具有水质净化功能的基—塘系统的探究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对水质净化基—塘系统(Water Purification Dike-pond System,WPDPS)的污水处理原理,进行了填料筛选、WPDPS小试的研究,探讨了本系统削减滇池流域大清河污染物负荷以及循环净化污水的能力,并对其核心填料在不同环境下的运行特征进行了研究。研究的主要结论如下:
     1、通过对11种单一填料的静态试验可知,沸石和废混凝土分别对氨氮和溶解态总磷(DTP)的去除效果最好。20℃下24h内,5g沸石的氨氮吸附量高达5.43meq(75.9mg),5g废混凝土可去除DTP2.91mg。沸石释放的钙钠镁离子的浓度越高,沸石的氨氮吸附效率就越高;废混凝土释放出的大量钙离子使迁移态磷酸根转化为沉淀态。20℃下24h内,5g煤渣可分别去除氨氮和DTP2.12mg和1.26mg。
     针对滇池流域入湖河流在冬季低温时污染负荷低和在夏季暴雨期时污染负荷高的特点,进行了填料床处理污染河水的试验。结果表明:低温期(2—12℃),废混凝土/沸石/煤渣组合对COD_(cr)、氨氮和总氮的去除率最高,分别为44.4%-65.9%、56.4%-75.1%和56.5%-63.0%;暴雨期,废混凝土/沸石/煤渣组合的抗氮磷冲击负荷能力最好,削减氨氮、亚硝氮、总氮和总磷的负荷量平均可达22.9g/(m~2·d)、0.93g/(m~2·d)、25.3g/(m~2·d)和10.3g/(m~2·d)。废混凝土/沸石/煤渣组合是冬季低温期和夏季暴雨期净化滇池流域大清河污水的适宜填料;
     2、将优选填料或填料组合作为基—塘系统的“基”,与水塘相结合,组成具有水质净化功能的基—塘系统小试装置。试验包括了WPDPS对污水的循环净化能力和对污染河水净化能力的研究,分别进行了针对轻微和重度污染水的净化试验。结果表明:
     轻微污染水循环试验历时36天,循环13.38次,净化水中COD和总氮浓度达到了地表水环境质量Ⅱ类水质标准(GB 3838-88)。对各填料床中主要脱氮细菌的数量进行分析,砖块上的细菌数受温度的影响较大;核桃壳上的细菌数随温度影响不大;废混凝土/沸石/煤渣组合中细菌数的增长率呈现先慢后快再慢的过程。
     重度污染水循环试验历时21天,循环7.81次,水质总体达到了地表水环境质量的Ⅰ类水质标准,WSPDPS对大肠菌群和细菌的去除率分别为92.8%和86.2%,此净化水具有渔业养殖用水或对水质有更高要求行业用水的潜力。对各填料床中主要脱氮细菌的数量进行分析,硝化细菌适宜在砖块上生长;核桃壳中硝化菌生长速率总体上没有砖块的高,但反硝化菌的生长速率是最高的;废混凝土/沸石/煤渣组合在试验前期三种细菌的生长速率均最低,而到试验后期时,生长速率明显升高。
     由WPDPS对轻微和重度污染河水的净化试验可知,前者池塘出水COD_(cr)和总磷浓度分别达到了地表水环境质量Ⅰ类和Ⅱ类水质标准;后者COD_(cr)、氨氮、总氮和总磷的平均去除率分别达到了64.5%、80.1%、69.6%和55.1%。在上述两个试验中,核桃壳对COD_(cr)的去除率最高,废混凝土/沸石/煤渣组合对氮磷的去除率最高。“基”是去除污染物的主要构筑物。试验表明WPDPS有较好的截污能力。
On account of the principle of wastewater treatment of the Water Purification Dike-pond System(WPDPS),a batch of packing media screening experiments and small-scale experiments of WPDPS were studied in this paper,which discussed the capacity of WPDPS in treating the pollutants load of Daqing River in Dianchi Watershed and the capacity of WPDPS in cycling purifying the wastewater.Besides,research on performance of some important packing media used in the WPDPS for treating polluted river water under different circumstances was conducted.The main results were as follows:
     1.According to the results of static experiments for eleven kinds of single packing medium screening,the zeolite and waste concrete showed the best removal efficiency of the NH_4~+-N and Dissolved Total P(DTP).With water bath at 20℃and within 24 hours, the adsorption quantity of 5g zeolite can reach to 5.43meq(75.9mg),2.91mg DTP was removed by 5g waste concrete.The higher the concentration of Ca,Na,Mg ions the zeolite released,the higher adsorptive efficiency of NH_4~+-N the zeolite showed.The phosphate anions were transformed to the precipitable state owing to the existence of massive Ca ions which were released by waste concrete.With water bath at 20℃and within 24 hours,2.12mg NH_4~+-N and 1.26mg DTP was removed by 5g cinder, respectively.
