水库下游非均匀沙输移及模拟技术初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水库作为人类开发利用河流功能的一种重要形式,在发挥防洪、发电、航运、灌溉等多方面工程效益的同时,由于改变了天然情况下河流的水沙条件,从而对水库下游的河道演变带来非常深远的影响。世界各国的河流开发历史和经验教训表明,对水库下游泥沙输移的认识及预计不足,将导致众多水利工程难以发挥其目的,甚至产生一些负面效益。因此,深入分析水库下游非均匀沙的输移特点,明确其内在机理,提高其模拟预测技术,对于做到防患于未然,以便及早采取措施,发挥水库的最大工程效益具有非常重要的意义。
     本文归纳和总结了水库下游非均匀沙输移以及河道冲淤调整的一般性规律,深化了对其内在机理的认识,并在当前研究成果的基础上,针对一维泥沙数学模型中的关键技术和参数进行了探讨,并根据实测资料对一些关键参数进行了率定。在此基础上,结合具体问题,建立了长江中下游宜昌-大通河段的一维河网非恒定水沙数学模型,在利用最新的实测数据对模型进行验证的基础上,针对三峡水库不同蓄水方案的下泄水沙条件对未来长江中下游的河床冲淤及水力特性变化等进行了预测计算,并对预测结果的合理性进行了分析。
     全文主要讨论了以下几个方面的问题:
     (1)水库下游非均匀沙恢复特性及机理:分析了不同水沙条件对构成河床冲淤的泥沙沉降与上扬两个方面的影响因素,在总结和归纳水库下游沙量恢复一般特性的基础上,根据泥沙沉降与上扬构成的泥沙交换特点,明确阐述了水库下游非均匀沙恢复特点的内在机理,并构造了不同冲刷历时沙量恢复略估的表达式,可较好的反映出已建水库下游的沙量恢复的一般性规律。同时,依据实测资料对泥沙输移方程中的恢复系数进行了分析,结果表明其数量级可达10-3-10-1,且一般随着粒径的增大而减小,随着冲刷历时的增加和床沙的粗化而呈递减的趋势。之后,对长江中下游非均匀沙冲淤量对来沙的响应及不同时期来沙减少后的沙量恢复差异进行了分析,指出就年统计值而言,长江中游非均匀沙年冲淤量与年输入沙量的关系比较密切,一般随着泥沙粒径的增大,两者相关性逐渐增强,单位年来沙量改变引起的下游河道年冲淤量逐渐增大,河道相应的输沙能力也逐渐减小,且沿程呈现递减趋势。分析表明,虽然90年代前后和三峡水库蓄水前后长江中游来沙量均有一定程度的减少,但由于后者各粒径组泥沙减少幅度更大、且水沙条件改变之前河床已基本处于冲刷状态,再加之水力条件的影响,其沙量恢复现象更加明显。
     (2)水库下游河流平衡趋向调整:依据水库下游实测资料以及水槽实验资料,按照河床组成性质的不同,对水库下游卵石夹沙河床和沙质河床在平衡趋向过程中的部分调整现象进行了归纳与总结,并深入分析了各调整方式在平衡趋向过程的作用及内在机理。分析指出,卵石夹沙河床经过冲刷以后,通常可通过形成卵石抗冲保护层而使河段达到平衡状态,而沙质河床在平衡趋向过程中的调整方式则更加多样化,其中,纵剖面的趋缓调整、床沙的粗化调整以及横断面的下切与展宽调整的终极方向是改变影响河床冲刷发展的两个方面,即增强河床自身的抗冲刷能力与削弱水流塑造河床的能力。在清水冲刷条件下,当两者相当时河床才能进入最终的绝对平衡状态,而此状态是由泥沙的起动条件决定的。
     (3)一维非均匀沙数值模拟关键技术探讨:在当前研究的基础上,针对泥沙数学模型中的关键技术进行了进一步的探讨:①基于泥沙运动统计理论的泥沙上扬通量与沉降通量推导了非均匀沙挟沙能力表达式,并与当前研究成果进行了对比,同时结合天然河道实际情况以及部分参数研究的不足,提出修正方法;②根据泥沙运动的扩散理论,通过引入调整系数,对非平衡输沙条件下的含沙量沿垂线分布公式进行了理论推导和参数拟合,其结果可用于基于泥沙运动统计理论进行的泥沙恢复饱和系数计算之中;③推导了基于沙波运动的混合层厚度计算方法,该方法可以体现非恒定泥沙数学模型中不同时间步长对其取值的影响;④对流速沿断面分布公式进行了简单的理论推导与参数拟合,以用于一维泥沙数学模型中基于水流不饱和程度构造的断面冲淤面积分配计算之中。
     (4)三峡水库蓄水后长江中下游一维水沙数值模拟研究:建立了适用于长江中下游宜昌-大通河段的一维河网非恒定水沙数学模型,并利用三峡水库蓄水前后2002-2006年的最新实测数据对模型进行了验证。之后,根据三峡水库基本蓄水方案以及不同提前抬高蓄水水位方案的下泄水沙条件,对沿程各河段的冲淤量、冲淤发展过程以及沿程的水位变化进行了模拟预测计算。计算结果符合水库下游泥沙输移的一般规律,并与相关极限冲刷量预测结果以及近年实测结果符合较好。
As an important form of rivers function development for human, reservoir plays a tremendous benefit in the fields of flood control, power generation, navigation, irrigation, and so on. However, it also brings a far-reaching impact to the evolution of the downstream river reach of the reservoir, due to the changes in the water and sediment conditions after impoundment. History of the river development and lessons all over the world indicates that the inadequate knowledge of sediment transport downstream of the reservoir will result in a number of works hard to fulfill their purpose, or even negative benefits. Therefore, in-depth analysis of the sediment transport in non-uniform characteristics downstream reservoir, definitude of its internal mechanism and the elevation of its simulation technology will provide benefits of great importance to take early measures to against possible trouble and get the maximum effectiveness of projects.
     This paper first summarized the general laws of sediment transport and river adjustment in forms of erosion or deposition downstream the reservoir, deepened the understanding of their internal mechanism, and then explored the key simulation technologies and calibrated the model parameters by using the measured data combined with the current research results. On this basis, combined with specific issues, a one-dimensional river network mathematical model of unsteady water and sediment transport for the middle and lower reaches of the Yangtze River downstream form the Three Gorges Reservoir was established and tested by using the latest actual measured data, and then the water and sediment transportation, river erosion or deposition amount, and the changes of hydraulic properties were predicted under different water and sediment condition corresponding to different impoundment progress.
     Some key issues are shown as following:
     (1) Characteristics and mechanism of non-uniform sediment recovery downstream reservoir:the two aspects affecting the river bed erosion and deposition were summarized, and then based on the analysis of general characteristics of sediment recovery downstream reservoir, according to the characteristics of sediment exchange posed by deposition of the sediment in water and entrainment of the sediment on river bed, a clear elaboration of the internal mechanism for non-uniform sediment recovery downstream the reservoir was raised. And a journal expression for sediment recovery at different stage of erosion period was constructed. It can well reflect the journal law of sediment recovery downstream from reservoirs. At the same time, based on the measured data, the recovery coefficient in the sediment transport equations was analyzed. The results showed that its magnitude can reaches about form 10-3 to 10-1, generally increasing as the particle size decreasing, and it also showed a descending trend with the increasing of the duration of the erosion state. Meanwhile, the non-uniform sediment transport properties and recovering features after a reduction of input sediment amount in middle and lower Yangtze River reaches were also analyzed. It was pointed out that there is a closely relationship between annual non-uniform sediment amount of erosion and input in the middle reach of the Yangtze River. Generally with the sediment particle size increasing, the relevance is improved, and the erosion amount in the lower reach is raised due to the unit sediment input amount change, and the input amount, corresponding to the balance of erosion and deposition, is smaller. Analysis also showed that, although there are two reductions in the input sediment amount before and after 90 years and the Three Gorges Reservoir, but the sediment recovery phenomenon of the later period is more obvious, because the later sediment reduction is larger, and the reach has been in the state of erosion, combined with the impact of hydraulic conditions.
