水沙变异条件下河流系统调整机理及其功能维持初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界各国河流开发历史和经验教训表明,由于对人类活动引起水沙条件变化后河流系统的调整机理认识不足,流域开发中普遍引起某项或多项河流功能受损或衰竭。造成这种现象的深层原因,一是对河流系统中水、沙、河床之间的整体联系和互相影响的机理认识不足,导致河流系统中出现意想不到的现象和负面效应;二是对水沙变化和河流系统调整的后续环境、生态和社会效应认识不足,在保障或优化某项河流功能的同时,却导致河流系统整体健康的损害。因此,从整体上研究水沙变异条件下河流系统的调整机理,对于河流健康的保障具有重要意义。
     保持河流各方面整体协调是流域开发研究的重点和必然趋势。然而,目前相关的研究大多是针对河流功能受损后的修复和防护,而对于水沙调节可能引起的河流系统功能调整研究甚少。大量事实表明,当人们意识到各种工程对河流系统的影响时,往往河流系统功能已受到明显损伤,对河流系统自然、生态环境的修复和重建是十分困难甚至不可能,防患于未然胜于任何补救措施。水沙变异后河流系统调整涉及领域广,时空跨度大。当前的研究已经在各相关领域中开展了相当广泛而深入的工作,但这些成果往往是从不同的角度出发,具有不同的时空尺度,而且由于是在单学科内结合河流系统的单方面属性开展,对相互之间的因果制约以及层次关系缺乏深入的认识,不利于对河流系统整体调整趋势的预测和分析。
     本文以水沙变异为主线,遵循从原因至结果的顺序,力图建立不同变化与河流系统不同响应之间的联系,以便最终能够达到根据水沙变化而预测河流系统功能调整的目的。研究的特色在于,同时注重了河流系统动力特征、形态特征的动态变化及其防洪、生态等方面的效应,为河流系统调整预测和功能评估打下基础。论文对水库下游的泥沙输移、河型转化、浅滩演变等方面开展了深入研究,并对河流系统调整对区域整体的防洪形势、生态环境状态影响进行了详细讨论,是从不同方面、不同尺度同时研究河流系统的首次尝试,在河流系统动力与形态、微观与宏观、地貌与生态等变化的层次性、联系性方面得到了一些有益的认识。同时,论文结合了长江三峡下游的实际背景,一些结论对于长江水资源开发过程中河流系统功能的整体维持具有参考价值。
     全文主要讨论了以下几个方面的问题:
     (1)分析了水沙变异与河流系统的作用特性,明确了河流系统各方面的调整实际上是系统输入特性的不同方面变化造成的;回顾了对河流系统及其功能的认识过程与研究现状,说明了建立水沙变化与河流调整对应关系的意义和必要性。
     (2)鉴于目前对水库下游泥沙输移特征未形成明确的统一认识,本文以大量实测资料证明:水库下游的泥沙输移能力不可能超出建库前的天然水平,全沙和分组输沙量都符合这个规律,而且与水库运用方式、下游河床形态调整等因素无关。
     基于水库下游泥沙输移变化一般特征,讨论了黄河小浪底调水调沙的可行性和三峡下游冲刷冲淤计算的合理性。利用水库调水调沙使下游河道输沙能力超过天然水平的尝试是值得斟酌的;目前对三峡下游的冲淤预测结论中,冲刷发展进程和冲淤分布存在值得商榷之处。
     (3)分析了水、沙过程各种特征因素对河型过程的影响,明确水、沙、河床边界在河型塑造过程中的地位与作用。根据丹江口等水库下游水沙变异特点,分析总结了不同变异情况下可能发生的河型调整;结合三峡下游水沙条件的变化以及河型转化的机理,预估了不同河型区段的变化趋势:下荆江河段建库后首先发生下切,但由于流量增大的影响,冲刷将主要转为侧蚀,曲率有所增大。对于城陵矶以下的稳定江心洲河段而言,对流量变幅比较敏感,但由于建库前后流量变幅差别不大,而且距坝距离较远,沙量恢复程度高,因此不会发生明显的河型变化。
     (4)以往对浅滩演变的研究多是针对个别浅滩特例,不够系统。文中尝试从水沙条件和河床形态的角度分析浅滩演变的实质,认为浅滩的主要影响因素是河床局部形态,河段挟沙力与来沙量二者之间的跟随性差是形成浅滩的主要原因,提出了通过断面挟沙力随流量变化的指数值来判别浅滩恶劣程度的认识。结合丹江口水库下游相关资料,总结了水沙变异条件下不同特征河段浅滩的变化规律;分析总结了天然情况下长江中下游浅滩成因并预估三峡建库后演变趋势。
     (5)文中分析了修建水库对下游洪水过程时空分异性的影响,并以三峡下游为例开展了深入讨论。采用多种方法推求长江中游各种组合类型的典型洪水,为复杂区域的设计洪水推求提供参考,以此为基础,比较了三峡调节作用、下游的河道冲淤对中游各类型洪水过程的影响,三峡建库后前20年,长江中游尤其是城陵矶附近洪水形势依然严峻。
     总结流域洪水泥沙过程模拟与调控方法,文中建立了适用于复杂大型河网的泥沙数学模型,水流、泥沙系数矩阵均可分组求解,提出了多种汊点分沙模式。
     (6)分析了修建水库等水沙调节措施对下游河流生态环境影响的时空范围、作用方式;深入分析了生态需水量的概念内涵与基本要素,对各种估算方法的原理、适用性等进行了比较。
     文中一定程度上也对河流地貌—生态系统之间的联系,生态环境的层次分级,状态评估指标确定原则等进行了探讨,为今后研究打下基础。
     (7)探讨了如何利用水沙、河床、生态等各方面信息对河流系统整体功能进行评估,限制水沙过程最大调节程度的途径。
     全文主要从水沙变异的角度讨论了河流系统的调整机理,强调了调整过程的层次性、关联性、时空分异性等特征,为水沙变异条件下河流系统功能预测和评估打下初步的基础。
Global experience of river development history show that river function degradation were commonly during the course of water resources exploitation, due to the absent knowledge of river system response to human disturbance on natural water-sediment regimes. Two reasons underlie the present situation: one for insufficient recognition of the linkages and interaction between water, sediment, and river morphology, which arise unexpected phenomena or negative effects in river system; another for the partial understanding of environmental, social-economical impact of river alternation, certain riverine function is improved at the cost of health degradation of the whole system. Lots of facts indicate that river system functions were often notably affected before human recognition of influence of dam and other constructs. As restoration of riverine ecosystem is very difficult or even impossible, protection measures are more needed than remediation.
     River system is typically a complex open system, in which the variation of input variables of water and sediment will introduce adjustment of various aspects of the whole system. Processes of“impact and response”are all over the adjustment: changes of some features of flow &sediment regime induce some corresponding consequences of hydrological, hydraulic, morphologic or ecological aspect, thereby cause the change of related riverine functions. River system interaction with flow &sediment alternation covers problems of large variety, which range over vast time and space scales. Previous researches were comprehensive and intensive carried out in many fields, but most of them were from the view of different interests, and have different temporal and spatial scales. Furthermore, because most researches were specialized in single field and associate with single aspect of the system, the cause-effect linkages and hierarchy structure were unclear, as is not fit for trend prediction and holistic evaluation at riverine system scale.
     Researches in this paper try to find the linkage between variation of flow &sediment regime and riverine system adjustment phenomena, which is fundamental works for prediction of riverine functions, dynamic process of river system and its effects on flood control and ecosystem are considered. Main work in this paper can be divided into four parts: firstly, analysis of the changes of flow &sediment regime due to dam alternation and feature of downstream sediment transportation; secondly, river morphology change owing to flow &sediment regime variation, such as channel pattern and shoals; thirdly, analysis of the flood and ecosystem situation in the new riverine environment; fourthly, preliminary discussion of methodology of riverine functions evaluation and protection. Most work is with the background of downstream of the TGP (Three George Project), some key issues are shown as following:
     (1) The characteristics of interaction between flow &sediment regime and river system is clarified. With a review of the previous research about river system and its functions, it is concluded that establishment of linkages between variation of flow &sediment regime and riverine system adjustment phenomena is necessary and significative.