     According to the circumstances of water quality of Daqing River that low pollutants load at low temperatures in winter and high pollutants load at rainstorm periods in summer, research on performance of packing media beds for treating polluted water of Daqing River was conducted.The result showed that during the low-temperature-period(2-12℃), waste concrete/zeolite/cinder group(CZC) showed the highest removal efficiency with the following values:44.4%-65.9%COD_(Cr),56.4%-75.1%NH_4~+-N,56.5%-63.0%TN. During the rainstorm period,CZC had best capacity of anti-shock load of N and P in which the average removal amount of NH_4~+-N,NO_2~--N,TN and TP was 22.9g/(m~2·d), 0.93g/(m~2·d),25.3g/(m~2·d) and 10.3g/(m~2·d) respectively.CZC was suitable for treating the pollutants in Daqing River of Dianchi Watershed.
     2.The small-scale experiment setting of WPDPS was constructed,which included Pond and Dike with selected single packing medium or packing media group.A batch of experiments aiming at treating the slightly and heavily polluted water,consisted of the research on the cycle purification capacity of WPDPS and the capacity of WPDPS in treating the polluted river water.The result showed that:
     The slightly polluted water cycle purification experiment lasted 36 days and the polluted water in WPDPS cycled 13.38 times.The concentration of COD_(Cr) and TN in purified water met the second level of environmental quality standard for surface water (GB 3838-88).To analyze the cell number of the main denitrifying bacteria in WPDPS, the temperature had significant influence on the bacteria number in brick,while it had little effect on changing the bacteria number in nut shell.The growth rate of main denitrifying bacteria in CZC was slow,then fast,and then slow again.
     The heavily polluted water cycle purification experiment lasted 21 days and the polluted water in WPDPS cycled 7.81 times.The purified water met the first level of environmental quality standard for surface water as a whole,which had potential for becoming the water supply of fishery or the industry required higher water quality.The removal efficiency of the cell number of coliform group and total number of bacteria in WPDPS was 92.8%and 86.2%respectively.To analyze the cell number of the main denitrifying bacteria in WPDPS,brick was suitable for the growth of nitrifying bacteria. The rate of growth of nitrifying bacteria in nut shell was lower than that in brick as a whole,but the rate of growth of denitrifying bacteria was the highest.During the initial period of the experiment,the rate of growth of three types of bacteria were the lowest in CZC than other packing media,but the rate increased obviously during the late period of the experiment.
     Based on the experiment of WPDPS treating the slightly and heavily polluted river water,the effluent concentration of COD_(Cr) and TP of the former met the first and second level of environmental quality standard for surface water,respectively.The average removal efficiency of COD_(Cr),NH_4~+-N,TN and TP of the latter was 64.5%,80.1%,69.6% and 55.1%,respectively.With regard to the two experiments above,the nut shell had the best COD_(Cr) removal efficiency and CZC showed the best N and P removal efficiency. Compared with the pond,dike was the dominating part in removing the pollutants.It was known that the WPDPS had good capacity of retaining pollutants.
引文
[1]国家环境保护部.2007年中国环境状况公报[R].http://www.zhb.gov.cn/plan/zkgb/2007zkgb/200811/t20081117_131335.htm
    [2]郭怀成,孙延枫.滇池水体富营养化特征分析及对策控制探讨[J].地理科学进展,2002,21(5):500-506.
