河型转化机理及其数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河型转化过程机理研究不仅对河流动力学及河流工程学等学科的完善有重要理论意义,而且在大型水利工程运用后对下游河道演变的影响研究、以及防洪航运工程应采取的对策研究等方面也有着非常显著的实际意义。
     本文以改进的平面二维河流数学模型为主要研究手段,对边岸抗冲性较强和有洲滩演变的长江中游原型河道进行了实际计算,并对概化河道不同条件下的河势变化及河型转化进行了数值模拟,以分析与研究河型转化过程机理。
     通过在水流动量守恒方程中增加弥散应力项,考虑了弯道二次流的影响且对室内水槽实验结果进行了验证比较;提出了基于传统模型上的崩岸过程模拟技术;本模型能够模拟非均匀沙悬移质与推移质的输运过程,可以更可靠的模拟天然河道的演变趋势。
     对边界抗冲性较强的宜昌~枝城河段,进行了三峡枢纽运用后20年内冲淤变化的数值模拟。结果表明,该河段发生了明显的冲刷现象,但河势仍然比较稳定,不会发生河型转化
     对上荆江的沙市~石首河段在三峡工程蓄水运用初期阶段(2006年~2012年)的河势变化进行了模拟预测。结果表明,该段河道普遍冲刷,洲滩变化显著,尤其以三八滩分汊段和石首河段河势变化最为剧烈,但在短期内和目前的水沙条件下,河型尚不会发生根本性的转化。
     通过概化河道河型转化的数值模拟,从河道平面形态、横断面变化、河床纵剖面,沿程水面线以及输沙率等方面分析不同初始比降,入口含沙量,流量和河岸抗冲性对河型转化的影响,成功模拟了不同条件下河型转化的过程。所得结果与已有的河型转化理论结果符合,且动力学依据更加完善。
     入口含沙量保持不变(清水)而增大γQJ(或减小河岸抗冲性、减小泥沙粒径),在概化河道下游最终形成的稳定河型属于分汊或江心洲型;若γQJ保持不变而入口含沙量增大到3.0kg/m3,在概化河道下游形成的稳定河型是游荡散乱型。实现了通过数学模型对河型转化机理的分析研究。
The mechanism of channel pattern changes is an important part in the study of fluvial processes and river engineering. Fluvial processes will be substantially affected after the construction of hydropower projects on large rivers, which may lead to channel pattern changes and may have impacts on various aspects, such as flood control, navigation and water diversion, therefore the practical purpose of this study is obvious.
     In this thesis an improved two dimensional (2-D) mathematical model for water flow, sediment transport and bank erosion is used to simulate fluvial process and channel pattern changes in river channels of the middle Yangtze River reaches, where river banks are very resistant against bank erosion, but point bars and island bars are migrating actively. In this study, the same model was also applied to a conceptual river channel with conditions similar to that of the middle Yangtze River reaches, to study channel pattern changes and the mechanism behind such changes.
     The secondary flow was taken into account in the 2-D model by adding a dispersion stress term in the momentum conservation equation of water flow. Flow simulation results were compared with published curved-flume measurements in laboratory experiments. The model for bank failure calculation was also improved on the basis of the commonly used method. A non-uniform, non-equilibrium transport model for suspended load and bed load transport was used in the calculations, with better reliability in the results of fluvial processes in natural river channels.
     A 20-year series of fluvial processes were simulated for the 63km long Yichang - Zhicheng reach just downstream of the Three Gorges Reservoir (TGR), to study the impact of the operation of the TGR. The river banks in the area are strongly resistant to bank erosion, and simulation results demonstrate that although channel bed scours are obvious, the channel pattern will be stable and no channel patter changes will occur.
     A 6-year series of fluvial processes were simulated using the established model for the 102km long section from Shashi to Shishou in the upper Jingjiang Reach, which is just downstream from Zhicheng, to study possible channel pattern changes at the initial stage of the TGR operation (2006~2012). The results indicate that although wide-spread scour will occur during this period, and both point bars and island bars will migrate actively, especially more severe changes of fluvial processes are observed in the areas of Sanba Tan and Shishou, there will be no essential change in the channel pattern at the present incoming sediment conditions, at least for a short period of time.
