心滩守护工程影响航道水沙特性的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江中下游河道内普遍存在心滩,当心滩形态完整稳定时,往往可为航道提供稳定的导流边界,是航道稳定畅通的基础;当心滩滩体不稳定(心滩下移或被冲散)将导致航道条件恶化。迄今,已经有对心滩河段航道水沙运动特性的研究,但对其基本规律的理解远未完善,尚未形成系统的研究成果。已有物理模型试验主要包括两类,一类是服务航道整治工程而开展的原型河段概化后心滩模型试验研究,另一类是通过概化水槽试验研究心滩守护后的水毁特性和护滩效果。已有数学模型多采用非耦合方程和简化计算,对天然河道边界、滩体形状和整治建筑物形状模拟较为粗糙;此外,涉及心滩滩体及周围水流特性的三维模拟研究成果较少。因此,有必要建立相应的数学模型,开展不同类型守护工程的水流变化特点和冲淤特性的研究,以完善相关理论,指导工程实践。
     建立了一个新的浅水二维水沙耦合数学模型。基本控制方程采用完整的平面二维水沙方程,且采用能够有效捕捉激波HLLC近似黎曼算子求解界面通量,并通过对界面两侧的变量重构,使模型具有二阶精度;采用非结构三角形系统离散计算区域,能够精确模拟复杂河道边界和整治建筑物形状;采用DFB方法处理底坡项和隐式方法处理阻力项,在具有真实物理意义的基础上,保证了模型的和谐性和稳定性。论文分别应用国际经典算例和重庆交通大学水槽实验成果对建立的二维数学模型进行了较为系统的率定检验。研究结果表明,模型计算的水位、断面流速值与试验实测值吻合较好;同时模型对原始的ZF公式中的泥沙上扬通量的修正系数进行了率定,模型计算的冲淤厚度与实测值吻合较好。由此表明本文建立的浅水二维水沙耦合数学模型能够较为准确地模拟心滩河段的水沙输移特性和滩槽演变过程,模型具有很好的稳定性和和谐性,性能优越。
     应用所建立的浅水二维水沙耦合数学模型研究了实验室尺度下心滩头部布置不同守护工程的多个工况,水流特性计算结果表明:软体排护滩带工程实施后,对航道内水位的影响主要集中在工程区及其上下游,且随着心滩顶控制水深的增加,对水位的影响程度越来越小;对航道内流速的影响同样主要集中在工程区及其上下游,且随着心滩顶控制水深的增加,对流速的影响程度越来越小。鱼骨坝工程实施后引起的航道水流变化特点同软体排护滩带工程实施后引起的航道水流变化特点相同,但引起的变化幅度明显较大,也即鱼骨坝工程实施后对航道水流的影响特点更为明显。冲淤特性计算结果表明,软体排护滩带工程和鱼骨坝工程实施后均使心滩滩头出现了明显淤积;而心滩两侧的航道内均表现为不同程度的冲刷,鱼骨坝工程实施后这种冲刷幅度更为明显。
     应用三维计算流体力学模型(FLUENT)对建立的二维水沙耦合数学计算成果进行了对比计算和分析,并对心滩头部布置鱼骨坝工程的工况进行了三维水流数值模研究,并与二维数值模型计算结果进行了比较分析。湍流模型采用雷诺应力模型,选取气液两相流VOF模型捕捉自由液面,扩散项离散采用中心差分格式,对流项离散采用二阶迎风差分格式,应用SIMPLE算法求解离散方程;采用六面体网格对计算区域进行剖分,心滩顶最小网格尺度为20mm×10mm×8mm。结果表明,三维模型计算值与二维模型计算流速、水位和水槽实验实施值吻合较好。由于鱼骨坝工程区域水流特性呈明显的三维特性,运用三维数学模型进行了计算,结果表明鱼骨坝工程实施后心滩下游侧横断面流场分布呈明显紊动特性,最大流速区域在一定周期下呈左右摆动的变化规律;最大剪切应力存在区域位于鱼骨坝坝头及坝顶,最小剪切应力存在区域主要位于鱼骨坝刺坝掩护的坝田区;心滩两侧航道内壁面剪切应力大小分布与流速大小分布密切对应。
     将所建立的二维水沙耦合数学模型应用于原型尺度下心滩河段实例分析。结合天然河段实测资料,以长江中游沙市河段为对象,在其心滩头部布置鱼骨坝工程。在有、无工程情况下,选取两组实际流量(中流量和大流量)进行数值模拟,对比了工程前后水位、流速、流场和河床冲淤变化特点。结果表明,鱼骨坝工程实施后,刘‘水流调整作用主要表现为,鱼骨坝中上部的区域水位有所壅高,中下部则略有降低。同时,中流量下鱼骨坝工程对水流的调整范围要小于大流量对水流的调整范围。鱼骨坝工程实施后,不论中流量还是大流量情况下,鱼骨坝工程坝体掩护区域流速均有所减小,并出现明显淤积,而坝头区及两侧深槽内,流速则略有增大,主航道内深槽也受到一定程度冲刷。
     本文结合目前长江心滩河段航道整治的实际,深入研究了心滩守护工程对航道水沙特性的影响。对实验室尺度和原型尺度下的心滩守护工程进行了系统的数值模拟研究,揭示了不同守护工程引起的心滩冲淤特性和航道水沙冲淤变化。该项研究丰富了心滩河段航道整治基础理论,对指导工程实践具有重要意义。
Central bars commonly exist in the middle and downstream reaches of the Yangtze River, which play an important role in stabilizing the navigational channels. When a central bar is stable, it provides a stable planform for the navigation; however, if a central bar features considerable erosion or deposition, the navigational condition may deteriorate due to the variation of the planform of the navigational channel.
     Although there have been a number of investigations on the characteristics of sediment transport and water flow around central bars, its understanding remains premature. Existing experimental studies can be summarized as two categories. One is for practical application purposes, by means of reproducing a small-scale version of a natural river central bar. The second category is for research purposes, conducted in rectangular flumes aiming to unravel the effects of the protection measures for central bars on the flow, sediment transport and morphological evolution.