     (2) The river adjustment in the process tending to the balance of erosion and deposition downstream reservoirs:Based on the measured data downstream reservoirs under natural conditions and the tank experimental data, according to the difference of river bed composition, the phenomena of the adjustment in the process towards to the balance, both for sand-gravel and sand river beds, was summarized and summed up, and their roles in the process were also analyzed. It is pointed out that the ultimate result of the adjustment of various factors is to change two aspects which affect the river evolution:the river's ability to anti erosion and the flow's ability to shape the riverbed. When the two aspects come to an equal level, the river will enter into the state of equilibrium, which is ultimately determined by the sediment start-moving condition. In the process trending to the balance, the role of vertical gradient adjustment is inevitable, but not the only, and the role of the increasing resistance cannot be ignored.
     (3) Discussion and exploration on the key technologies in one-dimensional numerical simulation of non-uniform sediment:Based on the current study, further discussion on the key technologies in non-uniform sediment mathematical model was proposed:①Using entrainment and deposition fluxes based on statistical theory of sediment movement, expression of non-uniform sediment carrying capacity was derived, and contrasted with the earlier research, the inadequacy and improvement was also proposed;②According to the diffusion theory of sediment movement, through the introduction of the adjustment factor, formula of the vertical sediment concentration distribution under the non-equilibrium sediment transport condition was derived and its parameter was fitted, and it can be used to calculate the recovery coefficient based on the statistical theory of sediment movement;③It is pointed out that the impact of the time step on the values of the mixed layer thickness must be considered in unsteady flow mathematical model, and the method of calculating the thickness of the mixed layer based on the sand wave movement was proposed;④Velocity distribution formula along the cross-section direction was derived and fitted, which can be used in the method of allocating the erosion and deposition area along the cross-section direction based on the flow unsaturated level in one-dimensional sediment mathematical model.
     (4) Research on the one-dimensional numerical simulation and prediction of water and sediment in the middle and lower reaches of the Yangtze River after the impoundment of Three Gorges Reservoir:a one-dimensional unsteady flow and non-uniform sediment river network mathematical model for middle and lower reaches of the Yangtze River downstream the Three Gorges reservoir was established, and it was tested and verified by using the latest actual measured data. After that, the predictive calculation of the river erosion or deposition amount and its development process, and the water level changes at major sites, under the different impoundment program condition, was carried out. The results were better fitted with the general laws of the sediment transport downstream reservoir than the earlier research, and it was in good agreement with the relevant prediction of the limit erosion amount and the latest actual measured data.
引文
[1]水利水电科学研究院河渠研究所.官厅水库建成后永定河下游的河床演变.北京:水利水电出版社,1960
    [2]李保如,华正本.三门峡水库拦沙期下游河道的变化.河流泥沙国际学术讨论论文集,1980
    [3]辽宁省红山水库管理局实验站.红山水库下游河道演变分析报告.辽宁水力科技,1973(5)
    [4]赵业安,潘贤弟,韩少发.河流建库后下游河床演变与河床演变理论问题专题总报告-河流建库后下游河床演变.泥沙研究,1982(1):68-76
    [5]长江水利委员会水文局.2007年度长江三峡水库进出库水沙特性与泥沙淤积分析.2008.2
    [6]韩其为.水库淤积.北京:科学出版社,2003
    [7]黄悦,黄煜龄.三峡水库下游河床冲刷趋势探讨.长江科学院院报,1998(3):6-10
    [8]陈飞.水库下游输沙及演变特性初步研究.武汉大学博士学位论文,2009.04
    [9]韩其为,王玉成,向熙珑.丹江口水库坝下游河段河道清水下泄冲刷时含沙量的恢复.汉江丹江口水库水文泥沙实验文集.1983
    [10]钱宁.修建水库后下游河道重新建立平衡的过程.水利学报,1958(4):33-60
    [11]谢鉴衡.河床演变及整治.北京:中国水利水电出版社,2002
    [12]钱宁,张仁,周志德.河床演变学.北京:科学出版社,1987.04:455-457
    [13]LI Yitian, CHEN Fei. Non-Uniform Sediment Transport Downstream from Reservoir. Transactions of Tianjin university,2008(4):263-270
    [14]韩其为.非均匀悬移质不平衡输沙的研究.科学通报,1979(17):804-808
    [15]李义天.冲积河道平面变形计算初步研究.泥沙研究,1988(1):34-44
    [16]张瑞谨.河流泥沙动力学.北京:中国水利水电出版社,1998年
    [17]孙昭华.水沙变异条件下河流系统调整机理及其功能维持初步研究.武汉大学博士学位论文,2004.04
    [18]尤联元,金德生.水库下游再造床过程的若干问题.地理研究,1990(4):38-48
    [19]李义天,倪晋仁.泥沙输移对长江中游水位抬升的影响.应用基础与工程科学学报,1998(3):215-221
    [20]李义天,李荣,邓金运.长江中游泥沙输移规律及对防洪影响研究.泥沙研究,2000(3):12-20
    [21]李义天,邓金运,孙昭华,李荣.泥沙淤积与洞庭湖调蓄量变化.水利学报, 2000(12):48-52
    [22]许炯心.长江宜昌-武汉河段泥沙年淤积量对水沙变化的响应.地理学报,2005(2):337-348
    [23]戴仕,杨世伦,赵华云,李明.三峡水库蓄水运用初期长江中下游河道冲淤响应[J].泥沙研究,2005(5):35-39
    [24]陈立,吴门伍,张俊勇.三峡工程蓄水运用对长江口径流来沙的影响.长江流域资源与环境,2003(1):50-54
    [25]李义天,孙昭华,邓金运.论三峡水库下游的河床冲淤变化.应用基础与工程科学学报,2003(3):283-295
    [26]罗文辉,阳立群,许毅.三峡蓄水后城陵矶-武汉河段泥沙粒径变化分析.水利水电快报,2006(21):25-27
    [27]梅军亚,毛北平.三峡工程蓄水前后城陵矶至武汉河段水沙输移特性分析.应用基础与工程科学学报,2007(4):473-482
    [28]Mackin, J. H., Concept of the Graded River. Geol. Soc. Amer. Bull., Vol.59,1948:463-512
    [29]Chien, N. Changes in river regime after the construction of upstream reservoirs. Earth surface processes and landforms,1985(10):143-159
    [30]秦荣昱,胡春宏.河床冲刷粗化研究进展及方向.泥沙研究,1997(2):79-82
    [31]A. S. Harrison. Report on special investigation of bed sediment segregation in a degrading bed. University of California.1950.09
    [32]Nicola Surian and Massimo Rinadi. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology,2003(50):307-326
    [33]尹学良.清水冲刷河床粗化研究.水利学报.1963(1)
    [34]韩其为,杨克诚.三峡水库建成后下荆江河型变化趋势的研究.泥沙研究,2000(3):1-11
    [35]段文忠,张政权.三峡水库建成后荆江河段河床形态变化.武汉水利电力大学学报,1997(4):26-29
    [36]#12
    [37]#12
    [38]#12
    [39]Harrison, A.S., Deposition at the Heads of Reservoirs, Proc. Fifth Hydraulic Conference, Bulletin 34, Iowa studies in Engineering, Iowa City,1953.