     (2) In the paper, a description of downstream flow &sediment regime from dams is given, which is likely to affect hydrological, hydraulic, geomorphologic or ecologic aspects of rivers.
     In view of the absent knowledge of sediment transportation character downstream dams, we made a statistical comparison with field data to show that the transportation capacity of down stream cannot exceed the value of pre-dam period under natural situation. This rule is observed in the data of both full size sediment and each grain group, which has little relation with the type of dam operation and downstream channel morphological adjustment.
     According to the common phenomenon of sediment transportation downstream dams, both feasibility of flow &sediment regulation in the Xiaolangdi reservoir on Huanghe River and rationality of degradation prediction downstream the TGP is discussed. Result shows that, the attempts to increase sediment transport capacity to exceed its natural value need more consideration, and the erosion process downstream the TGP is improbable.
     (3) Some variables and their interaction with river channel pattern process is analyzed, including range of flow variation, rising/falling rate of flood peak, load amount, sediment particle feature and etc, the role and function of flow &sediment regime and boundary condition is also clarified. With the field data of Danjiangkou dam, the relation between flow alternation and corresponding channel adjustment is classified, based on which the probable channel response downstream the TGP is outlined. Down reach of the Jingjiang river will undergo a bed erosion process immediately after the dam closure, with the gradually discharge increment, bank erosion will dominate the process, and the planform tend to sinuous. The bar-braided reach downstream Chenglingji is unlikely to experience any notable change for the unaltered flow &sediment regime.
     (4) Previous researches about shoals were often case studies, and there has been no comprehensive analysis of all types. In this paper, we try to summarize the key factor in the evolution of shoals among flow &sediment regimes and local channel morphology; the result indicates the latter plays the pivotal role. The difference between sediment carrying capacity and arriving sediment amount is the main cause of shoals, thus the exponent of sediment carrying capacity changing with discharge variation can be taken as index to indicate the level of shoal state.
     Using the data of Danjiangkou dam as reference, relation between the change of flow &sediment regime and shoals adjustment in different type of reach section is concluded, based on which, the probable trend of shoals adjustment downstream the TGP is predicted.
     (5) Flood situation downstream dams both in temporal and special scope are discussed with the background of the middle reach of the Yangtze River. Multi approaches are adopted to design the flood composition of typical flood type of this region. With the result of this part of work, flood situation change owing to the influence of dam regulation and channel bed degradation (or aggradation) is estimated separately. During the early 20 years of reservoir operation, the tense flood control situation will not be much released.
     Reviewed the simulation methodologies of flood &sediment transportation in regional scale, a mathematical model to simulate sediment transport in complex river network is introduced, in which sediment transport equations can be solved by gradation method with junctions group divided. Measures to solve sediment diversion at junction node are also discussed.
     (6) In the paper, we illustrated how altering flow &sediment regime affect downstream riverine ecosystem and its temporal and special scope. After an analysis of the concept of environmental flow and its basic factors, the principle and application of each methodology is compared.
     (7) It is prospected about how to make multi attributes evaluation of riverine functions with the information of all aspects, and how to limit the flow &sediment regime alternation to meet the goal of river management.
     Discussion in this paper is most of qualitative, and the aim is to give a description of flow &sediment regime alteration and the consequent river system adjustment of multi aspects, which will serve as foundation for the prediction of river function change under flow regulation.
引文
[1] 钟 钢 , 陈 雯 . 从 世 界 大 河 流 域 开 发 实 践 构 想 长 江 开 发 模 式 , 长 江 流 域 资 源 与 环境,1997(2):122-126
    [2] 王兆印.泥沙研究的发展趋势和新课题,地理学报.1998(3):245-255
    [3] Evans, BJ; Attia, K, Changes to the Properties of the River Nile Channel After High Aswan Dam, Physical Responses of the River Nile to Interventions. Canadian International Development Agency, Hull, Quebec, Canada, 1991. p 277-290, 4 fig, 11 tab, 12 ref.
    [4] 黄真理,阿斯旺高坝的生态环境问题.长江流域资源与环境,2001(1):82-88
    [5] W.H.麦克纳里[美],密西西比河防止海水入侵的措施,水利水电快报.1997(24):18-23
    [6] R.H. Kesel, Human modifications to the sediment regime of the Lower Mississippi River flood plain, Geomorphology 56 (2003) 325–334
    [7] 倪晋仁,钱征寒.论黄河功能性断流,中国科学 E 辑.2002(4):496-502
    [8] M.M. Grasser and F.El-Gamal. Aswan high dam: lessons learnt and on-going research, Water Power &Dam construction. 1994(1): 35-39
    [9] Angela H.Arthington, Bradley J.Pusey., Flow restoration and protection in Australian rivers, River Research and Applications 19:377-395(2003)
    [10] Sparks, Richard E. Need for ecosystem management of large rivers and their floodplains. Bioscience, 1995,Vol.45,No.3:168-182
    [11] 钱宁,张仁,周志德.河床演变学,北京:科学出版社,1989
    [12] Muhar, S; Schmutz, S; Jungwirth, M, River restoration concepts -- goals and perspectives, Hydrobiologia, vol. 303, no. 1-3, 183-194. 1995
    [13] 长江航务管理局,长江航道局.长江干线航道发展规划,2002.11
    [14] Shields, FD Jr; Simon, A; Steffen, LJ, Reservoir effects on downstream river channel migration, Environmental Conservation. Vol. 27, no. 1, pp. 54-66. Mar 2000.
    [15] 吴俊域,王培.南水北调对长江口生态环境的综合分析,科技导报.2002(2):13-16
    [16] J.V. Ward. Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation, Biological Conservation. 1998. Vol.83, No3: 269-278
    [17] Poff N.L., Allan J.D., Bain M.B. et al, The natural flow regime. A paradigm for river conservation and restoration. BioScience 1997. 47: 769–784.