     Existing mathematical models are mostly decoupled or partially coupled, based on simplified equations, with a poor representation of the natural river, the central bar and the protection measures. Moreover, three-dimensional modelling studies of flow, sediment transport and bed evolution arount central bars are rarely reported. There is therefore an urgent need to establishing a fully coupled model, so as to fully unravel the water and sediment transport characteristics around central bars after implementation of different protection measures.
     This dissertation presents a new two-dimensional coupled model for sediment-laden flow under the framework of shallow water theory. The governing equations are based on the complete shallow water hydrodynamic equations, fully accounting for not only the water flow evolution, but also the induced sediment transport and bed morphological evolution, as well as their effects on the flow evolution. The governing equations are numerically solved using the second-order Godunov-type scheme along with HLLC (Harten, Lax and van Leer with Contact wave restored) approximate Riemann solver. Unstructured triangular grid suitable for complex boundary shapes is used to represent the computational domain. The DFB method independent of the discretisation scheme is used for the bed slope source term, making the present model well-balanced. The friction source terms are treated in a fully implicit way to alleviate numerical instabilities.
     The model is systematically validated and calibrated for benchmark cases widely used in the world, as well as a channel flume experiments conducted at Chongqing Jiaotong University. It is shown that the computed water level and flow velocity agree well with the experimental data. By calibrating a modification coefficient in the ZF empirical formula, satisfactory agreements between the computed and measured bed deformation are obtained. These indicate that the present model can resolve the sediment-laden flow aroung river central bars reasonably accurately.
     Protection place for the head of central bars can be different. The2D coupled model is applied to investigate the effects of the different protection location at the flume scale. The following observations are obtained from computational results. First, the effects of the flexible mattress beach protection are mainly focused on the project area as well as its upstream and downstream areas; the higher the contral water depth of the central bar, the less it affects the flow velocity. Second, the effects of the implementation of fish-bone type dividing dike is qualitatively similar to that of the flexible mattress beach protection in terms of the variation of navigational depth, yet the former has a more obvious than the latter. Both measures results in obvious deposition in the head of central bar and different extent of scour on the two sides of the central bar.