    [40]水利水电科学研究院.水库淤积问题的研究.北京:水利电力出版社,1959
    [41]谢鉴衡,张植堂等.下荆江系统裁弯后的河床演变研究.武汉水利电子学院研究报告
    [42]侯晖昌.河流力学基本问题.北京,水利出版社,1982
    [43]张启舜.明渠水流泥沙扩散过程的研究及应用.泥沙研究,1980年复刊号
    [44]芦田和男.水库淤积预报.第一次国际河流泥沙会议论文集,北京,1980
    [45]窦国仁.潮汐水流中的悬沙运动及冲淤计算.水利学报,1963年(4)
    [46]韩其为.悬沙不平衡输沙的初步研究.第一次国际河流泥沙会议论文集,北京,1980
    [47]Feldman, A.D., Hec Models for Water Resources System Simulation:Theory and Experience. The Hydraulic Engineering Center, Davis, California,1981
    [48]Chang, H.H., Fluvial-12, Mathematical Model for Erodible Channels, Selected works, Personal printed matter,1986
    [49]Yang Chih Ted. Applications of GSTARS Computer Models for Solving River and Reservoir Sedimentation Problems. Transactions of Tianjin University,2008.04, No.4:235-247
    [50]杨国录,吴卫民等.SUSBED-1动床恒定非均匀全沙模型.水利学报,1994(4):1-11
    [5l]李如钢.《SUSBED-2》数学模型在汉江崔家营航电枢纽工程可行性研究中的应用.水运工程,1998(8):51-52
    [52]Chen, Y.H., Water and Sediment Routing in the Rivers Modeling of Rivers. Edit by H.W. Shen, Colorado State Iniversity,1977
    [53]Karim, M. F. and J. F. Kennedy. Alluvial:A Computer-Based Flow and Sediment Routine Model for Alluvial Streams and its Application to the Missouri River. Iowa Institute of Hydraulic Research, The University of Iowa,1988(2)
    [54]Klaassen, G. J., R. Kolmp and J. J. Vander Zwaard. Planning and Enviormental Impact Assessment of River Engineering Works via Mathematical Models. DHL-Publication,1982(273)
    [55]Challet, J. P. and J. A. Cunge, Simulation of Unsteady Flow in Alluvial Streams第一次国际河流泥沙会议论文集,北京,1980
    [56]许协庆,朱鹏程.河床变形问题的特征线解.水利学报,1964(5)
    [57]张启舜,张振秋.水库冲淤形态及其过程的计算.泥沙研究,1982(1)
    [58]谢鉴衡.河流模拟.北京:水利电力出版社.1990年
    [59]杨国录.河流数学模型.武汉水利电力学院.1992年5月
    [60]王光谦,胡春宏.泥沙研究进展[M].北京:中国水利水电出版社,2006.46-73.
    [61]Einstein, H. A. The Bed-Load Function for Sediment Transportation in Open Channel Flows. Technical Bulletin No.1026, U. S. Department of Agriculture, Soil Conservation Service,1950, 70pp.
    [62]Laursen, E. M. The Total Sediment Load of streams, Journal of Hydraulic Division. ASCE, 1958,84(HY1),1-36.
    [63]Toffaleti, F. B. A Procedure for Computation of the Total River Sand Discharge and Drtailed Distribution. Bed to Surface, Committee on Channel Stabilization, U. S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Technical Report No.5,1968.
    [64]Toffaleti, F. B. Definitive Computations of Sand Discharge in Rivers. Journal of the Hydraulics Division. ASCE,1969,95(HY1),225-246.
    [65]曾鉴湘.悬移质分组水流挟沙力.武汉水利水电学院硕士论文,1981.
    [66]张凌武.非均匀挟沙力的研究.武汉水利电力学院学报,1989,(2):3945
    [67]Misri, R. J., Garde, R. J., and Ranga Raju, K. G. Bed Load Transport of Coarse Nonuniform Sediment. Journal of Hydraulic Engineering, ASCE,1984,110(3):312-328
    [68]Samaga, B. R., Ranga Raju, K. G. and Garde, R. J. Bed Load Transport of Sediment Mixtrues. Journal of Hydraulic Engineering, ASCE,1986,112(11):1003-1018
    [69]Ashida, K. and Michiue, M. Study on Bed Load Transport rate in Open Channel Flows. International Symposiums on River Mechanics, IAHR, Bangkok, Thailand,1973, A36-1-12.
    [70]Proffitt, G. J. and Sutherland, A. J. Transport of Nonuniform Sediment. Journal of Hydraulic Research, IAHR,1983,21(1)::33-43
    [71]Bridge, M. and Bennett, S. J. A Model for Entrainment and Transport of SedimentGrains. Water Resources Research.1992,28(2):337-363
    [72]Wilcock, P. R. Milli, H., and Crabbe, A. D. Sediment Transport Theories:A Review, Proc. Instn. Civ. Engrs.,Part2,1975,59:265-292
    [73]Wilcock, P. R. and McArdell, B. W. Partial Transport of a Sand/Gravel Sediment, Water Resources Research.19697,33(1):235-245
    [74]Patel, P. L. and Ranga Raiju, R. G.,Fractionwise. Calculation of Bed Load Transport. Journal of Hydraulic Research, IHAR,1996,34(3):363-379
    [75]U. S. Corps of Engineers. HEC-6 Scour and Deposition in Rivers and Reservoirs, Use's Manual. Hydrologic Engineering Center, Davis, CA,1977
    [76]Molinas, R. L. and Yang, C. T. Computer Program User's Manual for GATRAS(Generalized Stream Tube Model for Alluvial River Simulation). U. S. Department of Interior, Bureau of Reclamation, Engineering and Research Center, Denver, Colorado,1986,142P
    [77]Rahuel, J.L. Holly, F. M., Chollet, J. P., Belleudy, P. J., and Yang, G. Modeling of Riverbed Evolution for Bed load Sediment Mixtures. Journal of Hydraulic Engineering, ASCE, 1989,115(11):1521-1542
    [78]Molinas, A. User's Manual for BRI-STARS-BRIdge Stream Tube Model for Alluvial River Simulation. National Cooperative Highway Research Program, NCHRP 15-11, Transportation Research Board, Washington, D.C.,1990
    [79]Molinas, A. and Trentm R. BRI-STARS-BRIdge Stream Tube Model for Alluvial River Simulation. Proceedings of the 5th Intergency Sedimentation Conference, Sedimentation Committee of the Water Resources Council,1991
    [80]Molinas, A. BRI-STARS Model for Alluvial River Simulation, Hydraulic Engineering. Proceedings of the 1993 National Conference, ASCE, San Francisco, California,1993,852-858
    [81]Hsu, S. M. and Holly, F. M. Conceptual Bed-Load Transport Model and Verification For Sediment Mixtures. Journal of Hydraulic Engineering, ASCE,1992,118(8):1135-1152
    [82]韩其为.悬移质不平衡输沙的初步研究.河流泥沙国际学术讨论会会议论文集,北京,1980
    [83]窦国仁,赵士清,黄亦芬.河道二维泥沙模型研究.水利水运科学研究,1987(2):1-12
    [84]Karim, M. F. and Kennedy, J. F. Computer-based Predictionfor Sediment Discharge and Friction Factors Alluvial Streams. Iowa Institute of Hydraulic Research Report. No.242, University of Iowa, Iowa city, Iowa,1981
    [85]Wu, B. S., Molinas, A., and Shu, A. P. Fractional Transport of Sediment Mixtures. International Journal of Sediment Research,2003,18(3):232-247
    [86]李义天.冲积河道平面变形计算初步研究.泥沙研究,1988(1):3444
    [87]钱宁,万兆惠.泥沙运动力学.北京:科学出版社,2003
    [88]窦国仁.潮汐水流中的悬沙运动和冲淤计算.水利学报,1963(4):13-23
    [89]韩其为,何明民.恢复饱和系数初步研究.泥沙研究,1997(3):32-40
    [90]韩其为.扩散方程边界条件及恢复饱和系数.长沙理工大学学报(自然科学版),2006(3): 7-19
    [91]张启舜.明渠水流泥沙扩散过程的研究及其应用.泥沙研究,1980(复刊号):37-521
    [92]周建军,林秉南.二维悬沙数学模型——模型理论与验证.应用基础与工程科学学报,1995(1):78-98
    [93]陈霁巍.黄河治理与水资源开发利用(综合卷).郑州:黄河水利出版社,1998:159-162
    [94]刘金梅,王光谦,王士强.沙质河道冲刷不平衡输沙机理及规律研究.水科学进展,2003:563-568
    [95]杨晋营.沉沙池超饱和输沙法恢复饱和系数研究.泥沙研究,2005(3):42-471
    [96]韩其为,陈绪坚.恢复饱和系数的理论计算方法.泥沙研究,2008(6): 8-16
    [97]韩其为.悬移质不平衡输秒的初步研究.河流泥秒国际学术讨论舍论文集.北京,1980年
    [98]钱宁.黄河下游的河床粗化问题.泥沙研究.1959(1):16-23
    [99]李义天,胡海明.床沙混合层活动层的计算方法探讨.泥沙研究,1994(1):64-71
    [100]Karim. F. and Kennedy. J. F. Missouri river computer-based predictions for mobile-bed modeling. Parts 1:J. of Hydro. Res., Vol.28,1990
    [101]赵连军,张红武,江恩惠.冲积河流悬移质泥沙与床沙交换机理及计算方法研究.泥沙研究,1999(4):49-54
    [102]王士强.沙波运动与床沙交换调整.泥沙研究,1992(4):14-23
    [103]Broah. J. P., Alonso. C. V. and Prasad. S. N. Routing Geaded sediment in streams. Formulations, J. of Hydro. Division, ASCE, Vol.108, No.12,1982
    [104]U. S. Army Corps of Engineering, HEC-6, Scour and Deposition in river and reservoir, Computer Program 723-G2-L2470. User Manual, Exhibit 3, Theoretical Dasis.