    [18] 陈立,谢葆玲,崔承章等.对长江芦家河浅滩段演变特性的新认识,水科学进展.2000(3):241-246
    [19] Cairns Jr, J., McCormick, P.V., Neiderlehner, B.R., A proposed framework for developing indicators of ecosystem health. Hydrobiologia 1993,263, 1-44
    [20] Carolin M.Lorenz, Alison J.Gilbert, Wim P. Cofino. Indicators for transboundary river management. Environmental Management Vol. 28, No. 1, pp. 115–129
    [21] Malcolm D. Newson, Geomorphological concepts and tools for sustainable river ecosystem management, Aquatic Conservation: Marine and Freshwater Ecosystems. 12:365-379(2002)
    [22] David J.Gilvear. Patterns of the Channel Adjustment to Impoundment of the Upper River Spey, Scotland (1942-2000). River Research and Applications, 20: 151–165 (2004)
    [23] 韩其为.江湖流量分配变化导致长江中游新的洪水形势,泥沙研究.1999(5):1-12
    [24] 李义天,李荣,邓金运.长江中游泥沙输移规律及对防洪影响研究,泥沙研究.2000(3):12-20
    [25] 洪笑天,马绍嘉,郭庆伍.弯曲河流形成条件的实验研究,地理科学.1987(1):35-43
    [26] 韩其为,童中均.丹江口水库下游分汊河道河床演变特点及机理,人民长江
    [27] Stuart E.Bunn, Angela H.Arthington. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environmental Management Vol.30, No 4, 492-507
    [28] 尹国康.河流地貌系统的信息反馈,南京大学学报.1994(2):344-352
    [29] 许炯心.中国不同自然带的河流过程,北京:科学出版社.1996
    [30] 倪晋仁,马蔼乃.河流动力地貌学,北京:北京大学出版社.1998.10
    [31] 钱宁,张仁,周志德.河床演变学,北京:科学出版社,1989
    [32] 谢鉴衡.河床演变及整治,北京:水利水电出版社,1990
    [33] D.Scott Slocombe. Defining goals and criteria for ecosystem-based management, Environmental Management Vol. 22, No. 4, pp. 483–493,1998
    [34] Mark B.Bain, Amy L.Harig, Daniel P.Loucks, et al. Aquatic ecosystem protection and restoration: advances in methods for assessment and evaluation. Environmental Science &Policy 3(2000) 89-98
    [35] R.E. Tharme. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications 19:397-441(2003)
    [36] Petersen, R.C., The RCE: a riparian, channel and environmental inventory for small streams in the agricultural landscape. Freshwater Biology, 1992,27,295-306
    [37] K. Rowntree, R. Wadeson. A geomorphological framework for the assessment of instream flow requirements. Aquatic Ecosystem Health and Management 1(1998) 125-141
    [38] Tony Prato., Multiple-attribute elevation of ecosystem management for the Missouri River system. Ecological Economics 45(2003)297-309
    [39] Carlos C.Carriaga and Larry W.Mays. Optimal control approach for sedimentation control in alluvial rivers, Journal of Water Resources Planning and Management, ASCE, Vol. 121, No6, 1995, 408-417
    [40] 李国英,黄河调水调沙,人民黄河. 2002.24(11):1-5
    [41] 尤联元,金德生.水库下游再造床过程的若干问题,地理研究.1990(4):38-48
    [42] 龚国元.不同自然条件下水库下游的河床演变,地理科学.1984(2):15-124
    [43] 赵业安,潘贤弟,韩少发.”河流建库后下游河床演变与河床演变理论问题”——河流建库后下游河床演变.泥沙研究,1982(1):68-76
    [44] 韩其为,何明民.恢复饱和系数初步研究,泥沙研究.1997(3):32-40
    [45] 刘金梅 , 王士强 , 王光谦 . 冲积河流长距离冲刷不平衡输沙过程初步研究 , 水利学报.2002(2):47-53
    [46] 曹文洪,陈东.阿斯旺大坝的泥沙效应及启示,泥沙研究.1998(4):79-85
    [47] Lane E W. A study of the shape of channels formed by natural streams flowing in erodible material. M R D sediment series. No 9, U S Army Engineer Division, Missouri, Corps Engineers, Omaha, Nebraska,1957
    [48] Leopold L B, Wolman M G. River channel patterns: braided, meandering and straight. U S Geol Surv Prof Pap 282-B,1957
    [49] 方宗岱.河型分析及其在河道整治上的应用,水利学报.1964(1):1-11
    [50] 尹学良,梁志勇,陈金荣等.河型成因研究及其应用,泥沙研究.1999(2):13-19
    [51] 尹学良.河型成因研究,水利学报.1993(4)
    [52] 许炯心.河型对含沙量空间变异的响应及其临界现象,中国科学(D 辑).1997(6):548-553
    [53] 陆中臣,舒晓明.河型及其转化的判别,地理研究.1988(2):7-15
    [54] 中国科学院地理研究所,长江水利水电科学研究院,长江航道局规划设计研究所.长江中下游河道特性极其演变,北京:科学出版社,1985.5
    [55] 唐日长等.蜿蜒性河流形成条件的初步分析和造床试验研究,1963
    [56] 尹学良.弯曲性河流形成原因及造床试验初步研究.地理学报,1965(4)
    [57] 倪晋仁,张仁.弯曲河型与稳定江心洲河型的关系,地理研究.1991(2):68-74
    [58] Kondolf, GM; Swanson, ML, Channel adjustments to reservoir construction and gravel extraction along Stony Creek, California, Environmental Geology, vol. 21, no. 4, pp. 256-269, 1993
    [59] Nicola Surian, Massimo Rinaldi. Morphological response to river engineering and management in alluvial channels in Italy, Geomorphology 50 (2003) 307–326
    [60] Shields, FD Jr; Simon, A; Steffen, LJ, Reservoir effects on downstream river channel migration, Environmental Conservation. Vol. 27, no. 1, pp. 54-66. Mar 2000.
    [61] 许炯心.汉江丹江口水库下游河床调整过程中的复杂响应,科学通报.1989(6):450-452
    [62] 姜加虎,黄群.三峡工程对其下游长江水位影响研究,水利学报.1997(8):39-43
    [63] 韩其为 , 何 明民 . 三峡 水库修 建 后下游 长 江冲刷 及 其对防 洪 的影响 , 水 力发电学报.1995(3):34-46
    [64] 潘庆燊 , 曾静贤 , 欧阳履泰 . 丹江口水库下游河道演变及其对航道的影响 , 水利学报.1982(8):54-63
    [65] 金德生,刘书楼,郭庆伍.应用河流地貌实验与模拟研究,北京:地震出版社,1992
    [66] 蒋忠绥.湘江下游浅滩航道的整治,泥沙研究.1982(3):13-23
    [67] 邓修敏.长江中下游浅滩演变规律概析,人民长江
    [68] 陆永军,刘建民.长江中游典型浅滩演变与整治研究,中国工程科学.2002(7):40-45
    [69] J.Steiger, M.James and F.Gazelle. Channelization and consequences on floodplain system functioning on the Garonne River, SW France, Regulated Rivers: Research &Management, 14: 13–23 (1998)
    [70] 王船海,李光炽.流域洪水模拟,水利学报,1996(3):44-50
    [71] 胡四一,施勇,王银堂.长江中下游河湖洪水演进的数值模拟,水科学进展, 2002(13)3: 278-286
    [72] J.King, D.Louw. Instream flow assessments for regulated rivers in South Africa using the Building Block Methodology. Aquatic Ecosystem Health and Management 1(1998) 109-124
    [73] Angela H.Arthington, Johan L.Rall, Mark J.Kennard, et al. Environmental flow requirements of fish in Lesotho rivers using the DRIFT methodology. River Research and Application, 2003, 19:641-666
    [74] Michael J.Stewardson, Charistopher J.Gippel. Incorporating flow variability into environmental flow regimes using the flow events method, River Research and Application, 19:459-472(2003)
    [75] 李丽娟,郑红星.海滦河流域河流系统生态环境需水量计算,地理学报.2000(4):495-500
    [76] 倪晋仁,金玲.黄河下游河流最小生态环境需水量初步研究,水利学报.2002(10):1-7
    [77] 刘元亮等.科学认识论与方法论,北京:清华大学出版社,1987
    [78] 韩其为,杨克诚.三峡水库建成后下荆江河型变化趋势的研究,泥沙研究.2000(3):1-11
    [79] 贾锐敏.从丹江口,葛洲坝水库下游河床冲刷看三峡工程下游河床演变对航道的影响,见:长江三峡工程泥沙和航运问题研究成果汇编(II),交通部三峡办.1997
    [80] 长江科学院.三峡水库下游宜昌至大通河段冲淤一维数模计算分析(二),见:长江三峡工程泥沙问题研究(第七卷). 北京:知识产权出版社,2002 年,258-311
    [81] 中国水利水电科学研究院.三峡水库下游河道冲淤计算研究,见:长江三峡工程泥沙问题研究(第七卷) 北京:知识产权出版社, 2002 年,149-210
    [82] 李义天,赵明登,曹志芳.河道平面二维水沙数学模型.北京:中国水利水电出版社,2001.12
    [83] 孙昭华,李义天,曹志芳.河网非恒定水沙数学模型研究,水科学进展(待刊)
    [84] 夏军强.河岸冲刷机理研究及数值模拟,清华大学博士学位论文,2002.4
    [85] 张小峰,谈广鸣,许全喜等.基于 BP 神经网络的河道断面变形预测模型,水利学报.2002(11):8-13
    [86] Li Yitian, Roy R. Gu, Modeling Flow and Sediment Transport in a River System Using an Artificial Neural Network, Environmental Management Vol. 31, No. 1, 2003, Springer-Verlag New York Inc.
    [87] 陈一梅,徐造林.基于神经网络的河道浅滩演变预测模型,水利学报.2002(8):68-72
    [1] Mark B.Bain, Amy L.Harig, Daniel P.Loucks, et al. Aquatic ecosystem protection and restoration: advances in methods for assessment and evaluation. Environmental Science &Policy 3(2000) 89-98
    [2] M.M. Grasser and F. El-Gamal, Aswan High Dam: Lesson learnt and on-going research. Water Power & Dam Construction. Jun. 1994, 35-39
    [3] Garnett P. Williams. Bank-Full Discharge of Rivers. Water resources Research, 1978.14 (6): 1141-1154
    [4] Jan H. van den Berg. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 12 (1995) 259-279
    [5] 曹文洪,陈东.阿斯旺大坝的泥沙效应及启示. 泥沙研究, 1998(4):79-85
    [6] S. Anders Brandt, Classification of geomorphological effects downstream of dams. Catena 40 (2000) 375–401
    [7] David J. Topping, David M. Rubin, L.E. Vierra Jr., Colorado River sediment transport 1. Nature sediment supply limitation and influence of Glen Canyon Dam, Water Resources Research, Vol36. No2. Pages515-542, Feb. 2000
    [8] Chien, N., Changes in river regime after the construction of upstream reservoirs. Earth Surface Processes and Landforms, 10, 143–159. 1985.