     The CFD software FLUENT is applied to resolve for the three-dimensional flow structure over protected cerntral bars. Its numerical results are compared with those from the2D coupled model. Reynolds stress model is used for turbulent closure. The volume of fluid (VOF) method is used to capture the free surface. Central difference method is applied to diffusion terms, and second-order upwind difference method for the advection terms. The SIMPLE algorithm is used for the governing equations. Hexahedron mesh is used to represent the computational domain, which results in a minimum volume of20mm×10mm×8mm. Numerical comparison indicates that the computed flow velocity and water level from the FLUENT agree with those by the present2D model and the experimental data rather well. After the implementation of the fish-bone protection, obvious turbulent flow regime is observed at the downstream of the central bar. The zone with maximum velocity transits between the left and right side of the central bar with a certain period. The maximum shear stress is located around the head of the fish-bone protection. Due to the fish-bone protection, bed shear stress at the two side of the central bar is enhanced appreciably. The minimum bed shear stress is located at the protection area of the fish-bone protection. The distribution of bed shear stress along the two sides of the central bar shows a higher correlation with the distribution of flow velocity.
     The present2D coupled model is applied to investigate a field scale central bar at the Shashi reach in the middle part of the Yangtze River, where a project of fish-bone protection was implemented. With and without the fish-bone protection, the differences in water level, flow velocity and bed deformation are numerically studied. It is shown that the implementation of the fish-bone protection makes water level in the upstream reach of the central bar increase, and that in the downstream reach of the central bar slightly decrease. This effect is more obvious at high flow discharge than a mediate flow discharge. Irrespective of the magnitude of flow discharge, flow velocity at the protection area of the fish-bone dike decreases with the appearance of appreciable deposition, whereas at other places flow velocity increases with some extent of bed scour.
     In summay, the effects of central bar protection projects on navigational flow and sediment evolution are systematically investigated by numerical modeling under both laboratory and field scales. This research has potential applications for practical projects.
引文
[1]钱宁,张仁等.河床演变学[M].北京:科学出版社,1987.
    [2]左东启.中国水利百科全书(水力学、河流及海岸动力学分册)[M].北京:中国水利水电出版社,2004.
    [3]余文畴,卢金友.长江河道演变与治理[M].北京:中国水利水电出版社,2005.
    [4]余帆,黄成涛,柴华峰,曾庆云.长江中游沙市河段航道整治工程可行性研究报告[R].武汉:长江航道规划设计研究院,2004.
    [5]付中敏,刘奇峰,雷国平.长江中游藕池口水道航道整治控导工程可行性研究报告[R].武汉:长江航道规划设计研究院,2006.
    [6]袁达全,冯刚,李志江,余本鸿,胡坤龙.长江中游嘉鱼-燕子窝水道航道整治工程可行性研究报告[R].武汉:长江航道规划设计研究院,2006.
    [7]黄召彪,黄成涛,刘林.长江中游武穴水道航道整治工程可行性研究报告[R].武汉:长江航道规划设计研究院,2007.
    [8]谭伦武,雷国平,项欢庆.长江下游东流水道航道整治工程可行性研究报告[R].武汉:长江航道规划设计研究院,2004.
    [9]刘怀汉,付中敏,陈婧,闫军.长江航道整治建筑物护滩带稳定性研究[C].中国水利学会第三届青年科技论坛论文集,成都,2007.290-294.
    [10]付中敏,闫军,刘怀汉.下荆江监利河段河床演变与航道整治思路浅析[J].泥沙研究,2011(5):30-38.
    [11]曹民雄,李青云,蔡国正,袁达全,王秀红.长江口岸直水道鳗鱼沙心滩头部守护工程局部冲刷水槽概化试验研究—Ⅰ水槽概化与护滩建筑物模拟设计[J].水运工程,2011(7):106-1]2.