    [105]Tomas, W. A., Calculation of Sediment Movement in Gravel Bed Rivers. Workgroup on Engineering Problem on the Management of Gravel Bed Rivers, Newton, Wales, UK,1980
    [106]吴伟明,李义天.一种新的河道一维水利泥沙运动数值模拟方法.泥沙研究,1992.03,No.1:1-8
    [107]韩其为,何明民.水库淤积与河床演变的(一维)数学模型.泥沙研究,1989.03,No.3:14-29
    [108]王小艳,徐秋宁.三门峡水库潼关至三门峡段冲淤计算方法.西北水资源与水工程,1994,No.4:64-67
    [109]赵士清,窦国仁.在三峡工程变动回水区中一维全沙数学模型的研究.水利水运科学研究,1990.06,No.2:115-124
    [110]杨国录,吴卫民,陈振虹等.SUSBED-1动床恒定非均匀全沙模型.水利学报,1994.04,No.4:1-11
    [111]陆永军,张华庆.水库下游冲刷的数值模拟——模型的构造.水动力学研究与进展,193.03,No.1:81-89
    [112]张启卫.黄河下游泥沙数学模型及其应用.人民黄河,1994.01,No.1:4-8
    [113]冯普林,陈乃联,马雪妍,薛亚莉.渭河下游一维洪水演进数学模型研究.人民黄河,2009.06,No.6:46-52
    [114]史英标,林炳尧,徐有成.钱塘江河口洪水特性及动床数值预报模型.泥沙研究,2005.02,No.1:7-13
    [115]刘月兰,韩少发,吴知.黄河下游河道冲淤计算方法.泥沙研究,1987.09,No.3:30-42
    [116]Chang H H. Minimum Stream power and river channel patterns. Journal of Hydrology,1979, 41(3-4):303-327
    [117]Yang C T. Minimum unit stream power and fluvial hydrolics. ASCE Journal of Hydraulic Division,1976,102(7):919-934
    [118]Millar R G and Quick M C. Stable width and depth of gravel-bed rivers with cohensive banks. ASCE, Journal of Hydraulic Engineering,1998,124(10):1005-1013
    [119]Chang, Howard H. Background and applications of Fluvial-12. Sediment Transport Model Proc. Int Symp:648-652
    [120]谢汉祥.复式断面的水力学特性及其在实际中的应用.广东水利水电,1976(1):5-26
    [121]王韦,蔡金德.顺直河道漫滩水流滩槽流量分配的计算.成都科大技学学报,1990(6):69-76
    [122]周宜林.滩槽水流流速横向分布的研究.水利电力科技,1994(3):14-19
    [123]周宜林,陈立,王明甫.漫滩挟沙水流流速横向分布研究.泥沙研究,1996(3):56-63
    [124]陈立,詹义正,周宜林,王明甫.漫滩高含沙水流滩槽水沙交换的形式与作用.泥沙研究,1996(2):45-49
    [125]吉祖稳,胡春宏.漫滩水流流速垂线分布规律的研究.水利水电技术,1997(7):26-32
    [126]王双明,孙西欢,潘光在.复式断面河道水流泥沙数值模拟.太原理工大学学报.2000(1):60-63
    [127]李谓新.复式河道漫滩洪水计算.四川大学学报(工程科学版),2001(4):6-8
    [128]许唯临.复式河道漫滩水流计算方法研究.水利学报,2002(6):21-31
    [129]陈长英,张幸农.滩槽复式断面水流特性的试验研究.水利水运工程学报,2004(3):28-32
    [130]李彪,胡旭要,徐立君.复式断面滩槽流速分布研究综述.水道港口,2005(4):228-231
    [131]雒天峰,吕宏兴.U形渠道断面流速分布规律的初步研究.灌溉排水学报,2006(2):12-14
    [132]张土乔,马健,孙东坡,李国.复式断面弯道段的水流流态研究.浙江大学学报(工学版),2007(6):990-994
    [133]槐文信,梁爱国,杨中华,沈洁.非对称复式断面明渠水流特性试验与数值模拟.华中科技大学学报(自然科学版),2007(12):95-98
    [134]刘臣,平克军.河道二维数值模拟糙率横向分布研究.水道港口,2008(2):113-118
    [135]吴腾,张红武,张昊.复式断面河道流速横向分布及其对滩唇形成的影响.水利学报,2009(5):535-541
    [136]中国水利水电科学研究院.三峡水库下游河道冲刷计算研究.长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002年:115-210
    [137]长江科学院,三峡水库下游宜昌至大通河段冲淤一维数模计算分析(一)、(二).长江三峡工程泥沙问题研究(第七卷).北京:知识产权出版社,2002年:211-311
    [138]清华大学.对长科院及水科院三峡水库下游河道长距离冲刷计算成果的评论,长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002年:312-322
    [139]武汉水利电力大学.三峡水库下游一维数学模型计算成果比较.长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002年:323-338
    [140]长江科学院.溪洛渡建坝后三峡工程下游宜昌至大通河段冲淤计算分析,长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002年:339-359
    [141]中国水利水电科学研究院.向家坝建坝后三峡工程下游宜昌至大通河段冲淤计算分析,长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002年:360-381
    [142]长江科学院.三峡工程下游江口至观音寺河段冲淤计算分析,长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002年:382-412
    [143]中国水利水电科学研究院.长江阱湖堤河段泥沙二维冲淤计算,长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002年:413-469
    [144]清华大学水利水电工程系.葛洲坝枢纽下游河段一维泥沙数学模型研究,长江三峡工程泥沙问题研究(第六卷),北京:知识产权出版社,2002年:308-329
    [145]天津水运工程科学院研究所.葛洲坝枢纽船闸航道水深问题二维泥沙数学模型研究,长江三峡工程泥沙问题研究(第六卷),北京:知识产权出版社,2002年:330-343
    [146]长江科学院.葛洲坝枢纽下游近坝段整治二维水流泥沙学说模型研究,长江三峡工程泥沙问题研究(第六卷),北京:知识产权出版社,2002年:344-359
    [147]长江航道局,武汉水利电力大学.三峡工程坝下游砂卵石浅滩河段一二维数学模型计算,长江三峡工程泥沙问题研究(第六卷),北京:知识产权出版社,2002年:486-529
    [148]三峡工程坝下游浅滩整治一维及二维数值模拟研究,长江三峡工程泥沙问题研究(第六卷),北京:知识产权出版社,2002年:530-549
    [149]武汉大学,南京水利科学研究院.长江中游荆江沙质河床段长距离一、二维嵌套水利泥沙数值模拟研究,2004年1月
    [150]湖北省水利水电科学研究院,长江水利委员会长江科学院.三峡工程运用后对长江中游湖北段何时与闸站工程影响及对策研究,2007年12月
    [151]武汉大学.长江中下游长河段一维水沙数值模拟及其关键技术研究.2005年11月.
    [1]Bogardi, J. Sediment Transport in Alluvial Streams. Academia Kiado, Budapest,1974.
