淡水生态系统退化机制与恢复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现状调查的基础上,探讨了淡水生态系统(包括水质、淡水藻类、河湖岸带、水生动植物、沉积物等因子)的退化现状、退化原因与机制,建立了退化评价标准体系和方法,评估淡水生态系统退化水平。通过建立水生态AQUATOX模型,定量化模拟预测了淡水生态系统的退化演变和生态恢复方案的效果。
     研究结果表明,目前退化淡水生态系统水质均已退化至地表水Ⅳ—Ⅴ级质量水平,浮游藻类结构简单,以蓝—绿藻结构为主,且多为富营养化指示种类,藻类多样性指数低。着生藻类主要以硅藻群落为主,藻类细胞小型化趋势严重,优势种多为耐污种,大型丝状绿藻仅出现在春季。河(湖)岸带宽度狭窄,水生植被以挺水植物和浮叶植物为主,沉水植物多为高冠型种类且有退化演替趋势;水泥垂直陡岸带隔离水陆生态系统,大量植物残枝和淤泥在枯水期淤积河岸,造成裸露环境,沉积物厚度加深,为有机质丰富淤泥型,底栖动物种类稀少单一,且分布不均。
     通过参照体系法建立了淡水生态系统退化评价指标体系,利用主成分析法筛选出了BOD_5、CODcr、DO、NH_3-N、C_P、TP、DDA、B-IBI、F-IBI、HQI等10个指标,作为淡水生态系统退化程度指示指标。按照理论参照标准将淡水生态系统退化程度分为5个等级:微退化、轻度退化、中度退化、强度退化、极度退化。灰色关联度法综合评价得出张家浜河生态系统退化水平为轻度—中度退化等级,镜月湖生态系统退化等级为轻度退化,部分区域为强度退化。
     通过建立张家浜河AQUATOX生态模型,模拟和预测该河流5年后生态演替趋势,结果表明,在无外来干扰的情况下,张家浜河生态环境因子演替会年复一年按照各自的生长变化规律进行,呈现出重复演替规律。通过对可能引起生态系统退化的营养盐负荷、有机污染负荷、沉水植物量、沉积物碎屑输入量等条件设置不同干扰,模拟其对淡水生态演替可能产生的后果。结果表明,水体有机污染负荷BOD_5增加10倍,可以导致水生态系统的全面退化;而分别增加氮磷面源和污染负荷的10倍,则会引起水质和藻类不同程度的退化;沉水植物生物量的降低可使着生藻类生物量全面提高;沉积物碎屑输入量增加5倍,不但可造成水质变差,还可引起大型底栖动物生物量的下降。
     基于AQUATOX模拟不同生态恢复方案的作用效果,结果表明除了控制有机污染源以外,恢复河岸带生态环境,改建自然河道,能够降低水体总磷含量40%左右,有效恢复沉水水生植生物量20%以上,对营养盐降低和底栖动物多样性恢复均有明显作用;通过分别控制氮磷污染负荷50%的模拟研究,发现水质变化不大,沉水植物和底栖动物生物量均有升高,控制磷比控制氮更能有效防止蓝藻水华发生;控制沉积物全部外源负荷,能够大量削减水体营养盐含量,改善水质状况,有益于大型沉水植物生长,减少蓝藻生物量,但是对于底栖动物生长不利。因此对于淡水生态系统的恢复研究,必须结合水文条件改善,营养盐负荷削减和控制沉积物碎屑负荷等三方面共同考虑,从不同层次上考虑整个生态系统的恢复。
     本文研究了淡水生态系统退化的现状和原因、退化生态系统定量化评价方法,退化过程与机理以及恢复与重建的理论方案,对于保护淡水生态环境,促进人类与自然环境可持续发展具有重要的意义。
Based on the investigation research of the status quo, analysis and evaluation on the present situation, the causes and the mechanisms of the degradation in the freshwater ecosystems were studied including factors like water quality, freshwater algae factor, river shore zone factor, aquatic plant and animal factor and sediment factor. Degradation evaluation criteria systems and methods were established to assess the level of degradation in the freshwater ecosystems. Through aquatic ecological AQUATOX modeling, the degradation and evolution of the freshwater ecosystems were quantitatively simulated and predicted and the effect of its restoration measures.