    [9] 安新代,石春先,余欣等. 水库调水调沙回顾与展望——兼论小浪底水库运用方式研究. 泥沙研究, 2002(5), 36-42
    [10] Margareta B. Jansson and Ulf Erlingsson, Measurement and Quantification of a Sedimentation Budget for a Reservoir with Regular Flushing. Regulated Rivers: Research &Management 16:279-306(2000)
    [11] 钱宁,张仁,周志德. 河床演变学, 北京:科学出版社, 1989
    [12] Jonathan D. Phillips, Toledo Bend reservoir and geomorphic response in the lower Sabine River, River Research and Applications: 137–159 (2003)
    [13] S.Shalash, Degradation of the river Nile, Water Power &Dam Construction, July 1983:37-43
    [14] 李国英,黄河调水调沙,人民黄河. 2002.24(11):1-5
    [15] Scot E. Smith, General Impact of Aswan High Dam. Journal of Water Resource Planning and Management, Vol.112, No.4, Oct 1986
    [16] W. Brian Dade, Peter F. Friend. Grain-Size, Sediment-Transport Regime, and Channel Slope in Alluvial Rivers, The Journal of Geology, 1998, volume 106, p. 661–675
    [17] 许炯心,汉江丹江口水库下游河床调整过程中的复杂响应,科学通报,1989(6):450-452
    [18] Muniram Budhu, Member, ASCE, and Roger Gobin. Instability of the Sandbars in Grand Canyon. Journal of Hydraulic Engineering. Vol,120. No.8, Aug 1994
    [19] 钱宁,张仁,赵业安等.从黄河下游的河床演变规律来看河道治理中的调水调沙问题,地理学报,1978.33(1):13-26
    [20] Brandt,S.A.,Swenning, J.,1999. Sedimentological and geomorphological effects of reservoir flushing: the Cachi Reservoir, Costa Rica, 1996. Geografiska Annaler (81A)3,391–407
    [21] 长江水利委员会水文局.丹江口水库滞洪期浑水冲刷下游河道和蓄水期清水冲刷下游河道分析,长江三峡工程泥沙问题研究(第七卷). 北京:知识产权出版社,2002 年,42-51
    [22] 长江水利委员会水文局.丹江口水库修建后黄家港站水文特征变化,长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002 年,52-66
    [23] 长江水利委员会编.三峡工程泥沙研究,武汉:湖北科学技术出版社,1997 年
    [24] 谢鉴衡.河床演变及整治,北京:水利水电出版社,1997 年
    [25] 韩其为,王玉成,向熙珑. 丹江口水库坝下游河道清水冲刷时含沙量的恢复,见:汉江丹江口水库水文泥沙实验文集,长江流域规划办公室水文局,1983.7
    [26] 杨含侠,范荣生,李占斌.黄河三门峡建库前后 44 年下游河道冲淤变化特征分析,西安理工大学学报. 1997(4),356-362
    [27] 陈建国,周文浩,袁玉萍. 三门峡水库典型运用时段黄河下游粗细泥沙的输移和调整规律,泥沙研究.2002(2),15-22
    [28] 长江科学院.三峡水库下游宜昌至大通河段冲淤一维数模计算分析(二),见:长江三峡工程泥沙问题研究(第七卷).北京:知识产权出版社,2002 年,258-311
    [29] 中国水利水电科学研究院.三峡水库下游河道冲淤计算研究,见:长江三峡工程泥沙问题研究(第七卷).北京:知识产权出版社, 2002 年,149-210
    [30] 李义天,李荣,邓金运.长江中游泥沙输移规律及对防洪影响研究.泥沙研究,2000(3),12-20
    [31] 韩其为.江湖流量分配变化导致长江中游新的洪水形势.泥沙研究,1999(10),1-12
    [32] 三峡工程泥沙专家组工作组.长江中游宜昌至城陵矶河段查勘报告,见:长江三峡工程泥沙问题研究(第七卷).北京:知识产权出版社,2002 年,1-7
    [33] 长江水利委员会水文局.长江螺山至汉口河段沙量平衡分析,见:长江三峡工程泥沙问题研究(第六卷).北京:知识产权出版社,2002 年,807-832
    [34] 李义天,邓金运,孙昭华等.输沙量法和地形法计算螺山汉口河段淤积量比较,泥沙研究.2002(4),20-24
    [35] 长江水利委员会水文局.长江城陵矶至九江河段床沙组成分析,见:长江三峡工程泥沙问题研究(第六卷).北京:知识产权出版社,2002 年,800-806
    [36] 中国水利水电科学研究院.三峡建坝后下荆江河型变化趋势初步研究,见:长江三峡工程泥沙问题研究(第七卷).北京:知识产权出版社,2002 年,104-114
    [37] 韩其为 , 何 明民 . 三峡 水库修 建 后下游 长 江冲刷 及 其对防 洪 的影响 , 水 力发电学报,1995(3):34-46
    [38] 武汉大学,长江航道局,长江中游荆江沙质河床段长距离一维数值模拟.2004 年 2 月
    [39] 陆永军,三峡工程下游宜昌至武汉河段冲刷计算初步研究,“八五”国家科技攻关长江三峡工程泥沙与航运问题研究.1994 年 12 月 第三章
    [1] 钱宁,张任,周志德.河床演变学,北京:科学出版社,1989
    [2] 谢鉴衡,河床演变及整治.北京:中国水利水电出版社,1997
    [3] 倪晋仁,马蔼乃.河流动力地貌学.北京:北京大学出版社,1998
    [4] Schumm S A. Variability of river patterns. Nature(London), Phys Sci, 1972, 237,75~76
    [5] Yang C T, Song C C S. Theory of minimum energy and energy dissipation rate. Encyclopedia ofFluid Mechanic Gulf Publishing Co,1988
    [6] J.M. Nelson, Predictive Techniques for River Channel Evolution and Maintenance. Water, Air and Soil Pollution 90:321-333, 1996
    [7] Jan H. van den Berg, Prediction of Alluvial Channel Pattern of Perennial Rivers. Geomorphology 12(1995) 259-279
    [8] W.B. Dade, Grain size, sediment transport and alluvial channel pattern. Geomorphology 35(2000) 119–126
    [9] S. Anders Brandt, Classification of geomorphological effects downstream of dams. Catena 40 (2000) 375–401
    [10] Stuart N. Lane and Keith S. Richards, Linking River Channel Form and Process: Time, Space and Causality Revisited. Earth Surface Process and Landforms, VOL 22, 249–260 (1997)
    [11] John Lewin, Paul A. Brewer, Predicting channel patterns. Geomorphology 40(2001) 329–339
    [12] Song C C S, Yang C T. Minimum energy and energy dissipation rate. Journal of Hydrology Engineering, ASCE, 1982, 108
    [13] Haderson F M. Stability of alluvial channels. Trans ASCE, 1963,128:657-720
    [14] Parker G. On the development of meander bend. Journal of Fluid Mechanic, 1986, 162:139-156
    [15] Thakur T R, Scheidegger A E. A test of the statistical theory of meander formation. Water Resource Research, 1968,4:317-329
    [16] Chang T P, Toebes G H. A statistical comparison of meander planforms in the Wabash basin. Water Resources Research, 1976,6:557-578
    [17] 窦国仁.平原冲积河流及潮汐河口的河床形态.水利学报.1964(2)
    [18] 卢金友.冲积河流自动调整机理研究综述.长江科学院院报.1990(2):40-49
    [19] 洪笑天,马绍嘉,郭庆伍.弯曲河流形成条件的实验研究.地理科学.1987(1):35-43
    [20] Lane E W. A study of the shape of channels formed by natural streams flowing in erodible material. M R D sediment series. No 9, U S Army Engineer Division, Missouri, Corps Engineers, Omaha, Nebraska,1957
    [21] Leopold L B, Wolman M G. River channel patterns: braided, meandering and straight. U S Geol Surv Prof Pap 282-B,1957
    [22] 方宗岱.河型分析及其在河道整治上的应用,水利学报.1964(1):1-11
    [23] 姚爱峰,刘建军.冲积平原河型稳定性指标分析.泥沙研究.1995(3):56-63
    [24] 唐日长,杨达源,谢鉴衡等.(讨论)河型分析及其在河道整治上的应用,水利学报.1965(1):65-72
    [25] 尹学良,梁志勇,陈金荣等.河型成因研究及其应用.泥沙研究.1999(2):13-19
    [26] 尹学良.弯曲性河流形成原因及造床试验初步研究,地理学报.1965,31(4):287-303
    [27] 赵业安,潘贤弟,韩少发.河流建库后下游河床演变,泥沙研究.1982(1):68-76
    [28] 潘庆燊 , 曾静贤 , 欧阳履泰 . 丹江口水库下游河道演变及其对航道的影响 , 水利学报.1982(8):54-63
    [29] 童中均,韩其为.水沙过程的改变对蓄水水库下游河床变形的影响,见:长江流域规划办公室水文局编,汉江丹江口水库水文泥沙实验文集.1983
    [30] 尹国康,陈宝冲.从河相关系探讨长江冲积河床的自动调整,泥沙研究.1983(3):23-39
    [31] 尤联元.分汊型河床的形成与演变——以长江中下游为例,地理研究.1984(4):12-22
    [32] 尹学良.河型成因研究.水利学报.1993(4)
    [33] 许炯心.河型对含沙量空间变异的响应及其临界现象.中国科学(D 缉).1997(6):548-553
    [34] Nason, G.C. and Crock, J.C., 1992. A genetic classification of floodplains. Geomorphology, 4: 459-486
    [35] Carson, M.A., 1984. The meandering-braided threshold. Journal of hydrology, 73: 315-334.