    [3]李永明,陈蔓妮,王帮进等.马料河水质监测调研与主要入滇河流污染治理对策思考[J],云南师范大学学报,2007,27(3):43-46.
    [4]Kom M.The dike-pond concept:Sustainable agriculture and nutrient recycling in China.AMBIO,1996,25(1):6-13.
    [5]Zhong G F,Deng H Z,Wang ZQ,et al.Research on the dike-pond system in Pearl River Delta.Beijing:Science Press,1987.
    [6]Zhong G F,Wang Z Q,Wu H S,et al.L and-water interaction of the dike-pond system.Beijing:Science Press,1993.
    [7]Luo SM,Chen Y H,Yan F.Agroecology.Changsha:Scientific and Techno logical Press of Hunan Province,1987.432-434.
    [8]L uo SM,Li HS.Analysis of agro-ecosystem model in the Jianjiang River Watershed.In:Water resources and economic development in Jianjiang River Region.Guangzhou:Zhongshan University Press,1995.210-238.
    [9]Zhang R W,Zhang T,Ji W Y.The eco logical thoughts in Chinese traditional agriculture and its utilization.Acta Ecologica Sinica,1996,16(1):101-106.
    [10]Zhang R W,Lu B Y,Sun Z J.Agricultural ecological engineering.Zhengzhou:Science and Techno logy Press of Henan Province,2000.216-222.
    [11]Ruddle K,Chung K F.Integrated agriculture-aquaculture in South China:the dike-pond system of the Zhu jiang Delta.Cambridge,New York:Cambridge University Press,1988.
    [12]Nie C R,Li H S.The Dike-pond Systems:its new developments and ecological problems.Journal of Foshan University,2001,22(1):31-35.
    [13]Peng S L.Restoration ecology and agroiforestry development in Guangdong. Research of Agricultural Modernization,2000,21(3):129-133.
    [14]Zhang J E,Luo SM.Discussion on some basic concepts about agricultural ecosystem studies.Tropical Geography,2000,20(2):102-106.
    [15]聂呈荣,骆世明,章家恩等.现代集约农业下基塘系统的退化与生态恢复[J].生态学报,2003,23(9):1851-1860.
    [16]葛丽英,谈玲,何成达等.波形潜流人工湿地污水处理技术研究[J].扬州大学学报(自然科学版),2004,7(4):75-78
    [17]贺锋,吴振斌,成水平等.复合垂直流人丁湿地对氮的净化效果[J].中国给水排水,2004,20(10):18-21.
    [18]张荣社,周琪,张建等.潜流构造湿地去除农田排水中氮的研究[J].环境科学,2003,24(1):113-116.
    [19]周少奇,张晓爽.沸石滤床去除炼油废水中氨氮的研究[J].生态科学,2002,21(1):65-67.
    [20]郭本华.碎石、沸石和页岩陶粒构建人工湿地的除磷效果[J].工业用水与废水,2005,36(2):46-48.
    [21]徐丽花,周琪.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学,2002,21(10):603-605.
    [22]钟功甫.基塘系统的特征及其实践意义[J].地理科学,1988,8(1):12-18.
    [23]钟功甫.珠江三角洲的“桑基鱼塘”和“蔗基鱼塘”[J].地理学报,24(3),1958.
    [24]钟功甫.珠江三角洲的“桑基鱼塘”-一个水陆相互作用的人工生态系统[J].地理学报,35(1),1980.
    [25]钟功甫.肇庆市应用基塘系统理论改造低洼地十年回顾[J].热带地理,1992,12(3):221-227
    [26]黎华寿,骆世明.茂名市典型基塘系统的生态经济分析[J].农村生态环境,1992,3:41-45.
    [27]王德建,徐琪,刘元昌.草基-鱼塘生态系统德能量转化与养分循环研究[J].应用生态学报,1997,8(4):426-430.
    [28]赵玉环,黎华寿,聂呈荣.珠江三角洲基塘系统几种典型模式的生态经济分析[J].华南农业大学学报,2001,22(4):1-4.
    [29]陆宏芳,彭少麟,蓝盛芳等.基塘农业生态工程模式的能值评估[J],应用生态学报,2003,14(10):1622-1626.
