxonomic levels:an example from an estuarine environment in the Ligurian Sea (NW Mediterranean). Estuarine, Coastal and Shelf science,2003, 58:99-106.
    De Broyer C, Rauschert M. Faunal diversity of the benthic amphipods (Crustacea) of the Magellan region as compared to the Antarctic (preliminary results). Scientia Marina,1999,63 (Supl.l):281-293.
    Dean T A, Hurd L E. Development in an estuarine fouling community:the influence of early colonists on later arrivals. Oecologia,1980,46(3):295-301.
    Drury W H, Nisbet I C T. Succession. Journal of the Arnold Arboretum,1973,54: 331-368.
    Edgar G J, Barrett N S. Benthic macrofauna in Tasmanian estuaries:scales of distribution and relationships with environmental variables. Journal of Experimental Marine Biology and Ecology,2002,270:1-24.
    Edwards C J, Ryder R A, Marshall T R. Using lake trout as a surrogate of ecosystem health for oligotrophic waters of the Great Lakes. Journal of Great Lakes Research,1990,16(4):591-608.
    Engel J, Kvitek R. Effects of Otter Trawling on a Benthic Community in Monterey Bay National Marine Sanctuary. Conservation Biology,2008,12(6):1204-1214.
    Ferraro S P, Cole F A. Taxonomic level and sample size sufficient for assessing pollution impacts on the Southern California Bight macrobenthos. Marine cology Progress Series,1990,67:251-262.
    Field j G, Ciarke K R, Warwick R M. A practical straiegy Tor analy sis muiuispecies distribution patterns. Marine Ecology Progress Series,1982,8:37-52.
    Filinova E I, Malinina Y A, Shlyakhtin G V. Bioinvasions in macrozoobenthos of the Volgograd Reservoir. Russian Journal of Ecology,2008,39(3):193-197.
    Follner K, Henle K. The performance of plants, molluscs, and carabid beetles as indicators of hydrological conditions in floodplain grasslands. International Review of Hydrobiology,2006,91:364-379.
    Franz D R, Harris W H. Seasonal and spatial variability in macrobenthos communities in Jamaica Bay, New York-an Urban Estuary. Eatuaries,1988,11(1):15-28.
    Friedman G M. Address of retiring President of the International Association of Sedimentology:Difference in size distributions of populations of particles among sands from various origins. Sedimentology,1979,26:3-22.
    Gamenick Ⅰ, Abbiati M, Giere O. Field distribution and sulphide tolerance of Capitella capitata (Annelida:Polychaeta) around shallow water hydrothermal vents off Milos (Aegean Sea). A new sibling species? Marine Biology,1998,130: 447-453.
    Garcfa-Arberas L, Rallo A. The intertidal soft-bottom infaunal macrobenthos in three Basque Estuaries (Gulf of Biscay):a feeding guild approach. Hydrobiologia, 2002,475/476:457-468.
    Gaston G R, Bartlett J H W, Mcallister A P, et al. Biomass Variations of Estuarine Macrobenthos Preserved in Ethanol and Formalin. Estuaries,1996,19 (3):674-679.
    Gaudencio M J, Cabral H N. Trophic structure of macrobenthos in the Tagus Estuary and adjacent coastal shelf. Hydrobiologia,2007,587:241-251.
    Gerdes D. Antarctic trials with the multibox corer, a new device for benthos sampling. Polar Rec,1990,26:35-38.
    Giangrande A, Fraschetti S. Life Cycle, Growth and Secondary Production in a Brackish-Water Population of the Polychaete Notomastus latericeus (Capitellidae) in the Mediterranean Sea. Marine Ecology,1993,14(4):313-327.
    Graham E R, Thompson J T. Deposit-and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. Journal of Experimental Marine Biology and Ecology,2009,368:22-29.
    Gray J S. Animal-sediment relationships. Oceanography andMarine Biology:An Annual Review,1974,12:223-261.
    Gray J S. The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. Journal of Experimental Marine Biology and Ecology,2000,250(1-2):23-49
    Gray J W, Rudolf S S, Ying Y. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine ecology progress series,2002,238: 249-279.
    Griffiths H J, Linse K, Barnes D K A. Distribution of macrobenthic taxa across the Scotia Arc, Southern Ocean. Antarctic Science,2008,20:213-226
    Guichard F, Bourget E. Topographic heterogeneity, hydrodynamics, and benthic community structure:a scale-dependent cascade. Marine Ecology Progress Series,1998,171:59-70.