    [12]曹民雄,余新民,刘兆衡,耿嘉良,王秀红.长江口岸直水道鳗鱼沙心滩头部守护工程局部冲刷系列水槽试验研究[J].水运工程,2012(1):105-110.
    [13]王秀红,曹民雄.长江五峰山铁路大桥二维水沙数学模型计算分析[R].南京:南京水利科学研究院,2010.
    [14]张秀芳,王平义,梁碧,刘怀汉,付中敏.护心滩鱼骨坝工程的紊动特性与水毁特征研究[J].水运工程,2010(2):140-142.
    [15]张秀芳,王平义,王伟峰,刘怀汉.软体排护滩带的护滩效果研究[J].水运工程,2010(12):98-103.
    [16]Taylor E H. Flow Characteristics at Rectangular Open Channel Junction [J]. Journal of Hydraulic Engineering, ASCE,1944(109):893-912.
    [17]佟二勋.关于目前分流分沙的研究成果综述[J].水利水电技术,1962(9):102-107.
    [18]Shiu W L, Alan J, Reynolds. Diversion Flow in an Open Channel [J]. Journal of Hydraulics Division, ASCE,1966,92(2):207-231.
    [19]丁君松,丘凤莲.汉道分流分沙计算[J].泥抄研究,1981(1):3-5.
    [20]Best J L, Reid I. Separation Zone at Open Channel Junctions [J]. Journal of Hydraulic Engineering, ASCE,1984,110(11):1588-1594.
    [21]Amruthur S, Ramamurthy, Mysore G, Satish. Division of Flow in Short Open Channel Branches [J]. Journal of Hydraulic Engineering, ASCE,1988,114(4):428-438.
    [22]Amruthur S, Ramamurthy, Due M T, Luis B, Carballada. Divition Flow in Open Channels [J]. Journal of Hydraulic Engineering, ASCE,1990,116(3):449-455.
    [23]Ramamurthy A S, Carballada L B, Tran D M. Combining Open Channel Flow at Right-angeled Junctions[J]. Journal of Hydraulic Engineering, ASCE,1988,114(12): 1449-1460.
    [24]Hager W H. Transitional Flow in Channel Junctions[J]. Journal of Hydraulic Engineering, ASCE,1989,15(2):243-259.
    [25]Hager W H. Supercritical Flow in Channel Junctions [J]. Journal of Hydraulic Engineering, ASCE,1989,115(5):595-616.
    [26]韩其为,何明民,陈显维.汉道悬移质分沙的模型[J].泥沙研究,1992(1):44-52.
    [27]Gurram S K, Karki K S, Hager W H. Subcritical Junction Flow [J]. Journal of Hydraulic Engineering, ASCE,1997,23(2):243-259.
    [28]童朝锋.分汉口水沙运动特征及三维水流数学模型应用研究[D].南京,河海大学,2005,博士.
    [29]Emmett W M, Hurick R M, Meade R H. Field Data Describing the Movement and Storage of Sediment in the EAST FORK RIVER[R], Wyoming, Open-file Report 1980.
    [30]长江航道局.航道工程手册[M].北京:人民交通出版社,2004.
    [31]卢汉才.冲积性浅滩滩性分析研究[J].水道港口,2005,26(4):222-227.
    [32]刘忠保,张春生,汪崎生.拓宽河段心滩形成与演变的试验模拟[J].江汉石油学院学报.1997,19(2):18-22.
    [33]王昌杰.河流动力学[M].北京:人民交通出版社,2001.
    [34]王平义,杨成渝.长江航道整治护滩建筑物模拟技术研究[R].重庆:重庆交通大学,2008.
    [35]曹民雄,蔡国正,王秀红,马爱兴.边滩水沙运动特点及护滩建筑物破坏机理研究[R].南京:南京水利科学研究院,2008.
    [36]李文全,刘怀汉.长江航道整治边滩守护及护底工程关键技术研究总报告[R].武汉:长江航道局,2009.
    [37]王平义,高桂景.长江航道整治丁坝稳定性关键技术研究[R].重庆:重庆交通大学,2006.