    [30]聂呈荣,黎华寿.基塘系统:现状、问题与前景[J].佛山科学技术学院学报(自然科学版),2001,19(1):49-53.
    [31]丁疆华,温琰茂,舒强.基塘系统可持续发展现状、问题及对策研究[J].重庆环境科学,2001,23(5):12-14.
    [32]聂呈荣,骆世明,章家恩等.现代集约农业下基塘系统的退化与生态恢复[J].生态学报,2003,23(9):1851-1860.
    [33]黎华寿,骆世明,聂呈荣.广东顺德现代集约型基塘系统的构建与调控[J].2005,24(1):108-112.
    [34]刘凯,王叔功,解靓等.佛山市基塘系统空间格局演变分析[J].热带地理,2008,28(6):513-517
    [35]周劲风,温琰茂.珠江三角洲基塘水产养殖对水环境的影响[J].中山大学学报(自然科学版),2004,(43(5):103-106.
    [36]金辉,温琰茂,袁野.珠江三角洲基塘系统水体中氮的形态分布及其水化学指标关系研究[J].生态经济,2008,5:115-117
    [37]C.P.Lo.Environmental impact on the development or agricultural technology in China:the ease of the dike-pond('jitang') system of integrated agricultureaquaculture in the Zhujiang Delta of China.Agriculture,Ecosystems and Environment 60(1996):183-195.
    [38]Ruddle,K.and Zhong,G.1988.Integrated Agriculture-Aquaculture in South China;the Dike-Pond System of the Zhujiang Delta.Cambr.Univ.Press,17 3p p.
    [39]Zhong,L.1991.Pond Fisheries in China.International Academic Publishers,260p
    [40]Korn M.1992.Integrated Fish Farming.Spec.rep.,Tech.Univ.of Copenhagen,Denmark,46 pp.
    [41]Qihao Weng,2007.A historical perspective of river basin management in the Pearl River Delta of China.Journal of Environmental Management 85,1048-1062.
    [42]汪俊三,覃环.高水力负荷人工湿地处理富营养化湖水[J].中国给水排水,2005,21(1):351-358.
    [42]M.F.Coveney,D.L.Stites,E.F.Lowe,etc,2002.Nutrient removal from eutrophic lake water by wetland filtration.Ecol Eng.19,141-159.
    [43]Linfeng Li,Yinghao Li,Dilip Kumar Biswas,Yuegang Nian,Gaoming Jiang,2008.Potential of constructed wetlands in treating the eutrophic water:Evidence from Taihu Lake of China.Biores.Technol.99,1656-1663.
    [44]Jan Vymazal,2007.Removal of nutrients in various types of constructed wetlands.Science of total Environment.380,48-65.
    [45]E.Asuman Korkusuz,Meryem Beklioglu,Goksel N.Demirer,2005.Comparison of the treatment performances of blast furnace cinder-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey.24,187-200.
    [46]Robert L.Knight,Victor W.E.Payne Jr,Robert E.Borer,Ronald A.Clarke Jr,John H.Pries,2000.Constructed wetlands for livestock wastewater management.Ecological.Engineering,15,41-55.
    [47]Paul-Daniel Sindilariu,Carsten Schulz,Reinhard Reiter,2007.Treatment of flow-through trout aquaculture effluents in a constructed wetland.Aquaculture,270,92-104.
    [48]N.Gottsehall,C.Boutin,A.Crolla,C.Kinsley,P.Champagne,2007.The role of plants in the removal of nutrients at a constructed wetland treating agricultural(dairy)wastewater,Ontario,Canada.Ecological Engineering,29,154-163.
    [49]Alexandra Tietz,Gunter Langergraber,Andrea Watzinger,Ralmund Haberl,Alexander K.T.Kirschner,2008,Bacterial carbon utilization in vertical subsurface flow constructed wetlands.Wat Res.,42,1622-1634.
    [50]Liu Cao,Du Guisen,Huang Bingbin,Meng Qingyi,Li Huimin,Wang Zijian,Song Fu,2007.Biodiversity and water quality variations in constructed wetland of Yongding River system.Acta Ecologica Sinica,27(9),3670-3677.