    [36] W. Brian Dade, Peter F. Friend, Grain-Size, Sediment-Transport Regime, and Channel Slope in Alluvial Rivers. The Journal of Geology, 1998, volume 106, p. 661–675
    [37] 张瑞谨,从冲积平原河流的稳定性谈起.见:张瑞谨论文集,北京:中国水利水电出版社,1996
    [38] 倪晋仁,王随继.论顺直河流,水利学报.2000(12):14-20
    [39] 倪晋仁,张仁.弯曲河型与稳定江心洲河型的关系,地理研究.1991(2):68-74
    [40] 中国科学院地理研究所,长江水利水电科学研究院,长江航道局规划设计研究所著.长江中下游河道特性及其演变,北京:科学出版社,1985
    [41] S.A. Schumm, William, J. Spitz. Geological influence on the Lower Mississippi River and its alluvial valley. Engineering Geology 45(1996)245-261
    [42] Garnett P. Williams. Bank-Full Discharge of Rivers. Water resources Research, 1978. 14(6): 1141-1154
    [43] 齐璞,梁国亭.冲积河型形成条件的探讨,泥沙研究, 2002(3):39-43
    [44] 许炯心.沙质河床与砾石河床水流及能耗特征的比较及其地貌学意义,科学通报.1999(1):74-78
    [45] W. Brian Dade, Peter F. Friend. Grain-Size, Sediment-Transport Regime, and Channel Slope in Alluvial Rivers, The Journal of Geology, 1998, volume 106, p. 661–675
    [46] Henderson, F.M., 1961. Stability of alluvial channels. J. Hy-draulics. Div., ASCE87, 109–138.
    [47] Milliar, R.G. and Quick, M.C., 1993. Effect of bank stability on geometry of gravel rivers. Journal of Hydraulic Engineering., 119:1343-1363
    [48] 张红武,赵连军,曹丰生.游荡河型成因及其河型转化问题研究,人民黄河.1996(10):11-15
    [49] Begin ZB. The Relationship between flow-shear and stream pattern. Journal of hydrology, 1981,52:307-319
    [50] Parker, G., 1976. On the cause and characteristic scales of meandering and braiding. Journal of Fluid Mechanics 76, 457–480.
    [51] 许炯心.砂质河床与砾石河床的河型判别研究,水利学报, 2002(10):14-20
    [52] Nicola Surian, Massimo Rinaldi. Morphological response to river engineering and management in alluvial channels in Italy, Geomorphology 50 (2003) 307–326
    [53] 许炯心,水库下游河道复杂响应的试验研究,泥沙研究,1986(4):50-57
    [54] 龚国元,不同自然条件下水库下游的河床演变,地理科学, 4, 1984(2):115-124.
    [55] 尤联元,金德生.水库下游再造床过程的若干问题,地理研究,9, 1990(4):38-48
    [56] M.M. Grasser and F. El-Gamal, Aswan High Dam: Lesson learnt and on-going research. Water Power & Dam Construction. Jun. 1994, 35-39
    [57] Jonathan D. Phillips, Toledo Bend reservoir and geomorphic response in the lower Sabine River, River Research and Applications: 137–159 (2003)
    [58] Chien, N., 1985. Changes in river regime after the construction of upstream reservoirs. Earth Surface Processes and Landforms 10, 143–159.
    [59] 许炯心,汉江丹江口水库下游河床调整过程中的复杂响应,科学通报.1989(6): 450-452
    [60] Bull, W.B., 1979. Threshold of critical power in streams. American Geology Society Bulletin 90, 453–464.
    [61] 湖北省地质调查院,长江中游荆江及江汉平原水患区环境地质调查评价报告. 2003.3
    [62] 武汉水利电力学院河流泥沙工程学教研室编著,河流泥沙工程学,北京:水利出版社,1982
    [63] 金德生,刘书楼,郭庆伍.应用河流地貌实验与模拟研究,北京:地震出版社,1992
    [64] 潘庆燊,杨国录,府仁寿.三峡工程泥沙问题研究,北京:中国水利水电出版社,1999
    [65] 谢鉴衡,洞庭湖演变与长江中游河流纵剖面的调整.谢鉴衡论文集,武汉水利电力大学
    [66] 余文畴,张敬.长江中下游长河段阻力系数分析,人民长江,1995(4)8-14
    [67] 董松年,汉江丹江口水库坝下河床演变及其对航道的影响.见:汉江航道整治与泥沙问题研究论文集,2002.11
    [68] 韩其为,王玉成,向熙珑.丹江口水库坝下游河道清水下泄冲刷时含沙量的恢复,见:长江流域规划办公室水文局编,汉江丹江口水库水文泥沙实验文集,1983
    [69] Williams, G.P., Wolman, M.G., 1984. Downstream effects of dams on alluvial rivers. In: Geological Survey Professional Paper 1286 U.S. Government Printing Office, Washington, DC, v q 83 pp.
    [70] 韩其为,童中均.丹江口水库下游分汊河道河床演变特点及机理,人民长江
    [71] 曹文洪,陈东. 阿斯旺大坝的泥沙效应及启示泥沙研究 1998(4):79-85
    [72] 韩其为,杨克诚.三峡水库建成后下荆江河型变化趋势的研究泥沙研究 2000(3):1-11
    [73] 喻学山.汉江丹江口水库坝下游河道河床演变.汉江丹江口水库下游河道演变分析文集(续集),水利部长江水利委员会水文局,1989 年 11 月,69-86 页.
    [74] 周开萍.丹江口水库对汉江河口段及武汉港区的影响.汉江丹江口水库下游河床演变分析文集,长江流域规划办公室水文局,1982 年 3 月,118-130 页.