     A 12 km long conceptual river reach, with bed and bank conditions similar to that of the middle Yangtze River reaches, was used to simulate the impact on channel pattern changes by various factors, such as initial channel slope, sediment supply, water discharge, and resistance to bank erosion. Simulated results were discussed, such as plan form of the river channel, longitudinal bed profile, channel cross section, water surface profile and sediment transport in the channel. The simulated results of channel patterns agree well with the classic theory of channel pattern formation. The method in this thesis provided a better way to examine the dynamics behind channel pattern changes.
引文
[1] Abad J D , Garcia M H. Conceptual and mathematical model for evolution of meandering rivers in naturalization processes[C]// Gerald S ,Donald F H ,David K S. Critical Transitions in Water and Environmental Resources Management : Proceeding of World Water Congress. Salt Lake City, Utah, 2004.
    [2] ASCE Task Committee on Hydraulic, Bank Mechanics, and Modeling of Riverbank Width Adjustment. River Width adjustment I: Processes and mechanisms. Journal of Hydraulic Engineering, ASCE, 1998, 124(9):881-902.
    [3] ASCE Task Committee on Hydraulic, Bank Mechanics, and Modeling of Riverbank Width Adjustment. River Width adjustment II: modeling. ASCE, Journal of Hydraulic Engineering, 1998, 124(9):903-918.
    [4] Ashmore, P. E. Bed load transport in braided gravel-bed stream models. Earth Surface Processes & Landforms, 1988, 13(8):677-695.
    [5] Bo Wang, Dongdong Jia, Gang Zhou and Xuejun Shao. An Experimental Investigation on Flow Structure in Channel with Consecutive Bends. Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS, Nanjing, China, 2008:1811-1816.
    [6] Chang, H. H. Fluvial processes in river engineering. A Wiley-interscience publication, John Wiley & Sons, 1988:316.
    [7] Chang-Lae J, Shimizu, Y. Numerical simulation of relatively wide, shallow channels with erodible banks. Journal of Hydraulic Engineering, 2005a, 131(7):565-575.
    [8] Chang-Lae J, Shimizu, Y. Numerical simulation of the behavior of alternate bars with different bank strengths. Journal of Hydraulic Research, 2005b, 43(6):596-612.
    [9] CHEN D, DUAN J G. Simulation of meandering channel evolution with an analytical model[C]/ /GERALD S ,DONALD F H , DAVID K S. Critical Transitions in Water and Environmental Resources Management : Proceeding of World Water Congress. Salt Lake City, Utah, 2004.
    [10] Chunming Fang, Jixin Mao and Wen Lu. 2D depth-averaged sediment transport model taken into account of bend flows. US-CHINA workshop on advanced computational modeling in hydroscience & engineering, September 19-21, Oxford, Mississippi, USA, 2006.
    [11] Coulthard T J, Vandewiel M J. A cellular model of river meandering. Earth Surface Processes & Landforms, 2006, 31(1):123-132.
    [12] van Maren, D.S., Winterwerp, J.C., de Vriend, H.J., Wang, Z.B.,王兆印,周建军.含沙量对冲积河流河型的影响.人民黄河, 2005(11):76.
    [13] Darby, S. E. and Thorne, C. R. Numerical simulation of Widening and bed deformation of straight sand-bed rivers I: model development. Journal of Hydraulic Engineering, ASCE, 1996, 122(4):184-193.
    [14] Darby, S.E., Thorne, C. R., Affiliate, and Simon, A. Numerical simulation of Widening and bed deformation of straight sand-bed rivers II: model evaluation. ASCE, Journal of Hydraulic Engineering, 1996, 122(4):194-202.
    [15] Darby, S. E., A. M. Alabyan, and M. J. Van de Wiel. Numerical simulation of bank erosion and channel migration in meandering rivers. Water Resources Research, 2002, 38 (9):1-21.
    [16] de Vriend, H. J. A mathematical model of steady flow in curved shallow channel. Journal of hydraulic research, Delft, The Netherlands, 1977, 15(1):37–54.
    [17] de Vriend, H. J., and Geldof, H. J. Main flow velocity in short and sharply curved river bends. Communications on Hydraulics. 1983, Rep. No. 83-6, Dept. of Civ. Engrg., Delft University of Technology, Delft, The Netherlands.
    [18] Duan G, J IA Y, Wang Sam S Y. Simulation of meandering channel migration processes with the enhanced CCHE2D[C]//GRAF W H. Hydraulic Engineering for Sustainable Water Resources Management at the Turn of the Millenium: Proceedings of the 28th IAHR Congress. Graz, Austria, 1999:376-385.