    [38]刘怀汉,李文全,付中敏.长江中游航道整治护滩带稳定性关键技术研究[R].武汉:长江航道规划设计研究院.2006.
    [39]曹棉.软体排在长江航道整治工程中的应用[J].水运工程,2004(9):70-73.
    [40]刘晓菲.护心滩建筑物破坏机理及模拟技术研究[D].重庆:重庆交通大学,2008,硕士.
    [41]曹民雄,周彬瑞,蔡国正.鱼嘴工程的研究及其在航道整治中的应用[J].水运工程,2006(6):50-56.
    [42]周彬瑞,曹民雄,王秀红.鱼骨坝工程刺坝最佳间距的研究[J].水运工程,2006(11):74-78.
    [43]曹民雄,蔡国正,王秀红.长江中游航道整治鱼嘴稳定性关键技术研究[R].南京:南京水利科学研究院,2006.
    [44]Hubbard M E, Dodd N. A 2D Numerical Model of Wave Run-up and Overtopping [J]. Coastal Engineering,2002(47):1-26.
    [45]Sleigh P A, Gaskell P H, Berzins M, Wright N G. An Unstructured Finite-volume Algorithm for Predicting Flow in Rivers and Estuaries [J]. Computers and Fluids,1998(27): 479-508.
    [46]潘存鸿,于普兵,鲁海燕.浅水动边界的干底Riemann解模拟[J].水动力学研究与进展A辑,2009,24(3):305-312.
    [47]王鑫,曹志先,岳志远.强不规则地形上浅水二维流动的数值计算研究[J].水动力学研究与进展A辑,2009,24(1):56-62.
    [48]王嘉松,何有声,倪汉根.弯曲与分叉渠道溃坝波动特性的数值模拟[J].水动力学研究与进展A辑,2002,17(1):69-76.
    [49]魏文礼,郭永涛,王纪森.一维溃坝洪水波的高精度数值模拟[J].计算力学学报,2007,24(3):362-364.
    [50]王志力,耿艳芬,金生.具有复杂计算域和地形的二维浅水流动数值模拟[J].水利学报,2005,36(4):439-444.
    [51]Cao Z X, Pender G, Wallis S, Carling P. Computational Dam-break Hydraulics Over Erodible Sediment Bed [J]. Journal of Hydraulic Engineering, ASCE,2004(130): 689-703.
    [52]Simpsona G, Castelltortb S. Coupled Model of Surface Water Flow, Sediment Transport and Morphological Evolution [J]. Computers & Geosciences,2006(32):1600-1614.
    [53]岳志远,曹志先,李新,车涛.强冲积河流过程二维水沙耦合数值模拟[J].中国科学G辑,2008,51(8):1-12.
    [54]Cao Z X, Yue Z Y, Pender G. Landslide dam failure and flood hydraulics. Part II:Coupled Mathematical Modelling [J]. Nat Hazards,2011(59):1021-1045.
    [55]Zhou J G, Causon D M, Mingham C G. The Surface Gradient Method for the Treatment of Source Terms in the Shallow-water Equations [J]. Journal of Computational Physics, 2001,168(1):1-25.
    [56]Begnudelli L, Sanders B F. Unstructured Grid Finite-volume Algorithm for Shallow-water Flow and Scalar Transport with Wetting and Drying [J]. Journal of Hydraulic Engineering,2006; 132(4):371-384.
    [57]Valiani A, Begnudelli L. Divergence Form for Bed Slope Source Term in Shallow Water Equations [J]. Journal of Hydraulic Engineering,2006,132(7):652-665.
    [58]Liang Q H, Borthwick A G L. Adaptive Quadtree Simulation of Shallow Flows with Wet-dry Fronts over Complex Topography [J]. Computers & Fluids,2009,38(2):221-234.
    [59]Liang Q H. A Coupled Morphodynamic Model for Applications Involving Wetting and Drying [J]. Journal of Hydrodynamics, Ser. B,2011,23(3):273-281.