    [75] 长江委荆江水文水资源勘测局,荆江水文局 2003 年水文泥沙观测工作汇报.2003 年 12 月
    [76] Nicola Surian.Channel changes due to river regulation: the case of the Plave River, Italy, Earth Surface Processes and Landforms, 24, 1135-1151 (1999)
    [77] David J. Gilvear. Patterns of channel adjustment to impoundment of the upper river Spey, Scotland (1942-2000), River Research and Application, 20: 151–165 (2004)
    [78] David Gilvear, Sandra Winterbottom and Henry Sichingabula. Character of channel planform change and meander development: Luangwa River, Zambia, Earth Surface Processes and Landforms, 25, 421-436 (2000)
    [1] 谢鉴衡,河床演变及整治.中国水利水电出版社,1997
    [2] 平原航道整治,人民交通出版社.1977
    [3] 三峡建坝后荆江重点河段航道变化及整治措施初步研究,交通部天津水运工程科学研究所,1995.11
    [4] 赵志舟,周华君,黄超等.长江中游陆溪口水道演变与整治设想,水利水运工程学报,2003(1): 53-57
    [5] 冷魁,罗海超等.长江中下游鹅头型分汊河道的演变特征及形成条件,水利学报,1994(10): 82-89
    [6] 马有国,高幼华.长江中下游鹅头型汊道演变规律的分析,泥沙研究, 2001(1): 11-15
    [7] 中国科学院地理研究所, 长江水利水电科学研究院, 长江航道局规划设计研究所. 长江中下游河道特性及其演变, 北京: 科学出版社, 1985
    [8] 长江水利水电科学研究院河流研究室, 荆江特性研究, 见: 中国地理学会 1977 年地貌学术讨论会文集, 科学出版社, 1981
    [9] 陈立, 谢葆玲, 崔承章等. 对长江芦家河浅滩段演变特性的新认识, 水科学进展, 2000(3): 241-246
    [10] 黄南荣, 讨论:河型分析及其在河道整治上的应用, 水利学报, 1965(1): 65-72
    [11] 余文畴. 长江分汊河道口门水流及输沙特性, 长江水利水电科学研究院院报. 1987(1): 14-25
    [12] 尹国康, 陈宝冲. 从河相关系探讨长江冲积河床的自动调整, 泥沙研究. 1989(3): 32-39
    [13] 李泗喜.关于松花江下游河道及浅滩演变基本规律的分析, 水运工程. 1994(11):1-6
    [14] 谢凌峰,罗敬思. 北江航道整治工程及效果分析, 水运工程. 2002(8): 49-53
    [15] 童中均,韩其为. 水沙过程的改变对蓄水水库下游河床变形的影响,见:汉江丹江口水库水文泥沙实验文集,长江流域规划办公室水文局.1983.7
    [16] 韩其为,童中均.丹江口水库下游分汊河道河床演变特点及机理,人民长江
    [17] 长江中下游河道基本特征.长江流域规划办公室水文局.1983.10
    [18] 尤联元,金德生.水库下游再造床过程的若干问题,地理研究.1990,9(4): 38-48
    [19] 潘庆燊,曾静贤,欧阳履泰.丹江口水库下游河道演变及其对航道的影响,水利学报.1982(8): 54-63
    [20] 汉江中下游河道查勘组,汉江中下游河道查勘报告.见:长江三峡工程泥沙问题研究第 7 卷,北京:知识产权出版社,2001
    [21] 中国水利水电科学研究院,三峡建坝后下荆江河型变化趋势初步研究,见:长江三峡工程泥沙问题研究第 7 卷,北京:知识产权出版社
    [22] 长江科学院,湖北省潜江市汉江兴隆闸整治工程河工模型试验研究报告,1996.9
    [23] 罗立平,胡丽萍.汉江泽口河段河道整治工程浅析,见:汉江航道整治与泥沙问题研究论文集,2002.11
    [24] 龚国祥,王桂林.汉江皇庄—新城河段航道整治工程研究.见:汉江航道整治与泥沙问题研究论文集,2002.11
    [25] 许炯心,汉江丹江口水库下游河床调整过程中的复杂响应,科学通报.1989(6):450-452
    [26] 董松年,汉江丹江口水库坝下河床演变及其对航道的影响,见:汉江航道整治与泥沙问题研究论文集,2002.11
    [27] 贾锐敏.从丹江口、葛洲坝水库下游河床冲刷看三峡工程下游河床演变对航道的影响,见:长江三峡工程泥沙和航运问题研究成果汇编(II),交通部三峡办,1997
    [28] 贾锐敏,陈风云,陆永军.荆江重点河段航道变化及整治措施初步研究,水道港口.1996(4):20-32
    [29] 韩其为,何明民.从裁弯后荆江断面形态调整看三峡水库修建后横断面变化.见:三峡水利枢纽工程应用基础研究(第二卷).地质出版社,1997 年
    [30] 尹国康,论河床形态与动力的关系.见:中国地理学会 1977 年地貌学术讨论会文集,科学出版社,1981
    [31] Leopold, L.B., Wolman, M.G. and Miller, J.P. Fluvial Process in Geomorphology. Freeman, San Francisco and London, 1964, pp.198-328
    [32] Knighton, A.D., Variations in At-a-station Hydraulic Geometry. Am. Jour. Sci., Vol.275, No 2, 1975, pp. 168-218
    [33] 尹国康,陈宝冲,从河相关系探讨长江冲积河床的自动调整,泥沙研究.1983(3):32-39
    [34] 尹学良,断面形态问题.见:河床演变河道整治论文集,北京:中国建材工业出版社,1996.8
    [35] 长江航务管理局,长江航道局.长江干线航道发展规划,2002.11
    [36] 刘怀汉,何明宪.三峡工程 135m蓄水运用对长江中游航道的影响,水利水运工程学报.2003(1):49-52
    [37] 邓敏修.长江中下游浅滩演变规律概析,人民长江
    [38] 钱宁,张仁,周志德.河床演变学.北京:科学出版社,1989
    [39] Richards, K.S., The Morphology of Riffle-Pool Sequences, Earth Surface Processes, Vol.1, 1976, pp.71-88
    [40] 尤联元,分汊型河床的形成与演变——以长江中下游为例.地理研究,1984(4):12-22
    [41] 南京水利科学研究院,长江下游东流水道航道整治工程防洪影响评价,2003 年 3 月
    [42] 长江水利委员会长江科学院,陆溪口河段航道整治工程对河势及行洪影响分析报告,2003 年 3月
    [43] 长江水利委员会长江科学院,罗湖洲水道航道整治工程对河势及行洪影响分析报告,2003 年 3月
    [44] 长江科学院.三峡水库下游宜昌至大通河段冲淤一维数模计算分析(二),见:长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002 年,258-311
    [45] 中国水利水电科学研究院.三峡水库下游河道冲淤计算研究,见:长江三峡工程泥沙问题研究(第七卷) 北京:知识产权出版社, 2002 年,149-210
    [46] 长江三峡工程”九五”泥沙研究综合分析,见:长江三峡工程泥沙问题研究(第八卷) 北京:知识产权出版社, 2002 年
    [47] 潘庆燊等,三峡工程泥沙问题研究,三峡水利枢纽工程几个关键问题的应用基础研究丛书,北京:中国水利水电出版社,第 208 页,1999 年
    [48] 许炯心,水库下游河道复杂响应的试验研究,泥沙研究.1986(4):50-57
    [49] 卢金友,水利枢纽下游河道水位流量关系的变化.水利水运科学研究,1994(2):109-117
    [50] 长江航道规划设计研究院,长江中游沙市河段河床演变分析报告.2002.9
    [1] 洪庆余,江河防洪丛书——长江卷.北京:水利电力出版社,1998
    [2] 李义天 , 倪 晋仁 . 泥沙 输移对 长 江中游 水 位抬升 的 影响 , 应用 基础与 工 程科学学报.1998,(6)3:215-221
    [3] 韩其为,江湖流量分配变化导致长江中游新的洪水形势. 泥沙研究,1999(5):1-12
    [4] R.H. Kesel. Human modifications to the sediment regime of the Lower Mississippi River flood plain, Geomorphology 56 (2003) 325–334
    [5] Paul E. Grams, John C. Schmidt. Stream flow regulation and multi-level flood plain formation: channel narrowing on the aggrading Green River in the eastern Uinta Mountains, Colorado and Utah, Geomorphology 44 (2002) 337–360
    [6] J.Steiger, M.James and F.Gazelle. Channelization and consequences on floodplain system functioning on the Garonne River, SW France, Regulated Rivers: Research &Management, 14: 13–23 (1998)
    [7] David J.Gilvear. Patterns of the Channel Adjustment to Impoundment of the Upper River Spey, Scotland (1942-2000). River Research and Applications, 20: 151–165 (2004)
    [8] 水利水电科学研究院水资源研究所主编,水文计算经验汇编.第四集,水利电力出版社,1985
    [9] 赵英林,王运辉.洞庭湖设计洪水的分析与计算,水利学报.1995(10)
    [10] 水利水电工程设计洪水计算手册,水利部长江水利委员会水文局,水利部南京水文水资源研究所主编.中国水利水电出版社,1995.10
    [11] 秦毅,河流交汇处设计洪峰流量的分析研究, 西安理工大学学报,2001(17)1:57-61
    [12] 水利水电工程设计洪水计算规范,中华人民共和国行业标准,SL 44—93,中华人民共和国水利部能源部发布,水利电力出版社,1994
    [13] Olive, L.J., Olley, J.M., 1997. River regulation and sediment transport in a semiarid river: the Murrumbidgee River, New South Wales, Australia. In: Human Impact on Erosion and Sedimentation, Proceedings of Symposium S6 during the 5th Scientific Assembly of the IAHS, Rabat, Morocco, 23 April to 3 May. IAHS Publ. Vol. 245, 283–290.