     The simulation results showed that the current degradation level is high. The water quality of the ecosystems has degraded toⅣ~Ⅴclass quality level; phytoplankton algae had a simple, blue-green algae(many of which are instructions for the eutrophication) dominated structure and the algae diversity index is also at a low level. The periphyton algae is mainly diatom community-based and the algae cell miniaturization become a serious problem of which the dominant species are mostly large filamentous algae with Fog kinds that appears only in spring. The River shore has a narrow width as well as the lake. The aquatic vegetation is dominated by floating-leaved and Ting plants, while the submerged plant is dominated by the topped species which shows degradation and succession trend. The vertically steeping cement isolated the water ecosystem from the land coast causing a large number of broken branches and mud siltation near river bank during its dry season resulting in their exposure to environment.The sediment thickness deepens and is of organic matter-rich mud type. The zoobenthos species is rarely single and unevenly distributed.
     According to the reference system, the degradation evaluation index system of freshwater was established by using principal component analysis and 10 main indicators were extracted and screened out as the direction indicators of degradation level including BOD_5, COD_(cr), DO, NH_3-N, CP, TP, DDA, B-IBI, F-IBI, HQI. The degradation of freshwater ecosystems has five levels: micro-degradation, light degradation, moderate degradation, strong degradation, extreme degradation in accordance with the references from the theory. After comprehensive evaluation using gray correlation degree method, results was obtained that the ecosystem degradation level in Zhangjiabang River ranges from light to moderate. The degradation level in Mirror Lake ecosystem is mainly mild but in some part it is strong.
     Through the AQUATOX ecological modeling of Zhangjiabang River, the 5-year-trend of ecological succession was simulated and predicted. The results showed that in the absence of external interference, the succession of eco-environmental factors of Zhangjiabang River will be in a cycle repeated pattern which can be explained by succession law in accordance with the changes of the environment periodic growth. The external interference factors includes nutrient load, organic pollution load, the amount of submerged vegetation, sediment detritus input, which may cause degradation. By changing these factors, the possible consequences of ecological succession were simulated. The results showed that the BOD5 would increased by 10 times, which may lead to overall degradation of aquatic ecosystems; the non-point source nitrogen and phosphorus may also 10 times, which can cause varying degrees of degradation to the water quality and algal. The reduction of submerged plant biotechnology can increase the amount of algal biomass. The clastic sediment input increase by five-fold, not only can cause water quality deterioration, but also a large decline in benthic biomass.
     Based on AQUATOX, the effects of different ecological restoration methods were simulated. The results show that the organic input control, riparian environment restoration and alteration of natural river can reduce the TP by 40% and restore aquatic plant biomass by 20% which can have significant effect on nutrient reduction and zoobenthos diversity recovery. Through the respective control of nitrogen and phosphorus pollution Ioad(50% off), the simulation study found that little changes occurred in water quality, meanwhile the biomass of submerged plants and zoobenthos increased. It is more effective to control nitrogen to prevent algal blooms than to control phosphorus. The control of all the exogenous sediment load can lead to a substantial reduction of water nutrient thus to improve water quality. This method is conducive while promote the large-scale submerged plant growth and reduce blue-green algae biomass, but it cannot help the growth of the zoobenthos. Therefore, the restoration of freshwater ecosystems research must take into account the followings combined: hydrological conditions improvement, nutrients load reduction and sediment control. They should be considered together from different levels in the whole ecosystem recovery process.
     The current status of the degradated freshwater ecosystem and its cause, process and mechanism, its quantitative evaluation method and its rehabilitation & reconstruction theory method were studied in this paper so as to protect the freshwater ecological environment and promote the sustainable development of human beings and the natural environment.
引文
[1]章家恩,徐琪.生态退化的形成原因探讨[J].生态科学,1999,18(3):27-32.
    [2]黄真理.21世纪长江大型水利工程中的生态与环境保护[M].北京:中国环境科学出版社,1998,72-281.
    [3]黄真理.三峡工程中的生物多样性保护[J].生物多样性,2001,9(4):472-481.
    [4]安娜,高乃云.中国湿地的退化原因、评价及保护[J].生态学杂志,2008,27(5):821-828.
    [5]国家林业局.中国湿地保护行动计划[M].北京:中国林业出版社.2000,21-82.
    [6]成小英,李世杰.长江中下游典型湖泊富营养化演变过程及其特征分析[J].科学通报,2006,51(7):848-855.
    [7]刘静玲,杨志峰.北方地区淡水危机与湖泊生态恢复[J].东北师大学报自然科学版,2002,34(1):58-65.
    [8]秦伯强.湖泊生态恢复的基本原理与实现[J].生态学报,2007,27(11):4848-4858.