    [60]胡德超.三维水沙运动及河川变形数学模型研究[D].北京,清华大学,2009,博士.
    [61]Harlow F H, Welch J E. Numerical Calculation of Time-dependent Viscous Incompressible Fluid with Free Surface[J]. Phys. Fluid,1965(8):2182-2189.
    [62]Cox M D. A Primitive Equation,3-Dimensional Model of the Ocean:GFDL Ocean Group Technical Rept. No.1[R], Geophysical Fluid Dynamics Laboratory/NO AA, Princeton Univ., Princeton, NJ, variously paged,1984.
    [63]Hirt C. W, Nichols B D. Volume of Fluid (VOF) Mmethod for the Dynamics of Free Boundaries [J]. Journal of Computational Physics,1981(39):201-225.
    [64]Wilcox D C. Turbulence Modeling for CFD [M]. DCW Industries, Inc., La Canada, California,1998.
    [65]McComb W D. The Physics of Fluid Turbulence [M]. Clarendon Press OXFORD (1992)。
    [66]张兆顺,崔桂香,许春晓.走近湍流[J],力学与实践,2002,24(1):1-9.
    [67]王志东.三维自由面湍流场数值模拟及其在水利工程中的应用[D].南京,河海大学,2004,博士.
    [68]梁在潮.工程湍流[M].华中理工大学出版社.1999.
    [69]是勋刚.湍流[M].天津大学出版社.1994.
    [70]White F M. Viscous Fluid Flow [M]. McGraw-Hill Education (ISE Editions).1974.
    [71]周培源,陈十一.不可压缩流体的湍流理论[J].中国科学,1987(4):369-380.
    [72]Shih T H, Liou W W, Shabbir A, Yang Z, Zhu J. A New k- ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation [J]. Computers and Fluids,1995,24(3):227-238.
    [73]Donaldson C P, Rosenbaum H. Calculation of the Shear Flows Through Closure of Reynolds Equations by an Invariant Modeling[R]. ARAP RePt. No.127, Aeronautical Research Associates of Princeton.1968.
    [74]Daly F H, Harlow. Transport Equations in Turbulence [J], Phys. Fluids.1970(13): 2634-2649.
    [75]Launder, Reece, Rodi. Progress in the Development of a Reynolds Stress Turbulence Closure[J]. J. Fluid Mech.,1975,68(3):537-566.
    [76]Lumley J. Computational Modeling of Turbulent Flows [J]. Advances in Applied Mechanics,1979(18):123-176.
    [77]黄思源,符松.快速畸变下的压力应变快速项模式研究[J].中国科学G辑:2008,38(9):1255-1264.
    [78]喻涛.心滩守护前后水力特性研究[D].重庆,重庆交通大学,2009,硕士.
    [79]王伟峰.心滩守护前后泥沙运动规律及冲刷变形特性研究[D].重庆,重庆交通大学,2009,硕士
    [80]曹民雄,王秀红.心滩水力特性及冲刷变形研究[R].南京,南京水利科学研究院,2010.
    [81]Batchelor G. K. An Introduction to Fluid Dynamics[M]. Cambridge University Press. 1967.
    [82]Cao Z X, Pender G, Wallis S, Carling P. Computational Dam-break Hydraulics over Eodible Sediment Bed [J]. Journal of Hydraulic Engineering, ASCE,2004,130(7):689-703.
    [83]Liang Q H. A Coupled Morphodynamic Model for Applications Involving Wetting and Drying [J]. Journal of Hydrodynamics, Ser. B,2011,23(3):273-281.
    [84]Zyserman B J, Fredsoe J. Data Analysis of Bed Concentration of Suspended Sediment [J]. Journal of Hydraulic Engineering, ASCE,1994,120(9):1021-1042.
    [85]Yoon T, Kang S. Finite-volume Model for Two-Dimensional Shallow Water Flows on Unstructured Grids [J]. Journal of Hydraulic Engineering, ASCE,2004,130(7):678-688.
    [86]Toro E F. Shock-Capturing Methods for Free-surface Shallow Flows [M]. Wiley, England, UK,2001.