    Harman W N. Otsego Lake Macrobenthos Communities between 1968 and 1993: Indicators of Decreasing Water Quality. Journal of Freshwater Ecology,1997, 12(3):465-476.
    Harrel R C, Smith S T. Macrobenthic community structure before, during, and after implementation of the Clean Water Act in the Neches River estuary (Texas). Hydrobiologia,2002,474:213-222.
    Hastie B F, Smith S. Benthic macrofaunal communities in intermittent estuaries during a drought:Comparisons with permanently open estuaries. Journal of Experimental Marine Biology and Ecology,2006,330:356-367.
    Herman P M J, Middelburg J J, Heip C H R. Benthic community structure and sediment processes on an intertidal flat:results from the ECOFLAT project. Continental Shelf Research,2001,21:2055-2071.
    Hervant F, Mathieu J, Messana G. Locomotory, ventilatory and metabolic responses of the subterranean Stenasellus virei (Crustacea, Isopoda) to severe hypoxia and subsequent recovery. Animal biology and pathology,1997,320:139-148.
    Hickman C S. A New Archaeogastropod (Rhipidoglossa, Trochacea) from Hydrothermal Vents on the East Pacific Rise. Zoologica Scripta,2005,13(1): 19-25.
    Holland A F. Long-term variation of macrobenthos in an mesohaline region of Chesapeake Bay. Estuaries,1985,8:93-113.
    Howard M F, Stephen C J, Arny L B. Southeastern Chukchi Sea (Alaska) macrobenthos. Polar Biology,2007,30(3):261-275.
    Hulme M, Barrow E M, Arnell N W, et al. Relative impacts of human-induced climate change and natulai climate variabllity. Nature, 1999,397:688-691.
    Hunt J W, Anderson B S, Phillips B M, et al. A large-scale categorization of sites in San Francisco Bay, USA, based on the sediment quality triad, toxicity identification evaluations, and gradient studies. Environmental Toxicology and Chemistry,2001,20(6):1252-1265.
    Hurlbert SH. The non-concept of species diversity:A critique and alternative parameters. Ecology,1971,52:577-586.
    Ieno E N, Bastida R O. Spatial and temporal patterns in coastal macrobenthos of Samborombon Bay, Argentina:a case study of very low diversity. Estuaries, 1998,21:690-699.
    Ingole B S, Ansari Z A, Rathod V, et al. Response of deep-sea macrobenthos to a small-scale environmental disturbance. Deep-Sea Research-II,2001,14: 3401-3410.
    James R J, Smith M P L, Fairweather P G. Sieve mesh-size and taxonomic resolution needed to describe natural spatial variation of marine macrofauna. Arine Ecology Progress Series,1995,18:187-198.
    Jayaraj K A, Sheeba P, Jacob J, et al. Response of infaunal macrobenthos to the sediment granulometry in a tropical continental margine southwest coast of India. Estuarine, Coastal and Shelf Science,2008,77:743-754.
    Johnson C R, Mann K H. Diversity, patterns of adaptation, and stability of Nova Scotian kelp beds. Ecological Monographs,1988,58(2):129-154.
    Jones A R. Temporal Patterns in the Macrobenthic Communities of the Hawkesbury Estuary, New South Wales. Australian Journal of Marine and Freshwater Research,1987,38(5):607-624.
    Jorgensen S E, Nielsen S N, Mejer H. Emergy, environ, exergy and ecological modelling. Ecological Modelling,1995,77:99-109.
    Josefson A B, Widbom B. Differential response of benthic macrofauna and meiofauna to hypoxia in the Gullmar Fjord basin. Marine Biology,1988,100:31-40.
    Kaiser M J, Broad G, Hall S J. Disturbance of intertidal soft-sediment benthic communities by cockle hand raking. Journal of Sea Research,2001,45:119-130.
    Kaiser M J, Edwards D B, Armstrong P J, et al. Changes in megafaunal benthic communities in different habitats after trawling disturbance. ICES Journal of Marine Science,1998,55(3):353-361.
    Kaiser S, Barnes D K A, Linse K. Epibenthic macrofauna associated with the shelf and slope of a young and isolated Southern Ocean island. Antarctic Science, 2008,20:281-290
    Kamp A, Witte U. Processing of 13C-labelled phytoplankton in a fine-grained sandy shelf sediment (North Sea):relative importance of different macrofauna species. Marine Ecology Progress Series,2005,297:61-70.
    Karlsson O M, Jonsson P O, Lindgren D, et al. Indications of recovery from hypoxia in the inner stockholm archipelago. AMBIO,2010,39:486-495.