    [9]金相灿.湖泊富营养化调查规范[M].北京,中国环境科学出版社,1990:1-316.
    [10]陈荷生,张永健.太湖重污染底泥的生态疏浚[J].水资源研究,2004,25(4):29-31.
    [11]刘兆权,韩瑜庆,黄海波.江苏无锡自来水遭污染市民抢购纯净水[EB/OL].http://news.sina.com.cn/c/p/2007-05-30/205413114417.shtml,2007-05-30.
    [12]三道防线拦截渭河油污染.大河网,河南商报:http://news.sina.com.cn/c/2010-01-05/050916878759s.shtml.
    [13]杨志峰,崔保山等.黄淮海地区湿地水生态过程、水环境效应及生态安全调控[J].地球科学进展,2006,21(11):1119-1126.
    [14]姜加虎,黄群.油庭湖区生态环境退化状况及其原因分析[J].生态环境,2004,13(2):277-280.
    [15]王宁,盛连喜.二龙湖生态系统退化及生态工程修复分析[J].东北师大学报自然科学版,2004,34(4):122-127.
    [16]许朋柱,秦伯强.太湖湖滨带生态系统退化原因以及恢复与重建设想[J].水资源保护,2002(3):31-36.
    [17]张峰.山西湿地生态环境退化特征及恢复对策[J].水土保持学报,2004,18(1):151-153.
    [18]郑昭佩,邢子金.北大沙河流域生态系统退化现状及其恢复对策[J].资源环境与发展,2009(3):15-17.
    [19]黄奕龙,王仰麟.深圳市河流水质退化及其驱动机制研究[J].中国农村水利水电,2007(7):10-13.
    [20]黄凯,郭怀成.河岸带生态系统退化机制及其恢复研究进展[J].应用生态学报,2007,18(6):1373-1382.
    [21]毛德,夏军.洞庭湖湿地生态环境问题及形成机制分析[J].冰川冻土,2002,24(4):444-451.
    [22]濮培民,王国祥等.健康水生态系统的退化及其修复理论、技术及应用[J].湖泊科学,2001,13(3):193-203.
    [23]Scheffer M,Egbert H.van Nes.Mechanisms for marine regime shifts:c an we use lakes as microcosms for oceans?[J].Progress in Oceanography,2004,60:303-319.
    [24]Platt,RB.Conference summary[C].In:Carins,Jr.J.,K.L.Dickson&E.E.Herri cks eds.Recovery and restoration of damaged ecosystems.Charlottesville:Universit y Press of Virginia.1977,526-531.
    [25]杜晓军,高贤明.生态系统退化程度的诊断:生态恢复的基础和前提[J].植物生态学报.2003,27(5):700-708.
    [26]沈渭寿,曹学章.中国土地退化的分类与分级[J].生态与农村环境学报,2006,22(4):88-93.
    [27]胡嘉东,郑丙辉.潮间带湿地栖息地功能退化评价方法研究与应用[J].环境科学研究,2009,22(2):171-175.
    [28]李宁云,帕纳海湿地生态系统退化评价指标体系研究(硕士学位论文)[D].昆明:西南林学院,2006,56-85.
    [29]中国21世纪议程管理中心.中国科学院地理科学与资源研究所.可持续发展指标体系的理论与实践.社会科学文献出版社,2004,1-17.
    [30]任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2000,1-175.
    [31]Cairns,I.J.R.ed.Rstoration of Aquatic Ecosysterns.Washington D.C:Nat ional.1992,Acedemy press.8-9.
    [32]郭少聪,任海.华南植物园退化水体的恢复研究[J].生态科学,2000,17(3):1-5.
    [33]Sparks R.The Illinnois River-floodplain Ecosystem:Restoration of Aqu atic Ecosystems.Nat.Acad.Press.Washington,D.C.1992:433-455.
    [34]Gameson A.L.Hand Wheeler A.Restoration and Recovery of the Tham es estuary:In Recovery and Restoration of Damaged Ecosystem.University Press of Virginia,Charloltesville.1977:72-101.
    [35]Doxa U.The livingThames:the restoration of a great tidal river.Hutchins on Benham.London,England,1977:30-34.
    [36]黄玉瑶.汉沽污水库净化能力的初步研究.全国水生生态及环境微生物学会议论文集.北京:科学出版社,1984,72-93.
    [37]赵忠宪.汉沽污水库养鱼试验研究.生态学报,1986,6(2):171-177.