    [2]钱宁,万兆惠.泥沙运动力学.北京:科学出版社,2003:57-72
    [3]张瑞谨.河流泥沙动力学.北京:中国水利水电出版社,1998:56
    [4]Murray, S. P. Settling Velocities and Vertical Diffusion of Particles in Turbulence Water. J. Geophys. Res., Vol.75, No.9,1970
    [5]范家骅,吴德一,陈明.紊动水流中泥沙的沉淀.水利水电科学研究院,1964年
    [6]唐允吉.泥沙在动水中沉降的研究.陕西工业大学,1963年
    [7]O'Brien, M.P., Review of the Theory of Turbulent Flow and Its Relation to Sediment Transportation. Trans. Amer. Geophys. Union, Vol.14,1993:487-491
    [8]张瑞谨.悬移泥沙在二度等速流中的平衡情况是怎样分布的.新科学季刊,1950.01
    [9]陈永宽.悬移质含沙量沿垂线分布.泥沙研究,1984.3,No.1:31-40
    [10]张小峰,陈志轩.关于悬移质含沙量沿垂线分布的几个问题.水利学报,1990.10,No.10:41-48
    [11]刘建军.明渠水流含沙量沿垂线分布研究.泥沙研究,1996.06,No.2:105-108
    [12]王志良.悬移质含沙量的垂线分布规律探讨.河海大学学报,1997.05,No.3:29-33
    [13]刘大有.从二相流方程出发研究平衡输沙——扩散理论和泥沙扩散系数的讨论.水利学报,1995.04:62-67
    [14]刘大有.现有泥沙理论的不足和改进——扩散模型和费克定律适用性的讨论.泥沙研究, 1996.03:39-45
    [15]曹志先,张效先,习和忠.基于湍流猝发的明渠流悬沙浓度分布.水利学报,1997.02,No.2:52-57
    [16]Cao Zhixian, Wei Liangyan, Xie Jianheng. Sediment-laden flow in open channels from two-phase flow view point. J. Hydr. Eng.,ASCE,1995, Vol 121(Hy10):72-735
    [17]邵学军,夏震寰.悬浮颗粒紊动扩散系数的随机分析.水利学报,1990.10,No.10:32-40
    [18]韩其为,陈绪坚.恢复饱和系数的理论计算方法.泥沙研究,2008(6):8-16
    [19]韩其为,何明民.论非均匀悬移质二维不平衡输沙方程及其边界条件.水利学报,1997,No.1:1-10
    [20]谢鉴衡.河流模拟.北京:水利电力出版社,1990:104-108
    [21]曹志先.基于湍流猝发的床面泥沙上扬通量.水利学报,1956,No.5:18-21
    [22]韩其为,王玉成等.丹江口水库坝下游河道清水下泄冲刷时含沙量的恢复.汉江丹江口水库水文泥沙实验文集,1983:14-18
    [23]韩其为.三峡水库运行后城汉河段会只淤不冲吗.水力发电学报,2006,No.6:79-90
    [24]S. Anders Brandt, Classification of geomorphological effects downstream of dams. Catena 40 (2000) 375-401
    [25]David J. Topping, David M. Rubin, L.E. Vierra Jr., Colorado River sediment transport 1. Nature sediment supply limitation and influence of Glen Canyon Dam, Water Resources Research, Vol36. No2. Pages515-542, Feb.2000
    [26]M.M. Grasser and F. El-Gamal, Aswan High Dam:Lesson learnt and on-going research. Water Power & Dam Construction. Jun.1994,35-39
    [27]长江水利委员会水文局.丹江口水库修建后黄家港站水文特征变化.长江三峡工程泥沙问题研究,Vol.7,北京:知识产权出版社,2002.7:52-66
    [28]长江水利委员会水文局.2007年度长江三峡水库进出库水沙特性与泥沙淤积分析.2008.2:9
    [29]钱宁,麦乔威.多沙河流上修建水库后下游来沙量的估计.水利学报,1962.8,No.4:9-21
    [30]钱宁,张仁,周志德.河床演变学.北京:科学出版社,1987.04:458-459
    [31]钱宁.修建水库后下游河道重新建立平衡的过程.水利学报,1962(4):9-21
    [32]Williams, G. P. and M. E. Wolman. Downstream Effects of Dams on Alluvial Rivers. U. S. Geol. Survey, Prof. Paper No.1286,1984:83
    [33]陈飞.水库下游输沙及演变特性初步研究.武汉大学博士学位论文,2009年4月
    [34]石国钰.丹江口水库坝下游河床粗化与演变的探讨.人民长江,1989(6):23-29
    [35]陈飞,李义天,唐金武,张亭.水库下游分组沙冲淤特性分析.水力发电学报,2010(1):164-170
    [36]长江水利委员会水文局.丹江口水库建成后沿程水位流量关系变化及其对下游防洪影响.三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002.7
    [37]长江水利委员会水文局.2007年度三峡工程坝下游宜昌至湖口河段冲淤及河床组成变化分析,2008.4
    [38]清华大学水利系.葛洲坝枢纽下游河段河床组成及冲淤变化分析.长江三峡工程泥沙问题研究,Vol.6,北京:知识产权出版社,2007.7:72-102
    [39]长江水利委员会水文局.长江宜都至江口河段河床组成及砂卵石来量分析.长江三峡工程泥沙问题研究,Vol.7,北京:知识产权出版社,2007.7:422-441
    [40]长江水利委员会水文局.丹江口水库修建后襄阳站水文特征变化.长江三峡工程泥沙问题研究,Vol.7,北京:知识产权出版社,2007.7:67-74
    [41]窦国仁.潮汐水流中的悬沙运动和冲淤计算.水利学报,1964(4):13-23
    [42]中国水利水电科学研究院.三峡水库下游河道冲刷计算研究.长江三峡工程泥沙问题研究,Vol.7,北京:知识产权出版社,2007.7:211-257
    [43]李义天,孙昭华,邓金运.论三峡水库下游的河床冲淤变化.应用基础与工程科学学报,2003.9,No.3:283-295
    [44]孙昭华.水沙变异条件下河流系统调整机理及其功能维持初步研究.武汉大学博士学位论文,2004年4月
    [45]Hjelmfelt, A. T. and C. W. Lenau. Non-equilibrium transport of suspended sediment. J. Hyd. Div., Proc., Amer. Soc. Civil Engrs.,1970(7):1567-1586
    [46]尹学良.河床演变河道整治论文集.北京:中国建材工业出版社,1996
    [47]黄才安.水流泥沙运动基本规律.北京:海洋出版社,2004
    [48]刘兴年,曹叔尤,黄尔,彭清娥,李昌志.粗细化过程中的非均匀沙起动流速.泥沙研究,2000(4):10-13
    [49]胡海明,李义天.非均匀沙的运动机理及输沙率计算方法的研究.水动力学研究与进展,1996(3):284-292
    [50]韩文亮,惠遇甲,郜国明.非均匀沙分组起动规律的研究.泥沙研究,1998(1):74-80
    [51]陈媛儿,谢鉴衡.非均匀沙起动规律初探.武汉水利电力学院学报.1988(3):28-37
    [52]李荣,李义天,王迎春.非均匀沙起动规律研究.泥沙研究,1999(1):27-32
    [53]拾兵,曹叔尤,刘兴年.非均匀沙引爆作用的研究现状及其起动矢量式.青岛海洋大学学报,2000(4):723-728
    [54]冷奎,王明甫.无粘性非均匀沙起动规律探讨.水力发电学报,1994(2):57-65
    [55]Cao, Z. Equilibrium near-bed concentration of suspended sediment. J. Hydraulic. Eng. 1999(12):1270-1278
    [56]韩其为.非均匀悬移质不平衡输沙的研究.科学通报,1979(17):804-808
    [57]张启舜.明渠水流泥沙扩散过程的研究及其应用.泥沙研究,1980(复刊号):37-521
    [58]周建军,林秉南.二维悬沙数学模型——模型理论与验证.应用基础与工程科学学报,1995(1):78-98
    [59]韩其为,何明民.恢复饱和系数初步研究.泥沙研究,1997(3):32-40
    [60]张应龙.荆江放淤实验工程实测资料分析.泥沙研究,1981(3):82-90
    [61]黎运棻.沉沙池沿程分组悬移质含沙量变化的基本计算式及其α值.山西水利科技,2005(3):5-7
    [62]张一新,张斌奇.沉沙池设计中确定泥沙沉降率综合系数α的方法.人民珠江,1996(3):29-32
    [63]吴均,刘焕芳,宗全利,汤骅.一维超饱和输沙法恢复饱和系数的对比分析.人民黄河,2008(5):25-27
    [64]杨晋营.沉沙池超饱和输沙法恢复饱和系数研究.泥沙研究,2005(3):42-47
    [65]史传文,罗全胜.一维超饱和输沙法恢复饱和系数α的计算模型研究.泥沙研究,2003(1):59-63
    [66]赵志贡,孙秋萍.恢复饱和系数α数学模型的建立.黄河水利职业技术学院学报,2000(4): 27-29