    Karr J R, Chu E W. Restoring Life in Running Waters:Better Biological Monitoring. Island, Covelo, CA, USA.1999.
    Karr J R. Assessment of biotic integrity using fish communities. Fisheries,1981,6: 21-27.
    Kendall MA. Are Arctic soft-sediment macrobenthic communities impoverished? Polar Biology,1996,16:393-399.
    Kiel S, Little C T S. Cold-Seep Mollusks Are Older Than the General Marine Mollusk Fauna. Science,2006,313:1429-1431.
    Kim J H. The role of herbivory, and direct and indirect interactions, in algal succession. Journal of Experimental Marine Biology and Ecology,1996,217(1): 119-135.
    Kojima S, Ohta S. Patterns of Bottom Environments and Macrobenthos Communities along the Depth Gradient in the Bathyal Zone off Sanriku, Northwestern Pacific. Journal of the Oceanographical Society of Japan,1989,45:95-105.
    Koslow, J A Gowlett-Holmes K, Lowry J K, et al. Seamount benthic macrofauna off southern Tasmania:community structure and impacts of trawling. Marine Ecology Progress Series,2001,213:111-125.
    KriSncke I. Macrobenthos composition, abundance and biomass in the Arctic Ocean along a transect between Svalbard and the Makarov Basin. Polar Biology,1994, 14:519-529.
    Kroncke I, Turkay M, Fiege D. Macrofauna communities in the eastern Mediterranean Deep Sea. Marine Ecology,2003,24:193-216.
    Lamont P A, Gage J D. Morphological responses of macrobenthic polychaetes to low oxygen on the Oman continental slope, NW Arabian Sea. Deep Sea Research Ⅱ: Topical Studies in Oceanography,2000,47(1):9-24.
    Legendre P, Gallagher E D. Ecologically meaningful transformations for ordination of species data. Oecologia,2001,129:271-280.
    Levings C D. Demersai and bentinic communities in iiuwe Sound basin and thein responses to dissolved oxygen deficiency. Canadian Technical Report of Fisheries and Aquatic Sciences,1980,951-977.
    Libralato S Torricelli P, Pranovi F. Exergy as ecosystem indicator:An application to the recovery process of marine benthic communities. Ecological Modelling,2006, 192(3-4):571-585.
    Lim H S, Diaz R J, Hong J S, et al. Hypoxia and benthic community recovery in Korean coastal waters. Marine Pollution Bulletin,2006,52:1517-1526.
    Lindegarth M, Hoskin M.2001. Patterns of distribution of macro-fauna in different types of estuarine, soft sediment habitats adjacent to urban and non-urban areas. Estuarine, Coastal and Shelf Science,2001,52:237-247.
    Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydro thermal vents at oceanic spreading centers. Deep Sea Research,1977,24(9). 857-858.
    Lu L, Wu R S S. A field experimental study on recolonization and succession of macrobenthic infauna in defaunated sediment contaminated with petroleum hydrocarbons. Estuarine, Coastal and Shelf Science,2006,68:627-634.
    Mancinelli G and Rossi L. The Influence of Allochthonous Leaf Detritus on the Occurrence of Crustacean Detritivores in the Soft-bottom Macrobenthos of the Po River Delta Area (northwestern Adriatic Sea). Estuarine, Coastal and Shelf Science,2002,54:849-861.
    McCook L J, Chapman A R O. Patterns and variations in natural succession following massive ice-scour of a rocky intertidal seashore. Journal of Experimental Marine Biology and Ecology,1997,214(1-2):121-147.
    Mendes C L T, Tavares M, Soares-Gomes A. Taxonomic sufficiency for soft-bottom sublittoral mollusks assemblages in a tropical estuary, Guanabara Bay, Southeast Brazil. Marine Pollution Bulletin,2007,54:377-384.
    Michaud E, Desrosiers G, Long B, et al. Use of axial tomography to follow temporal changes of benthic communities in an unstable sedimentary environment (Baie des Ha! Ha!,Saguenay Fjord). Journal of Experimental Marine Biology and Ecology,2003,285:265-282.
    Minja L D, Yu S L, Epstein H. Modeling the Relationships between Benthos and Stream Environmental Variables. Journal of Ecotechnology,2006,2(2):48-65.
    Montagna P A, Ritter C. Direct and indirect effects of hypoxia on benthos in Corpus Chrisli Bay, Texas, USA. Journal of experimental marine biology and ecology, 2006,330(1):119-131.