    [14] 长江水利委员会编.三峡工程泥沙研究,武汉:湖北科学技术出版社,1997 年
    [15] Jonathan D. Phillips, Toledo Bend reservoir and geomorphic response in the lower Sabine River, River Research and Applications: 137–159 (2003)
    [16] Petts GE, Thoms MC. 1987. Morphology and sedimentology of a tributary confluence bar in aregulated river, North Tyne, UK. Regulated Rivers: Research and Management 12: 433–440.
    [17] Greenwood MT, Bickerton MA, Gurnell AM, Petts GE. 1999. Channel changes and invertebrate faunas below Nant-y-Moch dam, River Rheidol, Wales, UK: 35 years on. Regulated Rivers: Research and Management 15: 99–112.
    [18] 杨含侠,范荣生,李占斌.黄河三门峡建库前后 44 年下游河道冲淤变化特征分析.西安理工大学学报. 1997(4),356-362
    [19] Brandt,S.A.,Swenning, J.,1999. Sedimentological and geomorphological effects of reservoir flushing: the Cachi Reservoir, Costa Rica, 1996. Geografiska Annaler (81A)3,391–407
    [20] Collier, M., Webb, R.H., Schmidt, J.C., 1996. Dams and rivers: primer on the downstream effects of dams. U.S. Geol. Surv. Circ. 1126, 94 pp.
    [21] Scot E.Smith. General impact of Aswan high dam. Journal of Water Resources Planning and Management, Vol.112, No.4, 1986
    [22] 湖北省地质调查院,长江中游荆江及江汉平原水患区环境地质调查评价报告,2003 年 3 月
    [23] 李义天,邓金运,孙昭华. 输沙量法和地形法计算螺山汉口河段淤积量比较, 泥沙研究, 2002(4)
    [24] 钱宁,张仁,赵业安,刘月兰, 从黄河下游的河床演变规律来看河道治理中的调水调沙问题.地理学报,(33)1,1978,13-26
    [25] 彭杨,水库水沙联合调度方法研究及应用,武汉大学博士学位论文,2002 年 4 月
    [26] 朱江,曾庆存, 郭冬建等.关于航道挖泥沙工程最优控制问题. 中国科学(E 辑), 1997 (27) 1: 61-66
    [27] Carlos C.Carriaga and Larry W.Mays. Optimal control approach for sedimentation control in alluvial rivers, Journal of Water Resources Planning and Management, ASCE, Vol. 121, No6, 1995, 408-417
    [28] Parthasarathi Choudhury, Rakesh Kumar Shrivastava, and Sandeep M. Narulkar. Flood Routing in River Networks Using Equivalent Muskingum Inflow, Journal of Hydrologic Engineering, ASCE, Vol. 7, No. 6, 2002.413-419
    [29] 白玉川,万艳春等. 河网非恒定流数值模拟的研究进展, 水利学报, 2000(12),43-47
    [30] 李义天, 河网非恒定流隐式方程组的汊点分组解法, 水利学报, 1997(3),49-57
    [31] 洞庭湖区分蓄洪区调度运用数学模型研究, 武汉水利电力大学, 1997 年 8 月
    [32] 丁君松,丘凤莲.汊道分流分沙计算, 泥沙研究, 1981(1):58-64
    [33] 秦文凯,府仁寿等.汊道悬移质分沙模型,泥沙研究,1996(3):21-29
    [34] 诸裕良,严以新等.一维河网非恒定流及悬沙数学模型的节点控制方法,水动力学研究与进展(A 辑),2001,16(4),503-510
    [35] 宫平,卢金友等.江湖一维非恒定流河网水沙数学模型研究.江河湖泊泥沙研究,武汉:湖北辞书出版社,2002 年,24-35
    [36] 杨国录,河流数学模型. 北京:海洋出版社,1993
    [37] 李义天,尚全民.一维不恒定流泥沙数学模型研究, 泥沙研究.1998(1):81-87
    [38] 王船海,李光炽.流域洪水模拟,水利学报,1996(3):44-50
    [39] 胡四一,施勇,王银堂.长江中下游河湖洪水演进的数值模拟,水科学进展, 2002(13)3: 278-286
    [40] Culver T. B, and Shoemaker C.A. (1992). Dynamic optimal control for groundwater remediation with flexible management periods. Water Resources Research., 28(3), 629-641
    [41] Carlos C.Carriaga and Larry W.Mays. Optimization modeling for sediment in alluvial rivers. Journal of Water Resources Planning and Management, ASCE, 1995, Vol.121,No.3,251-259
    [42] 朱江,曾庆存,郭冬建.一个水动力泥沙数学模型的伴随算子法敏感性分析,泥沙研究1998(6):89-96
    [43] Jiang Zhu, Qingcun Zeng, Dongjian Guo, et al. Optimal control of sedimentation in navigation channels, Journal of Hydraulic Engineering, ASCE, 1999,Vol. 125, No. 7, 750-759
    [44] 三峡工程水文研究,长江水利委员会编,湖北科学技术出版社,1997.10
    [45] 长江流域防洪规划水文分析报告,长江水利委员会水文局,2000.6
    [46] 张有芷、周良芳、张少婕等,长江中游干流大洪水的遭遇与组成特性分析,水利水电快报,1999.1
    [47] 武汉大学,武汉长江隧道(含地铁)工程水沙系列研究,2002 年 7 月
    [48] 武汉大学,长江水利委员会防汛办,长江中游洪水调度研究,2003 年 7 月
    [49] 施修端等.长江中游汉口站大水年水位流量关系变化分析,水利水电快报.2000(5):17-19
    [50] 韩其为 , 何 明民 . 三峡 水库修 建 后下游 长 江冲刷 及 其对防 洪 的影响 , 水 力发电学报,1995(50)3:34-46
    [51] 长江科学院.三峡水库下游宜昌至大通河段冲淤一维数模计算分析(二)[A],见:长江三峡工程泥沙问题研究(第七卷)[C]. 北京:知识产权出版社,2002 年,258-311
    [52] 中国水利水电科学研究院.三峡水库下游河道冲淤计算研究[A],见:长江三峡工程泥沙问题研究(第七卷)[C]. 北京:知识产权出版社, 2002 年,149-210
    [53] 李义天, 孙昭华, 邓金运等. 泥沙淤积与长江中游水患. 泥沙研究, 2004 年 2
    [54] 武汉大学,长江航道局,长江中游荆江沙质河床段长距离一维数值模拟.2004 年 2 月
    [55] 陆永军,三峡工程下游宜昌至武汉河段冲刷计算初步研究,“八五”国家科技攻关长江三峡工程泥沙与航运问题研究.1994 年 12 月
    [1] Petts. G.E. Long term consequences of upstream impoundment, Environmental Conservation. 1980,7(4).325-332
    [2] Benn, P.C., Erskine, W.D. Complex channel response to flow regulation: Cudgegong River below Windamere Dam, Australia. Application of Geography. 14, 153–168, 1994.