    [38]中国21世纪议程-中国21世纪人口、环度与发展白皮书.七京:中国环境科学出版社,1992,79-90.
    [39]王国祥,濮培民,张圣照.用镶嵌组合植物群落控制湖泊饮用水源区藻类及氮污染[J].植物资源与环境,1998,7(2):35-41.
    [40]濮培民,胡维平,逢勇.净化湖泊饮用水源的物理-生态工程实验研究[J].湖泊科学,1997,9(2):35-41.
    [41]成小英,李世杰,濮培民.城市富营养化湖泊生态恢复-南京莫愁湖物理生态工程试验[J].湖泊科学,2006,18(3):218-224.
    [42]陈开宁,包先明,史龙新.太湖五里湖生态重建示范工程.大型围隔试验[J].湖泊科学,2006,18(2):139-149.
    [43]李英杰.浅水湖泊生态类型及其生态恢复研究(博士学位论文)[D].北京:中国矿业大学,2008.34-78.
    [44]秦伯强,高光,胡维平等.浅水湖泊生态系统恢复的理论与实践思考[J].湖泊科学,2005,17(1):9-16.
    [45]Scheffer M,CarpenterS.R,Foley J.A,etal.Catasctrophic shifts in Ecosyst ems[J].Nature,2001,413:591-596.
    [46]Scavia D,Park RA.Documentation of selected constructs and parameter v alue in the aquatic model[J].CLEANER.Ecol Model,1976,2(3):33-5.
    [47]Virtanen M,Koponen J,Dahlbo K.Three-dimensional water quality-transp o model compared with field observations[J].Ecol Model,1986,31(2):185-199.
    [48]Zhang Y-Z,Yu H.Structural ecodynamic model for lakes and reservoirs.[J].Act EcolSin,1999,19(6):902-907.
    [49]张永泽,刘玉生,郑丙辉.在湖泊生态系统建模中的应用[J].湖泊科学,1997,9:75-81.
    [50]张永泽,刘玉生,郑丙辉.Yong在湖泊生态系统建模中的应用[J].湖泊科学,1997,9(1):75-81.
    [51]张永泽,郑丙辉.湖泊生态动力学模型的改进研究[J].成都科技大学学报.1996,(2):1-7.
    [52]郑丙辉,张永泽.滇池生态动力学模型的改进[J].环境科学研究,1994,7(4):1-6.
    [53]刘元波,陈伟民.太湖梅梁湾藻类生态模拟与蓝藻水华治理对策分析[J].湖泊科学,1998,10(4):53-59.
    [54]罗潋葱,秦伯强.基于三维浅水模式的太湖水动力数值试验-盛行风作用 下的太湖流场特征[J].水动力学研究与进展A辑,2003,18(6):686-691.
    [55]Xu F L,Jorgensen S E,Tao S.Modeling the effects of macrophyte restora tion o water quality and ecosystem of Lake Chao.[J].Ecol Model,1999,117(10):239:260.
    [56]孙颖,陈肇和,范晓娜.河流及水库水质模型与通用软件综述[J].水资源保护,2004(2):7-11.
    [57]李典谟,马祖飞.生态模型当前的热点与发展方向[J].生态学报,2002,22(10):1788-1791.
    [58]Romero J R,Hipsey M R,Antenucci J.P.Computational Aquatic Ecosyste m Dynamics Model.US:Science Manual,2004:16-46.
    [59]宋兵,陈立侨,Chen Yong.Ecopath with Ecosim在水生生态系统研究中的应用[J].海洋科学,2007.31(1):83-86.
    [60]Richard A,Parka,Jonathan S.Cloughb etal AQUATOX:Modeling envi ronmental fate and ecologicaleffects in aquatic ecosystems.ecological modelling 213(2008)1-15.
    [61]曹小娟.洞庭湖AQUATOX模拟与生态功能分区(硕士论文)[D].湖南大学,2004,6-57.
    [62]LEI Bingli,HUANG Shengbiao etal.Prediction of the environmental fat e and aquatic ecological impact of nitrobenzene in the Songhua River using the modified AQUATOX model[J].Journal of Enviromental Sciences,2008(20):769-777.
    [63]杨漪帆,朱永青等.淀山湖蓝藻水华及其控制因子的模型研究[J].环境污染与防治,2009,31(6):58-63.
    [64]杨漪帆,朱永青等.淀山湖富营养化控制的模型研究[J].环境科技,2009,22(2):17-21.
    [65]水和废水监测分析方法-第四版[M].北京:中国环境科学出版社,2002.