    [87]Yue Z Y, Li Y W, Yan J, Fu Z M. Two-dimensional Coupled Dam-break Flood Mathematical Model Based on Unstructured Grid [C]. The 7th IAHR Symposium on River, Coastal and Estuarine Morphodynamics, Beijing, China. Sept.6-8,2011. 1464-1472.
    [88]Chanson H. Analytical Solutions of Laminar and Turbulent Dam Break Wave [C]. Taylor & Francis/Balkema.2006:465-474.
    [89]Dressler R F. Unsteady Non-linear Waves in Sloping Channels [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1958: 186-198.
    [90]Dressler R F. New Nonlinear Shallow-flow Equations with Curvature [J]. Journal of Hydraulic Research,1978,16(3):205-222.
    [91]Fernandez-Feria R. Dam-break Flow for Arbitrary Slopes of the Bottom [J]. Journal of Engineering Mathematics,2006,54(4):319-331.
    [92]Hunt B. Perturbation Solution for Dam-Break Floods [J]. Journal of Hydraulic Engineering,1984,110:1058.
    [93]Karelsky K V, Papkov V V, Petrosyan A S. The Initial Discontinuity Decay Problem for Shallow Water Equations on Slopes [J]. Physics Letters A,2000,271(5-6):349-357.
    [94]Mangeney A, Heinrich P, Roche R. Analytical Solution for Testing Debris Avalanche Numerical Models [J]. Pure and Applied Geophysics,2000,157(6):1081-1096.
    [95]Peregrine D H, Williams S M. Swash Overtopping a Truncated Plane Beach [J]. Journal of Fluid Mechanics,2001,440:391-399.
    [96]Savage S B, Hutter K. The Motion of a Finite Mass of Granular Material Down a Rough Incline[J]. Journal of Fluid Mechanics,2006,199:177-215.
    [97]Shen M C, Meyer R E. Climb of a Bore on a Beach Part 3. Run-up [J]. Journal of Fluid Mechanics,2006,16(1):113-125.
    [98]Shen M C, Meyer R E. Climb of a Bore on a Beach Part 2. Non-uniform Beach Slope [J]. Journal of Fluid Mechanics,2006,16(1):108-112.
    [99]黄国富,张翼飞,伍超,杨永全.一维溃坝波在斜底坡河道中演进的解析解[J].水动力学研究与进展A辑,2005,20(5):597-603.
    [100]Ancey C, Iverson R M, Rentschler M, Denlinger R P. An Exact Solution for Ideal Dam-break Floods on Steep Slopes [J]. Water Resourves Research,2008(44):257-362.
    [101]Stoker J J. Water waves [M]. Wiley-Interscience, New York.1957.
    [102]Bellos V, Soulis J V, Sakkas J G. Experimental Investigations of Two-dimensional Dam-break-induced Flows[J]. IAHR Journal of Hydraulic Research 1992,30(1):47-63.
    [103]Yan J, Cao Z X, Liu H H, Chen L. Experimental Study of Landslide Dam-break Flood over Erodible Bed in Open Channels [J]. Journal of Hydrodynamics,2009,21(1): 124-130.
    [104]Gibson M M, Launder B E. Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer [J]. J. Fluid Mech.,1978(86):491-511.
    [105]Hirt C, Nichols B. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries [J]. Journal of Computational Physics,1981,39(1):201-225.
    [106]李义天,高凯春.三峡枢纽下游宜昌至沙市河段河床冲刷的数值模拟研究[J].泥沙研究,1996(2):3-8.
    [107]陈远方,高凯春.三峡工程下游宜昌至沙市河段河床冲刷预测[J].湖泊科学,1997,9(4):317-324.
    [108]徐高洪,张新田,李中平,毕宏伟.长江干流宜昌至沙市河段地形法槽蓄量分析研究[J].水文,2001,21(6):14-17.
    [109]朱玉德,李旺生.长江中游沙市河段航道治理思路的探讨[J].水道港口,2006,27(4):223-226.