    [19] Duan G. Simulation of alluvial channel migration processes with a two-dimensional numerical model[D]. Mississippi: University of Mississippi, 1998.
    [20] Duan, J. G. Simulation of flow and mass dispersion in meandering channels. Journal of Hydraulic Engineering, 2004, 130(10):964-976.
    [21] Duan, J. G. and Wang, S. Y. The applications of the enhanced CCHE2D model to study the alluvial channel migration processes. Journal of Hydraulic Research, 2001, 39(5):469-780.
    [22] Eaton B C, Church M, Davies T R H. A conceptual model for meander initiation in bedload-dominated streams. Earth Surface Processes & Landforms, 2006, 31(7):875-891.
    [23] Engelund, F., Skovgaard, O. On the origin of meandering and braiding in alluvial streams. Journal of Fluid Mechanics, 1973, 57(2):289-302.
    [24] Falcon Ascanio, M., Analysis of flow in alluvial channel bends[D]. Dept. Mech. and Hydr., University of Iowa, Iowa City, Iowa, 1979.
    [25] Falconer, R.A. Temperature distributions in tidal flow field. Journal of Enviromental Engineering, ASCE, 1984, 110(6):1099-1116.
    [26] Finnie et al. Secondary Flow Correction for Depth-Averaged Flow Calculations. Journal of Fluid Mechanics, 1999, 125 (7):848-858.
    [27] Flokstra, C. The Closure Problem for Depth-Averaged Two-Dimensional flows. Proc. 18th Congress of the Int. Association for Hydraulic Research, 1977:247-256.
    [28] FRIEDKIN J F. A laboratory study of the meandering of alluvial rivers. Mississippi: US Army Engineer Waterways Experiment Station, 1945.
    [29] Fukuoka Shoji.赵渭军译.自然堤岸冲蚀过程的机理.水利水电快报, 1996(2):29-33
    [30] Graf, W. L. Applications of Catastrophe Theory in Fluvial Geomorphology. In: M.G. Anderson (ed.), Modelling Geomorphological Systems, John Wiley & Sons Ltd., 1988.
    [31] H.C. Lien, T.Y. Hsieh, J.C. Yang, et al. Bend-flow Simulation Using 2D Depth-Averaged Model. Journal of Hydraulic engineering, ASCE, 1999, 123(10):1097-1108.
    [32] St Anthony Falls Lab, University of Minnesota, 1999. http://talc.geo.umn.edu/orgs/seds/ Sedi_Research.htm.
    [33] Ikeda S., Parker G. and Kimura Y. Stable width and depth of straight gravel rivers with heterogeneous and bed materials. Water Resources Research. 1988, 24(9):713-722.
    [34] Ikeda,S., Paker,G., and Sawai, K. Bend theory of river meanders. Part I. Linear development. Journal of Fluid Mechanics, 1981, 112:363-377.
    [35] J.A.Vasquez., R.G.Millar., and P.M. Steffler. Vertically-averaged and moment o momentum model for alluvial bend morphology. River, Coastal and Estuarine Morphodynamics: RCEM 2005-Parker&Garcia(eds) c 2006 Taylor & Francis Group, London, ISBN 0 415 39270 5:711-718.
    [36] Jia dongdong, Shao xuejun, Wang hong and Zhou gang. Locally-adaptive Grid System for 3D Numerical Simulation of Meander Migrition. Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS. Nanjing, China, 2008:877-882.
    [37] Jin, Y. C., and Steffler, P. M. Predicting flow in curved open channels by depth-averaged method. Journal of Hydraulic engineering, ASCE, 1993, 119(1):109–124.
    [38] Johannesson H., Paker G. Linear theory of river meanders, river meandering. Water Resource Monograph, 1989, 12:181-213.
    [39] Kalkwijk, J. P. T., and de Vriend, H. J. Computation of the flow in shallow river bends. Journal of Hydraulic Research, 1980, 18(4):327–342.
    [40] Kikkawa, H., Ikeda, S., and Kitagawa, A. Flow and bed topography in curved open channels. Journal of the Hydraulics Divison, ASCE, 1976, 102(9):1327–1342.
    [41] Knighton D. Fluvial forms and processes[M]. London: Edward Arnold, 1984:218
    [42] LANCASTER S T, BRAS R L. A simple model of river meandering and its comparison to natural channels. Hydrological Processes, 2002, 16(1):1-26.
    [43] Leopold, L.B, Wolman, M. G. River channel patterns: braided,meandering and straight, US Geological Survey Professional Paper 282B, 1957:35-85.