    Moreno R A., Sepulveda R D, Badano E Ⅰ, et al. Subtidal macrozoobenthos communities from northern Chile during and post El Nino 1997-1998. Helgoland Marine Research,2008,62(1):45-55.
    Morrisey D J, Underwood A J, Howitt L, et al. Temporal variation in soft-sediment benthos. Journal of Experimental Marine Biology and Ecology,1992,164: 233-245.
    Munari C, Rossi R, Mistri M. Temporal trends in macrobenthos community structure and redundancy in a shallow coastal lagoon (Valli di Comacchio, Northern Adriatic Sea). Hydrobiologia,2005,550:95-104.
    Muniz P, Pries A M S. Polychaete associations in a subtropical environment (Sao sebastiao channel, Brazil):A structural analysis. Marine Ecology,2000,21: 145-160.
    Nilsson H C, Rosenberg R. Succession in marine benthic habitats and fauna in response to oxygen deficiency:analysed by sediment profile imaging and by grab samples. Marine Ecology Progress Series,2000,197:139-149.
    Norkko A, Hewitt J E, Thrush S F, et al. Benthic-pelagic coupling and suspension-feeding bivalves:Linking site-specific sediment flux and biodeposition to benthic community structure. Limnology Oceanography,2001,46:2067-2072.
    Odum E P. The strategy of ecosystem development. Science,1969,164:262-270.
    Osowiecki A, Lysiak-Pastuszak E, Piatkowska Z et al. Testing biotic indices for marine zoobenthos quality assessment in the Polish sector of the Baltic Sea. Journal of Marine Systems,2008,74(1):123-132.
    Pauw N D, Vanhooren G. Method for biological quality assessment of watercourses in Belgium. Hydrobiologia,1983,100(1):153-168.
    Peterson T H, Rosenberg R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology:An Annual Review,1978,16:229-311.
    Piersma T, Koolhaas A, Dekinga A, et al. Long-term indirect effects of mechanical cockle-dredging on intertidal bivalve stocks in the Wadden Sea. Journal of Applied Ecology,2001,38:976-990.
    Plaflcin J T, Barbour M T, Porter K D, et al. Rapid Bioassessment Protocols for Use in Streams and rivers:benthic macroinvertebrates and fish. EPA/444/4-89-001. United States Environment Protection Agency, Washington D. C. 1989.
    Platt W J, Connell J H. Natural disturbances and directional replacement of species. Ecological Monographs,2003,73(4):507-522.
    Quijon P, Jaramillo E. Temporal variability in the intertidal macroinfauna in the Queule River Estuary, South-central Chile. Estuarine, Coastal and Shelf Science, 1993,37:655-667.
    Rakocinski C F, Brown S S, Gaston G R, et al. Species-abundance-biomass responses by estuarine macrobenthos to sediment chemical contamination. Journal of Aquatic Ecosystem Stress and Recovery,2000,7(3):201-214.
    Raut D, Ganesh T, Murty N, et al. Macrobenthos of Kakinada Bay in the Godavari delta, east coast of India:comparing decadal changes. Estuarine, Coastal and Shelf science,2005,62:609-620.
    Reynoldson T B, Bailey R C, Day K E, et al. Biological guidelines for freshwater sediment based on Benthic assessment of Sediment (the BEAST) using a multivariate approach for predicting biological state. Australian Journal of Ecology,1995,20:198-219.
    Rodil I N F, Lastra M, Lopez J. Spatial variability of benthic macrofauna in the Ria of Vigo (NW Spain):Effect of sediment type and food availability. Marine Biology Research,2009,5:572-584.
    Rolauffs P, Stubauer I, Zahradkova S. Integration of the saprobic system into the European Union Water Framework Directive-Case studies in Austria, Germany and Czech Republic. Hydrobiologia,2004,516:285-298.
    Rosa L C, Bemvenuti C E. Temporal variability of the estuarine macrofauna of the Patos Lagoon, Brazil. Revista de Biologia Marina y Oceanografia,2006,41(1): 1-9.
    Rosenberg R, Nilsson H C, Diaz R J. Response of Benthic Fauna and Changing Sediment Redox Profiles over a Hypoxic Gradient. Estuarine, Coastal and Shelf Science,2001,53(3):343-350.
    Ruso Y D P, la Ossa Carretero J A D, Casalduero F G, et al. Spatial and temporal changes in infaunal communities inhabiting soft-bottoms affected by brine discharge. Marine Environmental Research,2007,64:492-503.
    Ryu J, Khim J S, Kang S G, et al. The impact of heavy metal pollution gradients in sediments on benthic macrofauna at population and community levels. Environmental Pollution,2011,159:2622-2629.