    [110]李旺生,朱玉德.长江中游沙市河段河床演变分析及趋势预测[J].水道港口,2006,27(5):294-299.
    [111]江凌,李义天,张为.长江中游沙市河段演变趋势探析[J].泥沙研究,2006(3):76-81.
    [112]彭严波,段光磊.长江荆江河段沙市三八滩演变机理分析[J].人民长江,2006,37(9):82-83.
    [113]廖小永,卢金友,黎礼刚.三峡水库蓄水运行后荆江河道特性变化研究[J].人民长江,2007,38(11):80-91.
    [114]李义天,李明,葛华,孙昭华.长汀中游宜昌~沙市段河床冲淤与枯水位变化[J].水利水运工程学报,2007(4):14-20.
    [115]段光磊,彭严波,肖虎程,赵兵.长江荆江河段典型洲滩演变机理初探[J].水利水运工程学报,2008,6(9):14-24.
    [116]殷瑞兰,张美德.论沙市河段主泓南移的趋向性[J].泥沙研究,2008(1):35-40.
    [117]熊超,彭玉明,郭焕林.三峡水库蓄水后宜昌至沙市河段冲淤变化分析[J].人民长江,2010,41(14):28-31.
    [118]李文全,雷家利,张伟.长江中游沙市河段航道整治工程工可阶段定床模型试验研究[R].武汉:长江航道规划设计研究院,2006.
    [119]李文全,雷家利,张伟.长江中游沙市河段航道整治工程工可阶段动床模型试验研究[R].武汉:长江航道规划设计研究院,2006.
    [120]李文全,雷家利,谢卫.长江中游沙市河段航道整治三八滩控制守护工程工可阶段动床模型试验研究[R].武汉:长江航道规划设计研究院,2006.
    [121]陆永军.荆江重点浅滩现状整治的二维动床数学模型研究—模型的建立[J].水道港口,1997(1):15-24.
    [122]陆永军.荆江重点浅滩现状整治的二维动床数学模型研究—模型的应用[J].水道港口,1997(1):25-33.
    [123]陆永军,刘建民.荆江重点浅滩整治的二维动床数学模型研究[J].泥沙研究,1998(1):37-51.
    [124]黄成涛,柴华峰,曾庆云.长江中游沙市河段航道整治控导工程工可阶段数学模型研究[R].武汉:长江航道规划设计研究院,2006.
    [125]郭阳,王建军.长河段二维水沙数学模型研究及应用[J].水运工程,2012(4):149-154.
    [126]张明进,伍文俊.浅谈数值模拟技术在长江中下游航道整治中的应用[J].水道港口,2010(2):102-107.
    [127]张明进,张华庆,刘万利,朱玉德.长江中游戴家洲河段航道整治工程数值模拟研究[J].水道港口,2008(3):193-198.
    [128]张为,李义天,江凌.长江中下游典型分汊浅滩河段二维水沙数学模型[J].武汉大学学报(工学版),2007(1):42-47.
    [129]周刚,郑丙辉,雷坤,李子成.赣江下游水动力数值模拟研究[J].水力发电学报,2012,31(6):102-108.
    [130]周刚,郑丙辉,胡德超,雷坤,乔飞.正交曲线坐标系二维浅水方程ELADI有限差分方法[J].水科学进展,2011,22(4):523-531.
    [131]杜梦.含沙量变化对游荡型河流河型转化影响的数值模拟研究[D].北京,清华大学,2011,硕士.
    [132]罗缙,逄勇,王华,李一平.基于FDS格式的长江镇扬段水沙数值仿真[J].应用基础与工程科学学报,2009(5):659-667.
    [133]徐国宾,赵丽莉.准二维非恒定非均匀泥沙数学模型[J].天津大学学报,2008(9):1041-1045.
    [134]甘明辉,杨国录,吴虹娟,余明辉,谢翠松,袁雄燕.沙质河床二维粗化数值模拟初探[J].水动力学研究与进展A辑,2002(6):691-700.
    [135]王阳.河流河道二维数学模型[D].西安,西安理工大学,2007,硕士

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700