    [51]Niko Silvan,Harri Vasander,Marjut Karsisto,Jukka Laine,2003.Microbial immobilisation of added nitrogen and phosphorus in constructed wetland buffer.Applied Soil Ecology,24,143-149.
    [52]Geller G.Horizontal subsurface flow systems in the German speaking countries:Summary of long-term scientific and practical experience;recommendations[J].Wat. Sci.Tech.,1997,35(5):157-166.
    [53]CHENG S,GROSSE W,KARRENBROCK F,et al.Efficiency of constructed wetlands in decontamination of water polluted by heavy metals[J].Eeologieal Engineering,2001,18(3):317-325.
    [54]汪俊三,覃环.高水力负荷人工湿地处理富营养化湖水[J].中国给水排水,2005,21(1):351-358.
    [55]纪荣平,吕锡武,李先宁.人工介质对富营养化水体中氮磷营养物质去除特性研究[J].湖泊科学,2007,19(1):39-45.
    [56]黄德锋,李田.不同基质复合垂直流人工湿地对富营养化景观水的净化效果[J].环境污染与防治,2007,29(8):116-121.
    [57]邓辅唐.人工湿地净化滇池入湖河道污水的示范工程研究[J].环境工程,2005,23(3):29-32.
    [58]邓辅唐,徐颂军,徐祥浩等.滇池治理人工湿地植物的筛选与应用研究[J].中山大学学报(自然科学版),2005,44(Sup):299-303.
    [59]汤显强,李金中,李学菊等.7种水生植物对富营养化水体中氮磷去除效果的比较研究[J].亚热带资源与环境学报,2007,2(2):8-14.
    [60]李谷,钟非,成水平等.人工湿地-养殖池塘复合生态系统构建及初步研究[J].渔业现代化,2006,1:12-14.
    [61]王华胜,卢毅军,高波等.复合垂直流人工湿地循环净化观鱼池水的季节性效果分析[J].贵州环保科技,2006,4:35-40.
    [62]王永秀,彭立新,刘继平等.高效垂直流人工湿地在景观湖水循环净化中的作用[J].云南环境科学,2006,25(增刊),72-75.
    [63]吴振斌,李谷,付贵萍等.基于人工湿地的循环水产养殖系统工艺设计及净化效能[J].农业工程学报,2006,22(1):129-133.
    [64]Avelino Ntifiez Delgado,Eugenio L6pez Periago and Francisco Diaz-Fierros Viqueira.,1995.Vegetated filter strips for wastewater purification:a review.Bioresource Technology 51,13-22.
    [65]Mather,R.J.,1969.An evaluation of cannery waste disposal by overland flow spray irrigation.Pub.in Climatology,C.W.Thomthwaite Ass.,XX11(2).
    [66]Doyle,R.C.,Wolf,D.C.& Bezdicek,D.E,1974.Effectiveness of forest buffer strips in improving the water quality of manure polluted runoff. In Management Livestock Wastes. American Society of Agricultural Engineers, St Joseph, USA, pp. 299-302.
    [67] Doyle, R. C., Stanton, G. C. & Wolf, D. C, 1977. Effectiveness of forest and grass buffer strips in improving the water quality of manure polluted runoff. ASAE Paper, No.77-2501.
    [68] Dillaha, T. A., J. H. Sherrard, D. Lee, S. Mostaghimi, and V. O.Shanholtz. 1988. Evaluation of vegetative filter strips as a best management practice for feedlots. Journal of the Water Pollution Control Federation 60:1231-1238.
    [69] Dillaha, T. A., R. B. Reneau, S. Mostaghimi, and D. Lee. 1989a. Vegetative filter strips for agricultural nonpoint source pollution control. Transactions, American Society of AgriculturalEngineers 32:513-519.
    [70] Dillaha, T. A., J. H. Sherrard, and D. Lee. 1989b. Long-term effectiveness of vegetative filter strips. Water Environment and Society 1:419-421.
    [71]T. A. Dillaha. 1989. Effects of conservation tillage on groundwater quality-Nitrates and pesticides Agriculture, Ecosystems & Environment, Volume 26, Issue 2, July 1989, Pages 150-151.