    Sabena L, Barbone E, Giardiuu A, et al. Species-area patterns of benthie macro-invertebrates in Italian lagoons. Hydrobiologia,2007,577,127-139.
    Sakamaki T, Nishimura O. Is sediment mud content a significant predictor of macrobenthos abundance in low-mud-content tidal flats? Marine and Freshwater Research,2009,60:160-167.
    Sanders H L. Marine benthic diversity a comparative study. The American Naturalist, 1968,102:243-282.
    Schlacher T A, Wooldridge T H. How sieve mesh size affects sample estimates of estuarine benthic macrofauna. Journal of Experimental Marine Biology and Ecology,1996,201:159-171.
    Shepard F P. Nomenclature based oil sand-silt-clay ratios. Journal of Sedimentary Petrology,1954,24:151-158.
    Shi J X, Ning X R, Courties C, et al. The patterns of distributions of bacteria, ATP and the relations with respiration rates and phytoplankton in the Changjiang Estuary and its adjacent East China Sea. Chinese Journal of Oceanology and Limnology, 1992,10 (3):278-289.
    Simpson J, Norris R, Barmuta L, et al. AusRibAS-National River Health Program: User Manual Website version,1999.
    Smith D G, McBride G B. New Zealand's national water quality monitoring network-design and first year's operation. Journal of the American Water Resources Association,1990,26(5):767-775.
    Snelgrove P R V, Butman C A. Animal-sediment relationships revisited:cause versus effect. Oceanography and Marine Biology:An Annual Review,1994,32: 111-177.
    Snelgrove P V R, Grassle J F, Grassle J P, et al. The role of colonization in establishing patterns of community composition and diversity in shallow water sedimentary communities. Journal of Marine Research,2001,59:813-831.
    Sonstegard R A, Leatherland J F. Great lakes coho salmon as an indicator organism for ecosystem health. Marine Environmental Research,1983,14:1-4.
    Sousa W P. Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecological Monographs,1979,49(3):227-254.
    Sousa W P. Natural disturbance and the dynamics of marine benthic communities. In: Bertness M D, Gaines S D, Hay M E. (Eds.) Marine Community Ecology. Sinauer Associates, Inc., Sunderland, Massachusetts,2001, pp.85-130.
    Southerland M T, Stribling J B. Status of biologieal eriteria developnienl and implementation. In Davis WS, Simon TP, eds Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. CRC, Boca Raton, FL, 1995, pp 81-96.
    Stillman R A, Caldow R W G, Goss-Custard J D, et al. Individual variation in intake rate:the relative importance of foraging efficiency and dominance. Journal of Animal ecology,2000,69(3):484-493.
    Tagliapietra D, Sigovini M. Benthic fauna:collection and identification of macrobenthic invertebrates. Terre et Environnement,2010,88:253-261.
    Tanaka M O, Leite F P P. The effect of sieve mesh size on the abundance and composition of macrophyte-associated macrofaunal assemblages. Hydrobiologia, 1998,389:21-28.
    Taylor D L, Eggleston D B. Effects of hypoxia on an estuarine predator-prey interaction:foraging behavior and mutual interference in the blue crab Callinectes sapidus and the infaunal clam prey Mya arenaria. Marine ecology progress series,2000,196:221-237.
    Tenore KR. Macrobenthos of the pamlico river estuary, north Carolina.1970, Ecological Monographs,42:51-69.
    Ter Braak C J F, Smilauer P. CANOCO Reference Manual and User's Guide to Canoco for Windows (version 4.5). New York:Cantre for Biometry Wageningen, 2002.
    Ter Braak C J F. CANOCO-an extension of DECORANA to analyze species-environment relationships[J]. Plant Ecology,1988,75(3):159-160.
    Teske P R and Wooldridge T H. What limits the distribution of subtidal macrobenthos in permanently open and temporarily open/closed South African estuaries? Salinity vs. sediment particle size. Estuarine, Coastal and Shelf Science 2003,57: 225-238.
    Thrush S F, Hewitt J E, Norkko A, et al. Habitat change in estuaries:predicting broad-scale responses of intertidal macrofauna to sediment mud content. Marine Ecology Progress Series,2003,263:101-112.
    Tuominen L, Makela K, Lehtonen K, et al. Nutrient Fluxes, Porewater Profiles and Denitrification in Sediment Influenced by Algal Sedimentation and Bioturbation by Monoporeia affinis. Estuarine, Coastal and Shelf Science,1999,49(1):83-97.