    [67]王新宏,曹如轩,沈晋.非均匀悬移质恢复饱和系数的探讨.水利学报,2003(3):120-128
    [68]电力部成都勘测设计研究院.水电站沉沙池悬移质泥沙分组沉降计算.1993.06
    [69]赵德招,陈立,周银军,桂波.单颗粒泥沙沉速公式的对比研究.人民黄河,2009(1):36-40
    [70]Wu W. M., Wang S. Y. Formulas for sediment porosity and settling velocity. Journal of Hydraulic Engineering,2006 (8):858-862
    [71]Cheng N S. Simplified settling velocity formula for sediment particle. Journal of Hydraulic Engineering,1997(2):149-152
    [72]Raudkivi A J. Loose boundary hydraulics.3rd ed. New York:Pergamon Press,1990
    [73]李亦工.过渡区泥沙沉速公式的比较.河海大学学报,1986(3):132-136
    [74]窦国仁.泥沙运动理论.南京水利科学研究院,1963
    [75]沙玉清.泥沙运动学引论.北京:中国工业出版社,1965
    [76]陈守煜,赵瑛琪.过渡区泥沙沉速公式.水利学报,1986(12):56-62
    [77]Molinas, A. and Wu, B. S. Transport of sediment in large sand-bed rivers. Journal of Hydraulic Research. IAHR,2001(2):135-146
    [78]黄才安,严恺,奚斌.泥沙输移强度计算公式的再研究.水动力学研究与进展,2003(3):625-632
    [79]Lorentz, H. A., Ein Allgemeiner Satz die Bewegung Enier Reibenden Flussigkeit Betreffend. Nebst Einigen Anwendungen Desselben, Abhand. Uber Theoret. Physik, Vol.1, Leipzig,1907
    [80]李义天,倪晋仁.泥沙输移对长江中游水位抬升的影响.应用基础与工程科学学报, 1998(3):215-221
    [81]李义天,李荣,邓金运.长江中游泥沙输移规律及对防洪影响研究.泥沙研究,2000(3):12-20
    [82]李义天,邓金运,孙昭华,李荣.泥沙淤积与洞庭湖调蓄量变化.水利学报,2000(12):48-52
    [83]许炯心.长江宜昌-武汉河段泥沙年淤积量对水沙变化的响应.地理学报,2005(2):337-348
    [84]戴仕,杨世伦,赵华云,李明.三峡水库蓄水运用初期长江中下游河道冲淤响应.泥沙研究,2005(5):35-39
    [85]陈立,吴门伍,张俊勇.三峡工程蓄水运用对长江口径流来沙的影响.长江流域资源与环境,2003(1):50-54
    [86]罗文辉,阳立群,许毅.三峡蓄水后城陵矶-武汉河段泥沙粒径变化分析.水利水电快报,2006(21):25-27
    [87]梅军亚,毛北平.三峡工程蓄水前后城陵矶至武汉河段水沙输移特性分析.应用基础与工程科学学报,2007(4):473-482
    [88]LI YiTian, CHEN Fei. Non-Uniform Sediment Transport Downstream from Reservoir. Transactions of Tianjin University,2008(4):263-270
    [89]许炯心,胡春宏,陈建国.不同粒径组泥沙对黄河下游沉积的影响及其在黄河治理中的意义.中国科学E辑:技术科学,2009(2):310-317
    [90]中华人民共和国水利部,中国河流泥沙公报(2000-2007).北京:中国水利水电出版社
    [91]长江水利委员会水文局.2007年三峡工程水文泥沙观测.2008
    [92]湖南省水利水电厅.洞庭湖水文气象统计分析.1989
    [1]Han Qiwei, Liu Kabo. Influence on Flood Occurrence of Dongting Lake to Changes of Relation Between Yangtze River and Dongting Lake. Paper Collection of the Second Yangtze Forum,2007:36-56
    [2]许炯心.边界条件对水库下游河床演变的影响.地理研究,1983(4):60-71
    [3]长江水利委员会水文局.宜都至大埠街河段卵石运动规律及分析.长江三峡工程泥沙问题研究(Vol.6),北京:知识产权出版社,2002
    [4]长江水利委员会水文局.2007年度三峡工程坝下游宜昌至湖口河段冲淤及河床组成变化分析.2008.04
    [5]石国钰.丹江口水库坝下游河床粗化与演变的探讨.人民长江,1989(6):23-29
    [6]Harrison A S. Report on Special Investigation of Bed Sediment in A Degrading Bed. University of California,1950(9):132-147
    [7]钱宁.黄河下游河床的粗化问题.泥沙研究,1959(1):1-91
    [8]尹学良.清水冲刷河床粗化研究.水利学报,1963(1):15-251
    [9]张瑞谨.河流泥沙动力学.北京:中国水利水电出版社,1989
    [10]Williams, G. P. and M. E. Wolman. Downstream Effects of Dams on Alluvial Rivers. U. S. Geol. Survey, Prof. Paper, No.1286,1984:83
    [11]陆永军,李献忠,艾春来.清水冲刷宽级配河床粗化试验初步研究.天津水运工程科学研究所,1989年
    [12]长江科学院.三峡水库下游宜昌至大通河段冲淤一维数模计算分析.长江三峡工程泥沙问题研究(Vol.7).北京:知识出版社,2002
    [13]长江水利委员会水文局.2007年度长江三峡水库进出库水沙特性与泥沙淤积分析.2008.02
    [14]长江航道规划设计研究院,长江重庆航运工程勘察设计院.长江三峡工程航道泥沙原型观测2008-2009年度分析报告.2009.09
    [15]谢鉴衡.河床粗化计算.武汉水利电力学院学报,1959(2)
    [16]秦荣昱,胡春宏,梁志勇.清水河床清水冲刷粗化的研究.水利水电技术,1997(6):8-13
    [17]周志德.水库下游河床冲刷下切问题的探讨.泥沙研究,2003(5):28-31
    [18]封光寅,李光辉,周晓英.丹江口水利枢纽下游河道重建平衡过程分析.人民长江,2006(12):99-101
    [19]钱宁,张仁,周志德.河床演变学.北京:科学出版社,1987
    [20]潘庆燊,曾静贤,欧阳履泰.丹江口水库下游河道演变及其对航道的影响.1982(8):54-63
    [21]陈飞,李义天,唐金武,张亭.水库下游分组沙冲淤特性分析.水力发电学报,2010(1):164-170
    [22]韩其为,何明为.泥沙交换的统计规律.水利学报,1981(1):10-22
    [23]王荣新,章厚玉,易志平,杨建.丹江口水库下游沿程Z-Q关系变化分析.人民长江,2001(2):25-27
    [24]黄才安.水流泥沙运动基本规律.北京:海洋出版社,2004
    [25]刘金梅,王士强,王光谦.冲积河流长距离冲刷不平衡输沙过程初步研究.水利学报,2002(2):47-53
    [26]Mackin, J. H., Concept of the Graded River. Geol. Soc. Amer. Bull., Vol.59,1948:463-512
    [27]钱宁.修建水库后下游河道重新建立平衡的过程Journal of Hydraulic Engineering Society of China.1958 (4):33-60
    [28]乐培九,朱玉德,程小兵,崔喜凤.清水冲刷河床调整过程试验研究.水道港口,2007(1):23-29
    [29]水利水电科学研究院河渠研究所.官厅水库建成后永定河下游的河床演变.水利电力出版社,1960
    [30]Harrison, A. S. and W. J. Mellema, Sedimentation Aspect of the Missouri River Dams, Tran. Of the 14th Intern. Cong. cn Large Dams, Vol.3,1982:213-228
    [31]陆永军.中线调水对峰口至汉川河段航运的影响.交通部天津水运所.1993
    [32]贾敏锐.从丹江口、葛洲坝水库下游河床冲刷看三峡工程下游河床演对航道的影响.水道港口:1996(3):l-13
    [33]孔祥柏,李昌华等.汉江红山头-薛家脑游荡性河段河床演变规律综合分析.“七五”国家重点科技(攻关)项目成果汇编
    [34]长江科学院.坝下游河床演变对堤防安全的影响问题阶段性评估报告.2008.7
    [35]长江委荆江水文水资源勘测局.荆江险工护岸巡查简报.2004-2007
    [36]S. A. Schumm. The Effect of sediment characteristics on Erosion and Deposition of Ephemeral stream channel. U. S. Geo. Surv. Prof. Paper.352C,1961
    [37]高幼华,张红武,马怀宝.冲积河流河床变形的数值模拟方法.河南省首届泥沙研究讨论会论文集.郑州:黄河水利出版社,1995:34-39
    [38]许炯心.水库下游河道复杂响应的试验研究.泥沙研究,1986(4):50-56
    [1]王光谦,胡春宏.泥沙研究进展.北京:中国水利水电出版社,2006.46-73.