    
    [72] Magette, W. L., R. B. Brinsfield, R. E. Palmer, and J. D. Wood. 1989. Nutrient and sediment removal by vegetated filter strips. Transactions, American Society of Agricultural Engineers 32:663-667.
    
    [73] W. L. Magette, P. A. Pacheco and F. W. Wheaton. 1990. Ion exchange treatment of subsurface drainage water Agricultural Water Management, Volume 18, Issue 2, July 1990, Pages 121-133.
    
    [74] Jacobs, T. C., and J. W. Gilliam. 1985. Riparian losses of nitrate from agricultural drainage waters. Journal of Environmental Quality 14:472-478.
    [75] S. C. Deal, J. W. Gilliam, R. W. Skaggs and K. D. Konyha. 1986. Prediction of nitrogen and phosphorus losses as related to agricultural drainage system design Agriculture, Ecosystems & Environment, Volume 18, Issue 1,October 1986, Pages 37-51.
    [76] Lowrance, R. R., R. L. Todd, J. Fail, Jr., O. Hendrickson, Jr., R. Leonard, and L. Asmussen. 1984. Riparian forests as nutrient filters in agricultural watersheds. BioScience 34:374-377.
    [77] Lowrance, R., J. K. Sharpe, and J. M. Sheridan. 1986. Longterm sediment deposition in the riparian zone of a coastal plain watershed. Journal of Soil and Water Conservation 41:266-271.
    [78] Peterjohn,W. T., and D. L. Correll. 1984. Nutrient dynamics in an agricultural watershed: Observation on the role of a riparian forest. Ecology 65:1466-1475.
    [79] Peterjohn, W. T., and D. L. Correll. 1986. The effects of riparian forest on the volume and chemical composition of baseflow in an agricultural watershed. Pages 244-262 in D. L. Correll (ed.), Watershed research perspectives. Smithsonian Press, Washington, DC.
    [80] Correll, D. L. 1983. N and P in soils and runoff of three Coastal Plain land uses. Pages 207-224 in R. Lowrance and others (eds.), Nutrient cycling in agricultural ecosystems. Universityof Georgia College of Agriculture Special Publication Number 23. Athens, Georgia.
    [81] Correll, D. L., and D. E. Weller. 1989. Factors limiting processes in freshwater wetlands: An agricultural primary stream riparian forest. Pages 9-23 in R. Sharitz and J.Gibbons (eds.), Freshwater wetlands and wildlife. United States Department of Energy, Oak Ridge, Tennessee.
    [82] Correll, D. L., T. E. Jordan, and D. E. Weller. 1992. Nutrient flux in a landscape: EfFects of coastal land use and terrestrial community mosaic on nutrient transport to coastal waters. Estuaries 15:431-442.
    [83] Correll, D. L., T. E. Jordan, and D. E. Weller. 1994. Failure of agricultural riparian buffers to protect surface waters from groundwater contamination. In Proceedings, international conference on groundwater/surface water ecotones. Cambridge University Press, Cambridge.
    [84]Richard Lowrance and J. Denis Newbold. 1997,Water Quality Functions of Riparian Forest Buffers in Chesapeake Bay Watersheds. Environmental Management Vol. 21, No.5,pp.687-712.
    [85]Sergi Sabater,Andrea Butturini.Nitrogen Removal by Riparian Buffers along a European Climatic Gradient: Patterns and Factors of Variation[J]. Ecosystems (2003) 6:20-30
    [86]Daniels,R.B.,and J.W.Gilliam.1996.Sediment and chemical load reduction by grass and riparian filters.Soil Science Society of America Journal 60:246-251.
    [87]Mariet M.Hefting,Jeroen J.M.de Klein,1998.Nitrogen removal in buffer strips along a lowland stream in the Netherlands:a pilot study.Envir.Pollution 102,S1,521-526.
    [88]C.Y.Lin,W.C.Chou and W.T.Lin,2002.Modeling the width and placement of riparian vegetated buffer strips:a case study on the Chi-Jia-Wang Stream,Taiwan.Journal of Envir.Management 66,269-280.