    Van Dolah RF, Hyland JL, Holland AF, Rosen JS, Snoots TR.1999. A benthic index of biological integrity for assessing habhat quality in estuaries of the southeastern United States. Mar Environ Res 48:269-283.
    Verfssimo H, Bremner J, Garcia C et al. Assessment of the subtidal macrobenthic community functioning of a temperate estuary following environmental restoration. Ecological Indicators,2012,23:312-322.
    Verlecar X N, Desai S R, Sarkar A, et al. Biological indicators in relation to coastal pollution along Karnataka coast, India. Water Research,2006,40(17): 3304-3312.
    Walling D E, Moorehead P W. The particle size characteristics of fluvial sediment:An overview. Hydrobiologia,1989,176/177:125-149.
    Warwick R M. A new method for detecting pollution effects on marine macrobenthic communities. Marine Biology,1986,92(4):557-562.
    Wayne NL, Block GD. Effects of Photoperiod and Temperature on Egg-Laying Behavior in a Marine Mollusk, Aplysia californica. The Biological Bulletin,1992, 182:8-14.
    Weisberg S B, Ranasinghe J A, Dauer D M, et al. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. Estuaries,1997,20:149-158.
    Weston D P. Macrobenthos-sediment relationships on the continental shelf off cape Hatteras, North Carolina. Continental Shelf Reasearch,1988,8(3):267-286.
    Whitlatch R B, Zajac R N. Biotic interactions among estuarine infaunal opportunistic species. Marine Ecology Progress Series,1985,21(3):299-311.
    Wilson G D F. Local and regional species diversity of benthic Isopoda (Crustacea) in the deep Gulf of Mexico. Deep-Sea Research Ⅱ,2008,55:2634-2649.
    Wilson M V, Shmida A. Measuring beta diversity with presence-absence data. Journal of Ecology,1984,72:10455-1064.
    Wootton J T. Mechanisms of successional dynamics:consumers and the rise and fall of species dominance. Ecological Research,2002,17(2):249-260.
    Wright J F, Armitage P D, Furse M T, et al. The classification of sites on British rivers using macroinvertebrates. Verhandlungen der Internationalen Vereiningung fur Theoretische und angewandte Limnologie,1984,22:1939-1943.
    Yokoyama H, Ishihi Y. Variation in food sources of the macrobenthos along a land-sea transect:a stable isotope study. Marine Ecology Progress Series,2007, 346:127-141.
    Ysebaert T, Herman P M J. Spatial and temporal variation in benthic macrofauna and relationships with envhonmental variabies in an estuarine, intenidai sou-sediment environment. Marine Ecology Progress Series,2002,244:105-124.
    Zajac R Z. Macrobenthic biodiversity and sea floor landscape structure. Journal of Experimental Marine Biology and Ecology,2008,366(1-2):198-203.
    包坚敏,王志铮,杨阳等.4种重金属离子对三疣梭子蟹大眼幼体的急性毒性.浙江海洋学院学报(自然科学版),2007,26(4):395-398.
    鲍毅新,葛宝明,郑祥等.温州湾灵昆岛东滩潮间带大型底栖动物群落的季节动态.水生生物学报,2007,31(3):437-444.
    蔡立哲,陈听鞾,吴辰等.深圳湾潮间带1995-2010年大型底栖动物群落的时空变化.生物多样性,2011,19(6):702-709.
    蔡立哲,洪华生,黄玉山.香港维多利亚港大型底栖动物群落的时空变化.海洋学报,1997,19(2):65-70.
    蔡立哲.河口港湾沉积环境质量的底栖生物评价新方法研究[博士学位论文].厦门:厦门大学,2003.
    蔡如星,黄宗国.海洋蔓足类定向的研究——Ⅰ.糊斑藤壶在宿主体上的定向.海洋与湖沼,1984,15(4):317-328.
    蔡如星,黄宗国.海洋蔓足类定向的研究——Ⅱ.蔓足类在宿主体上及自然海区的定向.海洋与湖沼,1988,19(4):321-328.
    蔡永久,龚志军,秦伯强.太湖大型底栖动物群落结构及多样性.生物多样性,2010,18(1):50-59.
    曾江宁,潘建明,梁楚进等.浙江省重点港湾生态环境综合调查报告.北京:海洋出版社,2011.
    戴国梁.长江口及其邻近水域底栖动物生态特点.水产学报,1991,15(2):104-116.
    段学花,王兆印,徐梦珍.底栖动物与河流生态评价.北京:清华大学出版社,2010.