    [2]Einstein, H. A. The Bed-Load Function for Sediment Transportation in Open Channel Flows. Technical Bulletin No.1026, U. S. Department of Agriculture, Soil Conservation Service,1950, 70pp.
    [3]Laursen, E. M. The Total Sediment Load of streams, Journal of Hydraulic Division. ASCE, 1958,84(HY1),1-36.
    [4]Toffaleti, F. B. A Procedure for Computation of the Total River Sand Discharge and Drtailed Distribution. Bed to Surface, Committee on Channel Stabilization, U. S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Technical Report No.5,1968.
    [5]Toffaleti, F. B. Definitive Computations of Sand Discharge in Rivers. Journal of the Hydraulics Division. ASCE,1969,95(HY1),225-246.
    [6]Misri, R. J., Garde, R. J., and Ranga Raju, K. G. Bed Load Transport of Coarse Nonuniform Sediment. Journal of Hydraulic Engineering, ASCE,1984,110(3):312-328
    [7]Samaga, B. R., Ranga Raju, K. G. and Garde, R. J. Bed Load Transport of Sediment Mixtrues. Journal of Hydraulic Engineering, ASCE,1986,112(11):1003-1018
    [8]曾鉴湘.悬移质分组水流挟沙力.武汉水利水电学院硕士论文,1981.
    [9]张凌武.非均匀挟沙力的研究.武汉水利电力学院学报,1989,(2):39-45
    [10]Patel, P. L. and Ranga Raiju, R. G., Fraction wise Calculation of Bed Load Transport. Journal of Hydraulic Research, IHAR,1996,34(3):363-379
    [11]Ashida, K. and Michiue, M. Study on Bed Load Transport rate in Open Channel Flows. International Symposiums on River Mechanics, IAHR, Bangkok, Thailand,1973, A36-1-12.
    [12]Proffitt, G J. and Sutherland, A. J. Transport of Non-uniform Sediment. Journal of Hydraulic Research, IAHR,1983,21(1)::33-43
    [13]Bridge, M. and Bennett, S. J. A Model for Entrainment and Transport of SedimentGrains. Water Resources Research.1992,28(2):337-363
    [14]Wilcock, P. R. Milli, H., and Crabbe, A. D. Sediment Transport Theories:A Review, Proc. Instn. Civ. Engrs.,Part2,1975,59:265-292
    [15]Wilcock, P. R. and McArdell, B. W. Partial Transport of a Sand/Gravel Sediment, Water Resources Research.19697,33(1):235-245
    [16]U. S. Corps of Engineers. HEC-6 Scour and Deposition in Rivers and Reservoirs, Use's Manual. Hydrologic Engineering Center, Davis, CA,1977
    [17]Molinas, R. L. and Yang, C. T. Computer Program User's Manual for GATRAS(Generalized Stream Tube Model for Alluvial River Simulation). U. S. Department of Interior, Bureau of Reclamation, Engineering and Research Center, Denver, Colorado,1986,142P
    [18]Rahuel, J.L. Holly, F. M., Chollet, J. P., Belleudy, P. J., and Yang, G Modeling of Riverbed Evolution for Bed load Sediment Mixtures. Journal of Hydraulic Engineering, ASCE, 1989,115(11):1521-1542
    [19]Molinas, A. User's Manual for BRI-STARS-BRIdge Stream Tube Model for Alluvial River Simulation. National Cooperative Highway Research Program, NCHRP 15-11, Transportation Research Board, Washington, D.C.,1990
    [20]Molinas, A and Trentm R. BRI-STARS-BRIdge Stream Tube Model for Alluvial River Simulation. Proceedings of the 5th Intergency Sedimentation Conference, Sedimentation Committee of the Water Resources Council,1991
    [21]Molinas, A. BRI-STARS Model for Alluvial River Simulation, Hydraulic Engineering. Proceedings of the 1993 National Conference, ASCE, San Francisco, California,1993,852-858
    [22]Hsu, S. M. and Holly, F. M. Conceptual Bed-Load Transport Model and Verification For Sediment Mixtures. Journal of Hydraulic Engineering, ASCE,1992,118(8):1135-1152
    [23]Karim, M. F. and Kennedy, J. F. Computer-based Predictionfor Sediment Discharge and Friction Factors Alluvial Streams. Iowa Institute of Hydraulic Research Report. No.242, University of Iowa, Iowa city, Iowa,1981
    [24]韩其为.悬移质不平衡输沙的初步研究.河流泥沙国际学术讨论会会议论文集,北京,1980
    [25]窦国仁,赵士清,黄亦芬.河道二维泥沙模型研究.水利水运科学研究,1987(2):1-12
    [26]Karim, M. F. and Kennedy, J. F. Computer-based Prediction for Sediment Discharge and Friction Factors Alluvial Streams. Iowa Institute of Hydraulic Research Report. No.242, University of Iowa, Iowa city, Iowa,1981
    [27]Wu, B. S., Molinas, A., and Shu, A. P. Fractional Transport of Sediment Mixtures. International Journal of Sediment Research,2003,18(3):232-247
    [28]李义天.冲积河道平面变形计算初步研究.泥沙研究,1988(1):34-44
    [29]张瑞谨.河流泥沙动力学[M].北京:中国水利水电出版社,1998.181.
    [30]钱宁,万兆惠.泥沙运动力学.北京:科学出版社,2003
    [31]吉良八郎Hydraulical Studies on the Sedimentation in Reservoirs. Memoirs of Faclty of Agri., Kagawa Univ., No.12,1963:191
    [32]Alger, G. R. and B. Simons. Fall Velocity of Irregular Shaped Particals. J. Hyd. Div., Proc., Amer. Soc. Civil Engrs., Vol.94, No.HY3,1968:721-737
    [33]Schulz, S. F., R. H. Wilde and M. L. Alberston. Influence of Shape on the Fall Velocity of Sedimentary Particals. M. R. D. Sediment Series. No.5, Missouri River Div., U. S. Corps of Engrs., 1954:161
    [34]Rubey, W. W. Settling Velocities of Gravel, Sand and Silt Particles. Amer. J. Sci., Vol.25, No.148,1933:325-338
    [35]Lorentz, H. A., Ein Allgemeiner Satz die Bewegung Enier Reibenden Flussigkeit Betreffend. Nebst Einigen Anwendungen Desselben, Abhand. Uber Theoret. Physik, Vol.1, Leipzig,1907
    [36]McNown, J. S. Partials in Slow Motion. La Blanche, Vol.6, No.5,1951:701-722
    [37]McNown, J. S. and P. N. Lin. Sediment Concentration and Fall Velocity. Proc.,2nd Midwestern Conf. on Fluid Mech.,1952:401-411
    [38]Cunningham, E. On the Velocity of Steady Fall of Spherical Particles Through Fluid Medium. Proc., Royal Soc. London, Ser. A, Vol.83,1910:357-365
    [39]McNown, J. S., H. M. Lee, M. B. McPherson and S. M. Engez. Influence of Boundary Proximiti on the Drag of Spheres, Proc.,7th Intern. Cong. For Applied Mech., London, Vol.2 Pt.l, 1948:17-29