    [44] LeVeque, RJ, Li Z. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM Journal on Numerical Analysis 1994(31):1019-1033.
    [45] Molls, T., and Chaudhry, M. H. Depth-averaged open-channel flow model. Journal of Hydraulic Eingeering, ASCE, 1995, 121(6):453–465.
    [46] Mosselman E. Morphological modelling of rivers with erodible banks. Hydrological Processes, 1998, 12 (8):1357-1370.
    [47] Nagata N., Hosoda T., Muramoto Y. Numerical analysis of river channel processes with bank erosion. Journal of Hydraulic Engineering, 2000, 126(4):243-252.
    [48] Nagata, N., Hosoda, T., Muramoto, Y. and Rahman, M.M. Experimental and Numerical Studies on Meandering Channels with Bank Erosion. Proceedings of the Conf. on Management of Landscapes Disturbed by Channel Incision, 1997:262-267.
    [49] Nagata, N., Hosoda, T., Muramoto, Y., and Rahman, M. M. Development of the numerical model to forecast the channel processes with bank erosion. Proc., 4th Japan-Chinese (Taipei) Joint Seminar on Natural Hazard Mitigation, 1997:167–176.
    [50] Odgaard, A. J. River-meander model, I: Development. Journal of Hydraulic Engineering, ASCE, 1989, 115(11):1433–1450.
    [51] Odgaard A. River meander model, II: application. Journal of Hydraulic Engineering, 1989, 115(11):1451-1464.
    [52] Olsen N R B. 3D CFD modeling of a self-forming meandering channel. Journal of Hydraulic Engineering, 2003, 129(5):366-372.
    [53] Osman, A. M., and Thorne, C. R. Riverbank stability analysis I: theory. Journal of Hydraulic Engineering, 1988, 114(2):134-150.
    [54] Parker G, Andrews E D. Sorting of bed load sediment by flow in meander bends. Water resources Research, 1985, 21:1361-1373.
    [55] Parker, Gary. On the cause and characteristic scales of meandering and braiding in rivers. Journal of Fluid Mechanics, 1976, 76:457-480.
    [56] Peskin C. numerical analysis of blood flow in the heart. Journal of Computational Physics. 1977(25):220-235.
    [57] Pizzuto, J. E., Numerical simulation of gravel river widening. Water Resource Research. 1990, 26(9):1971-1980.
    [58] Ponce, V. M. Generalized stability analysis of channel banks. J. Irrig. Drainage Div., ASCE, 1978, 104(4):343-350.
    [59] Rhie C. M., and Chow. W.L. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J, 1983(21):1525-1552.
    [60] Richard J. Janda, Kevin M. Scott, K. Michael Nolan, et al. Lahar movement, effects, and deposits. The 1980 eruptions of mount St. Helens, Washington. Geological survey professional paper 1250, USGS, 1981.
    [61] RICHARDSON W R. Simplified model for assessing meanderbend migration rate. Journal of Hydraulic Engineering, 2002, 128(12):1094-1097.
    [62] Rozovskii, I. L. Flow of water in bends of open channels. The Israel Program for Scientific Translations, Jerusalem, 1961.
    [63] Ruether N., Olsen N R B. CFD modeling of meandering river evolution[C]//GANOULIS J, PRINOS P. Proceeding of 30st IAHR Congress. Thessaloniki, Greece, 2003.
    [64] Schumm, S.A. Geomorphic thresholds and complex response if drainage systems. In Morisawa, M (ed.): Fluvial Geomorphology. Binghamton, NY: New York University Publications in Geomorphology, 1973.
    [65] Schumm, S.A. Patterns of alluvial rivers. Annual Review of Earth and Planetary Sciences, 1985, 13:5-27.
    [66] Schumm, S.A. and H.R. Khan, Experimental Study of Channel Patterns, Ceol. Soc. Amec. Bull, 1972, 83(6):1755-1770.
    [67] Seminara, G & Tubino, M. Weakly nonlinear theory of regular meanders, Journal of Fluid Mechanics, 1992, 244:257-288.
    [68] Steffler, P. M. Turbulent flow in a curved rectangular channel[D]. University of Alberta, Alberta, Canada. 1984.
    [69] T.Y. Hsieh and J.C. Yang. Investigation on the Suitability of Two-Dimensional Depth-Averaged Models for Bend-Flow Simulation. Journal of Hydraulic Engineering, ASCE, 2003, 129(8):597-612.