    高爱根,曾江宁,徐晓群等.南麂列岛大沙岙沙滩贝类的时空分布.海洋学研究,2008,26(2):13-19.
    高爱根,杨俊毅,陈全震等.达山岛、平岛、车牛山岛邻近海域大型底栖动物分布特征.海洋学报,2003,25(6):136-141.
    高爱根,杨俊毅,陈全震等.象山港养殖区与非养殖区大型底栖生物生态比较研 究.水产学报,2003,27(1):25-31.
    龚志军,谢平,唐汇涓等.水体富营养化对大型底栖动物群落结构及多样性的影响.水生生物学报,2001,25(3):210-216.
    顾晓英,陶磊,尤仲杰等.象山港大型底栖动物群落特征.海洋与湖沼,2010,41(2):208-213.
    李宝泉,李新正,王洪法等.长江口附近海域大型底栖动物群落特征.动物学报,2007,53(1):76-82.
    李宝泉,张宝琳,刘丹运等.胶州湾女姑口潮间带大型底栖动物群落生态学研究.海洋科学,2006,30(10):15-19.
    李宏亮,陈建芳,卢勇等.长江口水体溶解氧的季节变化及底层低氧成因分析.海洋学研究,2011,29(3):78-87.
    李荣冠,江锦祥,蔡尔西.兴化湾大型底栖生物生态研究.海洋学报,1999,21(5):101-109.
    李荣冠,江锦祥.应用丰度生物量比较法监测海洋污染对底栖生物群落的影响.海洋学报,1992,14(1):108-114.
    李荣冠,郑凤武,江锦祥等.楚科奇海及白令海大型底栖动物初步研究.生物多样性,2003,11(3):204-215.
    李荣冠.中国海陆架及邻近海域大型底栖生物.北京:海洋出版社,2003.
    李向泽.两种网目对大型底栖动物定量样品的分选效率.海洋通报,1990,9(4):47-53.
    李新正,李宝泉,王洪法等.胶州湾潮间带大型底栖动物的群落生态.动物学报,2006,52(3):612-618.
    李新正,刘录三,李宝泉等.中国海洋大型底栖生物——研究与实践.北京:海洋出版社,2010.
    廖一波,曾江宁,陈全震等.嵊泗海岛不同底质潮间带春秋季大型底栖动物的群落格局.动物学报,2007,53(6):1000-1010.
    廖一波,寿鹿,曾江宁等.三门湾大型底栖动物时空分布及其与环境因子的关系.应用生态学报,2011,22(9):2424-2430.
    刘录三,孟伟,田自强等.长江口及毗邻海域大型底栖动物的空间分布与历史演变.生态学报,2008,28(7):3027-3034.
    罗民波,陆健健,沈新强等.大型海洋工程对洋山岛周围海域大型底栖动物生态分布的影响.农业环境科学学报,2007,26(1):97-102.
    罗民波,沈新强,徐兆礼等.长江口北支水域潮间带大型底栖动物研究.海洋环境科学,2006,25(4):43-47.
    马克平,刘灿然,刘玉明.生物群落多样性的测度方法Ⅱ.β多样性的测杜方法.生物多样性,1995,3(1):38-43.
    马克平,刘玉明.生物群落多样性的测度方法Ⅰ.α多样性的测度方法(下).生物多样性,1994,2:231-239.
    宁修仁,史君贤,蔡昱明等.长江口和杭州湾海域生物生产力锋面及其生态学效应.海洋学报,2004,26(6):96-106.
    沈国英,施并章.海洋生态学(第二版).北京:科学出版社,2002.
    寿鹿,曾江宁,廖一波等.杭州湾大型底栖动物季节分布及环境相关性分析.海洋学报,2012,34(6):151-159..
    寿鹿,曾江宁,廖一波等.瓯江口海域大型底栖动物分布及其与环境的关系.应用生态学报,2009,20(8):1958-1964.
    宋金明.海洋沉积物中的生物种群在生源物质循环中的功能.海洋科学,2000,24(4):22-26.
    孙道元,陈木.小头虫作为有机质污染指示生物的调查研究.环境科学,1978,l:17-19.
    孙道元,徐凤山,崔玉珩等.长江口区枯、丰水期后底栖生物分布特点.海洋科学集刊,1992,33:217-235.
    孙平跃,陆健健.埃三极(Exergy)理论——生态系统研究的一种新方法.生态学杂志,1997,16(5):32-37.
    孙亚伟,曹恋,秦玉涛等.长江口邻近海域大型底栖生物群落结构分析.海洋通报,2007,26(2):66-70.