    [66]周凤霞,陈剑虹等.淡水微型生物图谱[M].北京:化学工业出版社,2004.
    [67]秦伯强,宋玉芝.附着生物在浅水富营养化湖泊-草型生态系统转化过程中的作用[J].中国科学C辑,命科学.2006,36(3):283-288.
    [68]刘建康.主编,高级水生生物学[M].北京:科学出版社,1999:260-261.
    [69]PIELOU E C.Ecological Diversity[M].New York:Wiley-Inters,1975:151-188.
    [70]MARGAL EF R.Perspective In Ecological Theory[M].Chicago:Univ C hicago Press,1968:107-121.
    [71]简永兴,王建波.洞庭湖区三个湖泊水生植物多样性的比较研究[J].水生生物学报,2002,26(2):160-167.
    [72]Wetzel R G.Limnology:Lake and River Ecosystems 3rd edition[M].San Diego,SanFrancisco,New York:Academic Press.2001.
    [73]许梅,任瑞丽等.太湖入湖河流水质指标的年变化规律[J].南京林业大学学报(自然科学版)2007,31(6):121-124.
    [74]许其功,刘鸿亮,沈珍瑶,等.三峡库区典型小流域氮磷流失特征[J].环境科学学报,2007,27(2):326-331.
    [75]杨钢,李庆.三峡库区水体中磷的特征分析[J].人民长江,2007,38(2):14-15.
    [76]梁霞,李小平.上海周丛藻类群落结构与环境因子间的关系[J].环境科学,2007,28(8):1662-1669.
    [77]张志兵,施心路等.杭州西湖浮游藻类变化规律与水质的关系[J].生态学报,2009,29(6):2980-2988.
    [78]姜雪芹,禹娜等.冬季上海城区河道中浮游植物群落结构及水质的生物评价[J].华东师范大学学报,2009,2:78-87.
    [79]张婷,李林等.熊河水库浮游植物群落结构的周年变化[J].生态学报,2009,29(6):2971-2979.
    [80]高远,慈海鑫等.沂河4条支流浮游植物多样性季节动态与水质评价[J]..环境科学研究,2009,22(2):176-180.
    [81]万蕾,朱伟.苏州城市河道滞流水体浮游植物常见属生态位研究[J].生态科学,2009,28(2):152-157.
    [82]宋辞,于洪贤.镜泊湖浮游植物多样性分析及水质评价[J].东北林业大学学报,2009,37(4):40-42.
    [83]杨红军.五里湖湖滨带生态恢复和重建的基础研究(博士学位论文)[D].上海:上海交通大学,2008,8-24.
    [84]袁信芳,施华宏.太湖着生藻类的时空分布特征[J].农业环境科学学报,2006,25(4):1035-1040.
    [85]廖祖荷,顾泳洁.苏州河水质与着生生物群落的生态学变化关系的研究[J].贵州大学学报,2003,20(2):196-199.
    [86]白羽军,杨翠英.松花江哈尔滨段着生藻类群落的研究[J].黑龙江环境通报,2003,27(3)73-74.
    [87]Haydee P,Alicia V,Guillermo T.Periphyton on artificial substrata from three lakes of different trophic status at Hope Bay(Antarctica)[J].PolarBiol,2002,(25):169-179.
    [88]Jaskowiak AM.Periphytic algae in the Sheyenne River[J].North Dakota,2003,4,67-69.
    [89]王朝晖,胡韧.珠江广州河段着生藻类的群落结构及其与水质的关系[J].环境科学学报,2009,29(7):1510-1516.
    [90]冯佳,谢树莲.汾河源头周丛藻类植物群落结构特征[J].生态科学,2007,26(5):408-414.
    [91]由文辉.淀山湖着生藻类群落结构与数量特征[J].环境科学,1999,20:59-62.
    [92]Naiman RJ,Decamp s H.1997.The ecology of interface:Riparian zo nes[J].Annual Review of Ecology and Systematics,28:621-658.
    [93]http://www.shtong.gov.cn/node2/node4/node2250/songjiang/node46607/n ode46617/node61789/userobjectlai32844.html.
    [94]邓文祥,张爱军.试论藻类在水体污染检测中的运用[J].环境污染与防治.1999,14(1):43-44.
    [95]况其军,马沛明等,湖泊富营养化的藻类生物学评价与治理研究进展[J].安全与环境学报,2005.2-4.
    [96]周红艺,熊东红等.基于SOTER数据库的长江上游典型地区土壤退化评价[J].中国水土保持,2004,10:36-38.