    [89]Jesper S.Schou,Knud Tybirk,Ole Hertel,2006.Economic and environmental analysis of buffer zones as an instrument to reduce ammonia loads to nature areas.Land Use Policy,23,533-541.
    [90]秦明周.美国土地利用的生物环境保护工程措施—缓冲带[J].水土保持学报,2001,15(1):119-121.
    [91]钟勇.美国水土保持的缓冲带技术[J].中国水利,2004,10:63-65.
    [92]邓红兵,王青春,代力民,等.长白山北坡河岸带群落植物区系分析.应用生态学报,2003,14(9):1405-1410.
    [93]江明喜,邓红兵,唐涛,等.香溪河流域河岸带植物群落物种丰富度格局.生态学报,2002,22(5):629-635.
    [94]李世锋.关于河岸缓冲带拦截泥沙和养分效果的研究[J].水土保持科技情报,2003,6,41-43.
    [95]王磊,章光新.湿地缓冲带对氮磷营养元素的去除研究[J].农业环境科学学报,2006,25(增刊):649-652.
    [96]张刚,王德建,陈效民.太湖地区稻田缓冲带在减少养分流失中的作用[J].土壤学报,2007,44(5):873-877.
    [97]张建春,彭补拙.河岸带研究及其退化生态系统的恢复和重建[J].生态学报,2003,23(1):56-63.
    [98]颜兵文,彭重华,胡希军.河岸缓冲带规划及重建研究—长株潭湘江河岸带为例[J].西南林学院学报,2008,28(1):57-60.
    [99]郭怀成,黄凯,刘永等.河岸带生态系统管理研究概念框架及其关键问题[J].地理研究,2007,26(4):789-798.
    [100]魏复盛,齐文启,王心芳,等.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002
    [101]王浩,陈吕军,温东辉.天然沸石对溶液中氨氮吸附特性的研究[J].生态环境,2006,15(2):219-223.
    [102]Tsitsishvili G V,Andronikashvili T G.Natural Zeolites[M].Chicbester,England,Ellis Horwood Limited,1992.
    [103]Donghui Wen,Yuh-Shan Ho,Shuguang Xie and Xiaoyan Tang.Mechanism of the Adsorption of Ammonium Ions from Aqueous Solution by a Chinese Natural Zeolite.Separation Sci.and Tech.41:3485-3498,2006.
    [104]Asheesh Kumar Yadav,C.P.Kaushik,Anil Kumar Haritash,Ankur Kansal,Neetu Rani.Defluoddation of groundwater using brick powder as an adsorbent.Journal of Hazardous Materials B128(2006) 289-293.
    [105]Oualid Hamdaoui.Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick.Journal of Hazardous Materials B135(2006)264-273.
    [106]林岩清,何苗,胡洪营等.处理污染河水的渗流式生物床填料性能研究[J].中国给水排水,2006,22(7):13-16.
    [107]张怀芹.煤渣结构形成及其综合利用[J].辽宁城乡环境科技,2003,23(5):37-38.
    [108]Lazarova V,Manen J.Biofilm characterization and activity analysis in water and wastewater treatment.Wat.Res,1995,29(10):2227-2245
    [109]Robert H Findlay,Gary M King,Les Wading.Efficacy of phospholipid analysis in determining microbial biomass in sediments.App.Envir.Micro,1989,55(11):2888-2893
    [110]杨敦,徐丽花,周琪.潜流式人工湿地在暴雨径流污染控制中的应用.农业环境保护,2002,21(4):334-336
    [111]张利田,卜庆杰,杨桂华,等.环境科学领域学术论文中常用数理统计方法的正确使用问题.环境科学学报,2007,27(1):171-173
    [112]林岩清,何苗,胡洪营,等.处理污染河水的渗流式生物床填料性能研究.中国给水排水,2006,22(7):13-16.
    [113]Komarowski S,Yu Q.Ammonium ion removal from wastewater using Australian natural zeolite:batch equilibrium and kinetic studies.Environmental Technology,1997,18(11):1085-1097.
    [114]高廷耀,顾国维.水污染控制工程(第二版).北京:高等教育出版社,1999.