    [3] Scot E.Smith. General impact of Aswan high dam, Journal of Water Resources Planning and Management, Vol.112,No.4, 1986
    [4] M.M. Grasser and F.El-Gamal. Aswan high dam: lessons learnt and on-going research, Water Power &Dam construction. 1994(1): 35-39
    [5] K. Rowntree, R. Wadeson. A geomorphological framework for the assessment of instream flow requirements. Aquatic Ecosystem Health and Management 1(1998) 125-141
    [6] Stuart E.Bunn, Angela H.Arthington. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environmental Management Vol.30, No 4, 492-507
    [7] 金以圣主编,生态学基础,北京:中国人民大学出版社,1988.10
    [8] Mark B.Bain, Amy L.Harig, Daniel P.Loucks, et al. Aquatic ecosystem protection and restoration: advances in methods for assessment and evaluation. Environmental Science &Policy 3(2000) 89-98
    [9] 王玉成,童中均.丹江口水库库区和下游河道生态环境的变化,汉江丹江口水库水文泥沙实验文集,长江流域规划办公室水文局,1983 年 7 月
    [10] Sparks, Richard E. Need for ecosystem management of large rivers and their floodplains. Bioscience, 1995,Vol.45,No.3:168-182
    [11] J.V. Ward. Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation, Biological Conservation. 1998. Vol.83, No3: 269-278
    [12] Kelly M.Frothingham, Bruce l.Rhoads, Edwin E.Herricks. A multiscale conceptual framework for integrated ecogeomorphological research to support stream naturalization in the agriculture Midwest. Environmental Management Vol.29, No.1, pp.16-33,2002
    [13] D. Scott Slocombe. Defining goals and criteria for ecosystem-based management, Environmental Management Vol. 22, No. 4, pp. 483–493,1998
    [14] Malcolm D. Newson, Geomorphological concepts and tools for sustainable river ecosystem management, Aquatic Conservation: Marine and Freshwater Ecosystems. 12:365-379(2002)
    [15] Carolin M.Lorenz, Alison J.Gilbert, Wim P. Cofino. Indicators for transboundary river management. Environmental Management Vol. 28, No. 1, pp. 115–129
    [16] Hellawell JM. Biological indicators of fresh water pollution and environmental management[M]. Elsevier, London. 1986
    [17] 赵志模,周新远,生态学引论,重庆:科学技术文献出版社,1984
    [18] Cairns Jr, J., McCormick, P.V., Neiderlehner, B.R., A proposed framework for developing indicators of ecosystem health. Hydrobiologia 1993,263, 1-44
    [19] Kinsolving, A.D., Bain, M.B., Fish assemblage recovery along a riverine disturbance gradient. Ecological Application 1993, 3,531-544
    [20] Michael K.Joy, Russell G.Death. Assessing Biological Integrity Using Freshwater Fish and Decapod Habitat Selection Functions. Environmental Management, 2004
    [21] Kerans, B.L., Karr, J.R., A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee valley. Ecological application. 1994,4,768-785
    [22] Petersen, R.C., The RCE: a riparian, channel and environmental inventory for small streams in the agricultural landscape. Freshwater Biology, 1992,27,295-306
    [23] 肖笃宁,李秀珍.当代景观生态学的进展和展望.地理科学, 1997(17)4: 356-364
    [24] R.E. Tharme. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications 19:397-441(2003)
    [25] J.King, D.Louw. Instream flow assessments for regulated rivers in South Africa using the Building Block Methodology. Aquatic Ecosystem Health and Management 1(1998) 109-124
    [26] Jackie King, Cate Brown and Hossein Sabet. A scenario-based holistic approach to environmental flow assessments for rivers. River Research and Application 19:619-639(2003)
    [27] Angela H.Arthington, Bradley J.Pusey., Flow restoration and protection in Australian rivers, River Research and Applications 19:377-395(2003)
    [28] I.G. Jowett., Instream flow methods: A comparison of Approaches, Regulated Rivers: Research &Management, Vol.13, 115-127(1997)
    [29] Michael J.Stewardson, Charistopher J.Gippel. Incorporating flow variability into environmental flow regimes using the flow events method, River Research and Application, 19:459-472(2003)
    [30] Tennant, D.L.,1976. Instream flow regimes for fish, wildlife, recreation and related environmental resources. Fisheries 1(4), 6.
    [31] Richter BD, Baumgartner JV, Wigington R, Braun DP. How much water does a river need? Freshwater Biology 1997.37: 231–249.
    [32] Poff N.L., Allan J.D., Bain M.B. et al, The natural flow regime. A paradigm for river conservation and restoration. BioScience 1997. 47: 769–784.
    [33] 倪晋仁,金玲,赵业安等.黄河下游河流最小生态环境需水量初步研究, 水利学报.2002 (10):1-7
    [34] 李丽娟,郑红星.海滦河流域河流系统生态环境需水量计算,地理学报.2000, 55(4):495-500
    [35] Reiser, D.W., Wesche,T.A., and Estes, C. Status of instream flow legislation and practices in North America. Fisheries, 1989,14:22-29
    [36] D.A. Hughes,. Providing hydrological information and data analysis tools for the determination of ecological instream flow requirements for South African rivers. Journal of Hydrology 241(2001) 140-151
    [37] Angela H.Arthington, Johan L.Rall, Mark J.Kennard, et al. Environmental flow requirements of fish in Lesotho rivers using the DRIFT methodology. River Research and Application, 2003, 19:641-666
    [38] 马毅杰,蔡述明,陆彦椿.三峡工程对长江中游地下水动态和土壤潜育的影响,长江流域资源与环境.1997(11): 350-354
    [39] 贺建林,张光贵,卜跃先.洞庭湖区农业生产条件演变趋势分析,长江流域资源与环境. 1996, 5(2): 166-171
    [40] 李利强,张建波,王文清.三峡工程对长江中游湖泊生态环境影响及监测因子的优选.重 庆环境科学,1999,21(5):55-57
    [41] 邹邵林,刘新平,郭聪.三峡工程对洞庭湖区滩地出露天数的影响,长江流域资源与环境.2000,9(2): 254-259
    [42] 吴俊棫,王培南.水北调对长江口生态环境影响的综合分析.科技导报, 2002.2: 13-16
    [43] 沈焕庭,李九发,肖成猷.人类活动对长江河口过程的影响.气候与环境研究.1997,(2): 91-94
    [44] 长江水资源保护局,上海站长江水资源保护科研所.三峡工程不同蓄水位对河口生态环境影响,见:长江三峡工程生态与环境影响文集.北京:水利电力出版社,1988
    [1] 李丽娟、郑红星,海滦河流域河流系统生态环境需水量计算,地理学报,2000(4):495-500
    [2] John B.Loomis., Environmental valuation Techniques in water resource decision making. Journal of Water Resources Planning and Management, ASCE, 2000, Vol.126, No.6, 339-344
    [3] Tony Prato., Multiple-attribute elevation of ecosystem management for the Missouri River system. Ecological Economics 45(2003)297-309
    [4] 纪昌明,梅亚东. 洪灾风险分析.武汉:湖北科学技术出版社,2000 年
    [5] Angela H.Arthington, Bradley J.Pusey., Flow restoration and protection in Australian rivers, River Research and Applications 19:377-395(2003)
    [6] R.E. Tharme. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications 19:397-441(2003)
    [7] 张欧阳,许炯心,张红武.黄河下游花园口河段洪水涨落过程中河床横断面形态的调整.水科学进展, 2003,14(4):401-406
    [8] 石伟,王光谦.黄河下游输沙水量研究综述.水科学进展,2003,14(1):118-123
    [9] 倪晋仁,王裕东,钱征寒等.黄河下游水资源转化结构及其变化规律,中国科学(待刊)
    [10] Jackie King, Cate Brown and Hossein Sabet. A scenario-based holistic approach to environmental flow assessments for rivers. River Research and Application 19:619-639(2003)
    [11] Angela H.Arthington, Johan L.Rall, Mark J.Kennard, et al. Environmental flow requirements of fish in Lesotho rivers using the DRIFT methodology. River Research and Application, 2003, 19:641-666
    [12] K. Rowntree, R. Wadeson. A geomorphological framework for the assessment of instream flow requirements. Aquatic Ecosystem Health and Management 1(1998) 125-141
    
    [13] 杨意诚,长江流域的水现状特性与水资源.长江流域的水与可持续发展,2000
    [14] 冯利华,长江的水资源承载力.科技导报.2002 (7): 6-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700