    [70] Tao S, Meakin P, Jossang T. A computer model for meandering rivers with multiple bed load sediment sizes, I: theory. Water Resources Research, 2001, 37(8):2227-2241.
    [71] Tao S, MEAKIN P, JOSSANG T. A computer model for meandering rivers with multiple bed load sediment sizes, II: computer simulations. Water Resources Research, 2001, 37 (8):2243-2258.
    [72] Thorne, C. R. and Osman, A. M. Riverbank stability analysis II: application. Journal of Hydraulic Engineering, 1988, 114(2):151-172.
    [73] Thorne, C. R. and Tovey, N. K. Stability of composite river banks. Earth Surface Processes & Landforms, 1981(6):469-484.
    [74] Thorne, C. R. Field measurement of rate of bank erosion and bank material strength. Erosion and sediment transport measurement. Proc., Florence Symp., International Association for Hydraulic Science Publ. No.133, Florence, Italy. 1981
    [75] Thornes, J. B. Structural instability and ephemeral channel behavior. Zeit für Geomorph. Suppl., 1980, 36:233-244.
    [76] Van Rijn, L. C. Mathematical modeling of morphological processes in the case of suspended sediment transport. Delft Hydraulics Communication No.382, Delft Hydraulics Laboratory, Delft, The Netherlands, 1987.
    [77] Vikas Singh. Two dimensional sediment transport model using parallel computers[D]. the Louisiana State University University, 2005.
    [78] Wang Sam S Y, Jia Y. CCHE2D: A two-dimensional hydrodynamic and sediment transport model for unsteady open channel flow over loose bed. Mississippi: The Center for Computational Hydroscience and Engineering, University of Mississippi, 1997.
    [79] Warburton, J., Davies, T.R. H. Variability of bed load transport and channel morphology in a braided river hydraulic model. Earth Surface Processes & Landforms, 1994, 19(5):403-421.
    [80] Yee-Chung Jin, and Peter M. Steffler. Predicting Flow in Curved Open Channels by Depth-Averaged Method. Journal of Hydraulic Engineering, ASCE, 1993, 119(1):109-124.
    [81] Yeh, K. C., and Kennedy, J. F. Moment model of nonuniform channel-bend flow. I: Fixed beds. Journal of Hydraulic Engineering, ASCE, 1993, 119(7):776–795.
    [82] Zimmermann, C., and Kennedy, J. F. Transverse bed slopes in curved alluvial stream. Journal of the Hydraulics Divison, ASCE, 1978, 104(1):33–48.
    [83]长委水文局, 2003-2004年三峡水库进出库水沙特性及坝下游河道冲淤分析概要, 2005.
    [84]陈立,张俊勇,谢葆玲.河流再造床过程中河型变化的实验研究.水利学报, 2003(7):42-46.
    [85]程文辉,王船海.用正交曲线网格及”冻结”法计算河道流速场.水利学报, 1988(6):18-25.
    [86]窦国仁,赵士清,黄亦芬.河道二维全沙数学模型的研究.南京水利科学研究院水利水运科学研究, 1987(2):1-12.
    [87]方春明.考虑弯道环流影响的平面二维水流泥沙数学模型.中国水利水电科学研究院学报, 2003, 1(3):190-193.
    [88]方宗岱.河型分析及其在河道整治上的应用.水利学报, 1964(1):1-11.
    [89]韩其为等.水库不平衡输沙的初步研究.黄河水库泥沙观测研究交流:水库泥沙报告汇编, 1972.
    [90]洪笑天,马绍嘉,郭庆伍.弯曲河流形成条件的实验研究.地理科学, 1987, 7(1):35-43.
    [91]胡海明,李义天.非均匀沙的运动机理及输沙率计算方法的研究.水动力学研究与进展, 1996, 11(3):284-292.
    [92]黄国鲜,弯曲和分叉河道水沙输运及其演变的三维数值模拟研究[博士学位论文].北京:清华大学, 2006.
    [93]黄金池,黄河水沙河床演变过程平面二维数学模型[博士学位论文].北京:中国水利水电科学研究院, 1997.
    [94]江恩惠,曹永涛,张林忠,等.黄河下游游荡性河段河势演变规律及机理研究.北京:中国水利水电出版社, 2006:110-114.
    [95]金德生.边界条件对曲流发育影响的过程响应模型试验研究.地理研究, 1986(9) :12 - 21.