    [115]沈耀良,王宝贞.废水生物处理新技术(第二版).北京:中国环境科学出版社,2006.
    [116]熊飞,李文朝,潘继征,等.人工湿地脱氮除磷的效果与机理研究进展.湿地科学,2005,3(3):228-234.
    [117]赵桂瑜,周琪.沸石吸附去除污水中磷的研究.水处理技术,2007,33(2):34-37.
    [118]王春荣,李军,王宝贞,等.2种不同填料曝气生物滤池处理生活污水的经验模型.环境污染治理技术与设备,2005,6(12):56-60.
    [119]张希衡.水污染控制工程(第二版)[M].冶金工业出版社,1993.
    [120]杨具瑞等.湖泊暴雨径流水质模型研究[J].环境科学学报,1999,19(1):37-41.
    [121]韩潇源,宋志文,李培英.高效净化氮磷污水的湿地水生植物筛选与组合[J].湖泊科学,2008,20(6):741-747.
    [122]马放,仁南琪,杨基先.污染控制微生物学试验[M].哈尔滨工业大学出版社,2002.
    [123]周群英,高廷耀.环境工程微生物学(第二版)[M].高等教育出版社,2000.
    [124]日本机械工业联合会、日本产业机械工业会,杨祯奎,胡保林译,水域的富营养化与防治对策[M].北京:中日环境科学出版社,1987:126-127.
    [125]Tsuji K,Watanuki T.Stability of microcystins from cyanobacteda-Ⅳ.Effeet of chlorination on decomposition[J].Toxicon,1997,35(7):1033-1041.
    [126]Tsuji K,Naito S.Stability of microeystins from eyanobacteria:Effeet of light on decomposition and isomerization[J].Environ.Sci.Technol.,1993,28(1):173-177.
    [127]Jones G J,Orr P T.Release and degradation of microcystin following algaecide treatment of a microcystis aeruginosa bloom in a recreational lake,as determined by HPLC and protein phosphatase inhibition assay[J].Wat.Res.,1994,28(4):871-876.
    [128]金丽娜,张维吴,郑利等.滇池水环境中微囊藻毒素的生物降解[J].中国环境科学,2002,22(2):189-192.
    [129]史红星,刘会娟,曲久辉等.富营养化水体中微囊藻细胞碎屑对氨氮的吸附特征[J].环境化学,2005,24(3):241-244.
    [130]Boyd,C.E.,1982.Water Quality Management for Pond Fish Culture.Elsevier.Sci.Publ.Comp.
    [131]Brix H.Treatment of wastewater in the rhizosphere of wetland plants:the root-zone method[J].Water Sci Technol,1987,19:107-118.
    [132]Haberl R,Perfler R.Nutrient removal in the reed bed systems[J].Water Sci Technol,1991,29(4):15-27.
    [133]Howard-William C.Cycling and retention of nitrogen and phosphorus in wetlands:a theoretical and applied perspective[J].Freshwater Biology,1985,15:393-398.
    [134]Brix H.Do macrophytes play a role in constructed treatment wetlands?[J].Water Sei Teehnol,1997,35(5):11-17.
    [135]Koottatep T,Polprasert C.Role of plant uptake on nitrogen removalin constructed wetlands located in the tropics[J].Water Sci Technol,1997,36(12):1-8.
    [136]金卫红,付融冰,顾国维.人工湿地中植物生长特性及其对TN和TP的吸收[J].环境科学研究,2007,20(3):75-80.
    [137]Rogers K H,Breen A J,Chick A J.Nitrogen removal in experimental wetland treatment systems:evidence for the role of aquatic plants[J].JWPCF,1991,63(7):934-941.
    [138]汤显强,黄岁梁.人工湿地去除机理及其国内外应用现状[J].水处理技术,2007,33(2):9-13.
    [139]梁威,胡洪营.人工湿地净化污水过程中的生物作用[J].中国给水排水,2003,19(10):28-31.
    [140]付融冰,杨海真,顾国维等.人工湿地基质微生物状况与净化效果相关分析[J].环境科学研究,2005,18(6):44-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700