    [97]陶希东.河西走廊生态退化机制及其恢复与重建研究(硕士学位论文)[D].西安:西北师范大学,2001,67-79.
    [98]徐海量,宋郁东,应用因子分析研究塔里木河下游生态环境的退化[J].干旱区地理,2005,28(1):21-25.
    [99]汤洁,薛晓丹.吉林西部生态系统退化评价[J].吉林大学学报(地球科学版),2005,35(1):79-85.
    [100]贾天会.辽西水土流失区生态退化程度诊断分析[J]科学技术与工程,2008,18(13):3444-3449.
    [101]艾亮辉,吴次芳.基于可拓工程方法的鄱阳湖区农地生态退化评价[J].自然资源学报,2003,18(3):333-339.
    [102]第宝锋,杨忠.基于RS与GIS的金沙江干热河谷区退化生态系统评价[J].地理科学.2005,25(4):484-489.
    [103]杜晓军,姜凤岐.辽宁西部低山丘陵区植被恢复研究:基于演替理论和生态系统退化程度[J].应用生态学报,2004,15(9):1507-1511.
    [104]许宁,郭旭东.基于遥感和GIS的土地利用分类方法及其在土地退化程度分析中的应用-以陕西横山雷龙湾地区为例[J].生态学报,2008,28(11):5410-5417.
    [105]张远,郑丙辉.深圳典型河流生态系统健康指标及评价[J].水资源保护.2006,22(5):13-17.
    [106]张远,徐成斌,马溪平,等.2007.辽河流域河流底栖动物完整性评价指标与标准[J].环境科学学报,27(6):919-927.
    [107]朱迪,常剑波.长江中游浅水湖泊生物完整性时空变化[J].生态学报,2004,12(24):2761-1767
    [108]吴阿娜,车越.上海地区河流健康评价方法探讨[J].生态与农村环境学报.2007,23(4):90-94.
    [109]郑丙辉,张远,李英博.辽河流域河流栖息地评价指标与评价方法研究[J]环境科学学报,2007,27(6):928-936.
    [110]张远.辽河流域水生态分区与河流健康评价[R].北京:中国环境科学研究院,2006,78-89.
    [111]秦昌波,郑丙辉,秦延文,等.渤海湾天津段海岸带水环境质量灰色关联度评价[J].环境科学研究,2006,19(6):94-99.
    [112]刘思峰,郭天榜,党耀国等.灰色系统理论及其应用[M].北京:科学出版社,1999.
    [113]沈珍瑶,谢彤芳.一种改进的灰关联分析方法及其在水环境质量评价中的应用[J].水文,1997,(3):13-15.
    [114]RICHARD AP,JONATHAN SC,MARJORIE CW.Modeling environme ntal fate and ecological effects in aquaticecosystems,vol1,user's manual EPA-823-R-04-001[R].US:Environmental Protection Agency,Office of Water,2004.
    [115]RICHARD AP,JONATHAN S C A.Modelingenvironmental fate and ec ological effects in aquatic ecosystems,vol2,technical documentation.EPA-823-R-04-002[R].US:Environmental Protection Agency,Office of Water,2004.
    [116]US Environmental Protection Agency,Office of Water.Modeling enviro nmental fate and ecological effects in aquatic ecosystems,vol3,model validation reports.EPA-823-R-00-008[R].US:Environmental Protection Agency,Office of Water,2000.
    [117]杨凯,唐敏,周丽英.上海近30年来蒸发变化及其城郊差异分析[J].地理科学,2004,24(5):557-561.
    [118]杨漪帆,朱永青,林卫青.淀山湖富营养化控制的模型研究[J].环境科技,2009,22(2):17-21.
    [119]丁玲,逄勇,李凌,等.水动力条件下藻类动态模拟[J].生态学报,2005,25(8):1863-1868.
    [120]Scheffer M.Alternative attractors of shallow lakes[J].The Scientific Wo rld,2001,1,254-263.
    [121]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193-201.
    [122]陶益,孔繁祥.太湖底泥水华蓝藻复苏模拟[J].湖泊科学,2005,17(3):231-236.
    [123]秦伯强,杨柳燕.湖泊富营养化发生机制与控制技术及其应用[J].科学通报,2006,51(16):1857-1866.
    [124]Havens K E,Jin K R,Rodusky A J,et al.Hurricane effects on a shall ow lake ecosystem and its response to a controlled manipulation of water level.S ci World,2001,1:44-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700