    [96]李义天.冲淤平衡状态下床沙质级配初探.泥沙研究, 1987(1):82-87.
    [97]倪晋仁,张仁.河型成因的各种理论及其间关系.地理学报, 1991, 46(3):366-372.
    [98]倪晋仁.不同边界条件下河型成因的试验研究[博士学位论文].北京:清华大学, 1989.
    [99]钱宁,张仁,周志德.河床演变学.北京:科学出版社, 1987.
    [100]钱宁,关于河流分类及成因问题的讨论.地理学报, 1985, 40(1):1-10.
    [101]钱宁,周文浩.黄河下游河床演变,北京:科学出版社, 1965:224.
    [102]清华大学水利系,葛洲坝枢纽至虎牙滩河段(1/300,1/150)模型试验研究报告, 2000年5月.
    [103]邵学军,王兴奎.河流动力学概论.清华大学出版社. 2005:40.
    [104]史传文,吴保生,马吉明.冲积河流河型的成因及分类与判别计算方法研究.水力发电学报, 2007, 26(5):107-111.
    [105]唐存本.泥沙起动规律.水利学报, 1963(2):1-12.
    [106]唐日长.蜿蜒性河段成因的初步分析和造床试验研究.人民长江, 1964 (2) :13 - 21.
    [107]陶文铨.数值传热学2版.西安:西安交通大学出版社. 2001:250.
    [108]王船海,程文辉.河道二维非恒定流场计算方法研究.水利学报, 1991(1):10-17.
    [109]王光谦,钟德钰,张红武,等.汶川地震唐家山堰塞湖泄流过程的数值模拟.科学通报, 2008, 53(24):3127-3133.
    [110]王随继,倪晋仁,王光谦.河型的时空演变模式及其间关系.清华大学学报(自然科学版), 2000, 40:96-100.
    [111]王随继.网状河流的构型、流量-宽深比关系和能耗率.沉积学报, 2003, 21(4):565-613.
    [112]韦直林,赵良奎,付小平.黄河泥沙数学模型研究.武汉水利电力大学学报, 1997, 30(5):21-25.
    [113]夏军强,河岸冲刷机理研究及数值模拟[博士学位论文].北京:清华大学, 2002.
    [114]夏军强,王光谦,吴保生.游荡型河流演变及其数值模拟.北京:中国水利水电出版社, 2005.
    [115]谢鉴衡,丁君松,王运辉.河床演变及整治.北京:水利电力出版社, 1990.
    [116]谢立全.江河岸坡失稳机理及防治技术研究[博士学位论文].北京:清华大学, 2007.
    [117]徐国宾,练继建.应用耗散结构理论分析河型转化.水动力研究与进展, 2004, 19(3):316-320.
    [118]许炯心.不同床沙组成的冲积河流中河型的分布特征.自然科学进展, 2002, 12(8):870-873.
    [119]许炯心.基于对Leopold-Wolman关系修正的河床河型判别.地理学报, 2004, 59 (3):462-467.
    [120]杨怀仁,唐日长.长江中游荆江变迁研究.北京:中国水利水电出版社, 1999.
    [121]姚仕明,余文畴,董耀华.分汊河道水沙运动特性及其对河道演变的影响.长江科学院院报, 2003, 20(1):7-9.
    [122]尹学良.河型成因研究.水利学报, 1993(4):1-11.
    [123]尹学良.弯曲性河流形成原因及造床试验初步研究.地理学报, 1965, 31(4):287-303.
    [124]余文畴,卢金友.长江中游崩岸与护岸.北京:中国水利水电出版社, 2008.
    [125]余文畴,卢金友.长江河道演变与治理.北京:中国水利水电出版社, 2005.
    [126]张红武,钟德钰,张俊华,等.黄河游荡型河段河势变化数学模型,人民黄河, 2009, 31(1):20-22.
    [127]张俊勇,陈立,何娟,等.流量过程对河型影响的试验研究.水电能源科学, 2004, 22(3): 61~64.
    [128]张欧阳,马怀宝,张红武,等.不同含沙量水流对河床形态调整影响的实验研究.水科学进展, 2005, 16(1):1-6.
    [129]钟德钰,张红武.考虑环流横向输沙与河岸变形的平面二维扩展数学模型.水利学报, 2004(7):14-20.
    [130]朱毕生,熊波,陈立.河道边界条件对河型形成影响的概化试验研究.浙江水利科技. 2005(1):9-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700