    王春生,陈兴群,王宗灵等.我国近海海洋生物与生态调查研究报告.杭州:国家海洋局第二海洋研究所,2012.
    王金宝,李新正,王洪法.胶州湾多毛类环节动物优势种的生态特点.动物学报,2006,52(1):63-69.
    王金辉,黄秀清,刘阿成等.长江口及邻近水域的生物多样性变化趋势分析.海洋通报,2004,23(1):32-39.
    王奎,陈建芳,金海燕等.长江口及邻近海域营养盐四季分布特征.海洋学研究,2011,29(3):18-35.
    王延明,方涛,李道季等.长江口及毗邻海域底栖生物丰度和生物量研究.海洋环境科学,2009,28(4):366-370,382.
    王延明,李道季,方涛等.长江口及邻近海域底栖生物分布及与低氧区的关系研究.海洋环境科学,2008,27(2):139-143,164.
    吴耀泉,李新正.长江口底栖生物群落多样性特征.见:中国甲壳动物学会编辑. 甲壳动物学论文集,第4辑.北京:科学出版社,2003,279-286.
    吴玉霖,傅月娜,张永山等.长江口海域浮游植物分布及其与径流的关系.海洋与湖沼,2004,35(3):246-251.
    谢志发.长江河口互花米草盐沼与大型底栖动物群落之间生态学关系研究[硕士学位论文].上海:华东师范大学,2007.
    徐兆礼,蒋玫,白雪梅等.长江口底栖动物生态研究.中国水产科学,1999,6(5):59-62.
    薛俊增,吴惠仙.蟹板茗荷在三疣梭子蟹体上的附着定向及种群变动.生态学报,2002,22(12):2091-2095.
    杨莲芳,李佑文,戚道光等.九华河水生昆虫群落结构和水质生物评价.生态学报,1992,12(1):8-15.
    杨泽华,童春富,陆健健.长江口湿地三个演替阶段大型底栖动物群落特征.动物学研究,2006,27(4):411-418.
    杨宗岱,黄凤鹏,吴宝铃.菲尔德斯半岛潮间带生物生态学的研究.南极研究,1992,4(4):74-83.
    姚晓,山口一岩,邹立等.黄河三角洲南部潮间带沉积环境对底栖叶绿素a分布特征的影响.生态学杂志,2010,29(9):1762-1769.
    由香莉,廖玉麟,孙松.东海大陆架区海胆分类研究.海洋科学集刊,2004,46:181-203.
    于培松,薛斌,潘建明等.长江口和东海海域沉积物粒径对有机质分布的影响.海洋学研究,2011,29(3):202-208.
    袁兴中,陆健健,刘红.长江口新生沙洲底栖动物群落组成及多样性特征.海洋学报,2002,24(2):133-139.
    张金屯.数量生态学[M].北京:科学出版社,2004.
    张敬怀,高阳,方宏达等.珠江口大型底栖生物群落生态特征.生态学报,2009,29(6):2989-2999.
    张培玉.渤海湾近岸海域底栖动物生态学与环境质量评价研究[硕士学位论文].青岛:中国海洋大学,2005.
    章飞军,童春富,谢志发等.Exergy作为生态学指标用于底栖动物群落恢复监测.生态学报,2007,27(5):1910-1916.
    章飞军,童春富,谢志发等.长江口潮间带大型底栖动物群落演替.生态学报,2007,27(12):4944-4952.
    赵焕庭,王丽荣.中国海岸湿地的类型.海洋通报,2000,19(6):72-82.
    中国海洋调查办公室.全国海洋综合调查资料(第一册):渤、黄、东海水文气象 和化学要素大面站观测记录资料.北京,1961.
    中科院三峡工程生态与环境科研项目领导小组.长江三峡工程对生态与环境影响及其对策研究论文集.北京:科学出版社,1987.
    周锋,黄大古,张经等.2006年夏季长江口外缺氧现象的观测和分析.中国海洋湖沼学会第九次全国会员代表大会暨学术研讨会论文摘要汇编.2007.
    周光锋,王志铮,杨阳等.4种重金属离子对厚壳贻贝幼贝的急性毒性.浙江海洋学院学报(自然科学版),2007,26(4):391-394.
    周红,张志南.大型多元统计软件PRIMER的方法原理及其在底栖群落生态学中的应用.青岛海洋大学学报,2003,33(1):058-064.
    庄平,王幼槐,李圣法等.长江口鱼类.上海:上海科技出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700