    [40]Uchida, S. Slow Viscous Flow Past Closely Spaced Spherical Particals, Japaneous Inst. Sci. Tech., Vol.3,1949:97-104
    [41]蔡树棠.泥沙在静水中的沉淀运动-(1)含沙浓度对沉速的影响.物理学报,Vol.12,No.5,1956:402-408
    [42]Smoluchowski, M. S. On the Particles Applicability of Stokes Law of Resistance and the Modification of It Required in Certain Cases, Proc.,5th Intern. Cong. Math., Cambridge Press,1913
    [43]Burgers, J. M. On the Influence of the Concentration of A Suspension Upon the Sedimentation Velocity(In Particular for A Suspension of Spherical Particles), Proc., Ned. Akad. Wet., Amsterdam, Vol.45,1942:126
    [44]Zhixian Cao, Gareth Pender, Steve Wallis, and Paul Carling. Computational Dam-Break Hydraulics over Erodible Sediment Bed. JOURNAL OF HYDRAULIC ENGINEERING, ASCE, 2007.07:689-703
    [45]Kada, F. and T. j. Hanraty. Effects of Solids on Turbulence in A Fluid. J. Amer. Inst. Chem. Engrs. Vol.6, No.4,1960:624-630
    [46]Lhermitte, P. Influence de la Turbulence sur la Vitesse de chute des Particules Solides dans I'eau. La Houille Blanche. Vol.6, No.2,1952:285
    [47]Meyer, r. A propos des I'influence de la Turbulence sur la Vitesse de chute des Particules Solides. La Houille Blanche. Nov.-Dec.1951:862-864
    [48]Field, W. G. Effects of Density Ratio on Sedimentary Similitude. J. Hyd. Div., Proc., Amer. Soc. Civil Engrs., Vol.94, No.HY3,1968:705-719
    [49]Murray, S. P. Settling Velocities and Vertical Diffusion of Particles in Turbulence Water. J. Geophys. Res., Vol.75, No.9,1970
    [50]范家骅,吴德一,陈明.紊动水流中泥沙的沉淀.水利水电科学研究院,1964年
    [51]唐允吉.泥沙在动水中沉降的研究.陕西工业大学,1963年
    [52]韩其为,何明民.论非均匀悬移质二维不平衡输沙方程及其边界条件.水利学报,1997,No.1:1-10
    [53]韩其为,何明民.泥沙运动统计理论.科学出版社,1984年
    [54]谢鉴衡.河流模拟.北京:水利电力出版社,1990
    [55]Einstein, H. A. The bed-load function for sediment transportation in open channel flow US Dept. of Agriculture, Tech Bull No 1026, Washington D C,1950
    [56]Yalin, M. S., Mechanics of Sediment Transport.2nded, Oxford, England:Pergamon Press, 1977
    [57]Nagakawa, H., Tsujimoto, T., Sand bed instability due to bed-load motion. J Hydr Div. ASCE, Vol.106(12),1980
    [58]Ruiter J C C de. The mechanics of sediment transport on bed forms. Proc Euromech 156. Mechanics of sediment transport, Istanbul,1982
    [59]Fernandez-Luque R, Erosion and transport of bed-load sediment Dissertation, KRIPS Repro BV, Meppel, The Netherlands,1974
    [60]Van Rijn L C. Sediment pick-up functions. J Hydr. Engr., ASCE, Vol.110(10): 1494-1502,1984
    [61]曹志先.基于湍流猝发的床面泥沙上扬通量.水利学报,1956,No.5:18-21
    [62]刘兴年,曹叔尤,黄尔,彭清娥,李昌志.粗细化过程中的非均匀沙起动流速.泥沙研究,2000(4):10-13
    [63]胡海明,李义天.非均匀沙的运动机理及输沙率计算方法的研究.水动力学研究与进展,1996(3):284-292
    [64]韩文亮,惠遇甲,郜国明.非均匀沙分组起动规律的研究.泥沙研究,1998(1):74-80
    [65]陈媛儿,谢鉴衡.非均匀沙起动规律初探.武汉水利电力学院学报.1988(3):28-37
    [66]李荣,李义天,王迎春.非均匀沙起动规律研究.泥沙研究,1999(1):27-32
    [67]拾兵,曹叔尤,刘兴年.非均匀沙引爆作用的研究现状及其起动矢量式.青岛海洋大学学报,2000(4):723-728
    [68]冷奎,王明甫.无粘性非均匀沙起动规律探讨.水力发电学报,1994(2):57-65
    [69]窦国仁.潮汐水流中的悬沙运动和冲淤计算.水利学报,1963(4):13-23
    [70]韩其为,何明民.恢复饱和系数初步研究.泥沙研究,1997(3):32-40
    [71]韩其为.扩散方程边界条件及恢复饱和系数.长沙理工大学学报(自然科学版),2006(3): 7-19
    [72]张启舜.明渠水流泥沙扩散过程的研究及其应用.泥沙研究,1980(复刊号):37-521
    [73]韩其为.非均匀悬移质不平衡输沙的研究.科学通报,1979(17)::804-808
    [74]周建军,林秉南.二维悬沙数学模型——模型理论与验证.应用基础与工程科学学报,1995(1):78-98
    [75]陈霁巍.黄河治理与水资源开发利用(综合卷).郑州:黄河水利出版社,1998:159-162
    [76]刘金梅,王光谦,王士强.沙质河道冲刷不平衡输沙机理及规律研究.水科学进展,2003:563-568
    [77]杨晋营.沉沙池超饱和输沙法恢复饱和系数研究.泥沙研究,2005(3):42-471
    [78]韩其为,陈绪坚.恢复饱和系数的理论计算方法.泥沙研究,2008(6):8-16
    [79]韩其为,何明民.泥沙交换的统计规律.水利学报,1981(1)
    [80]韩其为,何明民.泥沙运动统计规律.科学出版社,1984:320
    [81]韩其为,何明民.论非均匀沙二维不平衡输沙方程及其边界条件.水利学报,1997(1)
    [82]#12
    [83]McTigue, D. F. Mixture Theory, Proc. Of the First International symposium od river sedimentation, Vol.1, Beijing, China,1980
    [84]Drew, D. A. turbulent sediment transport over a flat bottom using moment balance. J. Applied Mech. Vol.42,1975
    [85]Kobayashi, N. and Seo, N. Fluid and sediment interaction oner a plane ned, Proc. ASCE, J. Hydr. Engr. Vol.111, No.6,1985
    [86]Ananion, A. K. and Gerbashian, E. T. about the system of equation of movement of flow carring suspended matter. J. hydr. Res. Vol.3, No.1,1965
    [87]蔡树棠.相似理论和泥沙的垂直分布.应用数学和力学.Vol.3,No.5,1982
    [88]朱鹏程.从紊流脉动相似结构推论悬浮泥沙的垂线分布.中国力学学会第二届全国流体力学学术会议论文集,1983
    [89]Li. R. M. and Shen, H. W. Solid particles settlement in open channel flow, Proc. ASCE, J. Hydr. Div. Vol.101,1975
    [90]Yalin, M. S. the distribution of sediment in a two-dimension flow over a mobile bed. Stochastic hydraulics, edited by chiu, C. L.,1971
    [91]邵学军,夏震寰.悬浮颗粒紊动扩散系数的随机分析.水利学报,1990.10
    [92]倪晋仁,惠遇甲.悬移质浓度垂线分布的各种理论及其间关系.水利水运科学研究,188(1)
    [93]Lane, E. W., and A. A. Kalinske. Engineering Calculations of Suspended Sediment. Trans. Amer. Geophys. Union,1941:603-607
    [94]Rouse, H., Modern Conception of the Mechanics of Turbulence. Tran. ASCE, Vol.102,1937
    [95]Lane, E. W. and Kalinske, A. A. Engineering Calculation of Suspended Sediments. Trans. AGU, Vol.22,1941
    [96]Ismail, H. M. Turbulent Transfer Mechanics and Suspended Sediment in Closed Channels, Trans. ASCE, Vol.117,1952
    [97]Vanoni, V. A. Transportation of Suspended Sediment by Watrer. Trans. ASCE, Vol.111,1946
    [98]Hunt, J. N. the turbulent transport of suspended sediment in open channels. Proc. Roy. Soc. London, A, Vol.224,1954
    [99]Itakura, J. and Kish, T. open channel flow with suspended sediments. Proc. ASCE, Vol.8, 1980
    [100]张瑞谨.悬移泥沙在二度等速流中的平衡情况是怎样分布的,新科学季刊,1950.01-
    [101]陈永宽.悬移质含沙量沿垂线分布.泥沙研究,1984.3, No.1
    [102]张小峰,陈志轩.关于悬移质含沙量沿垂线分布的几个问题.水利学报,1990.10,No.10
    [103]刘建军.明渠水流含沙量沿垂线分布研究.泥沙研究,1996.06,No.2
    [104]王志良.悬移质含沙量的垂线分布规律探讨.河海大学学报,1997.05,No.3
    [105]胡春宏,惠遇甲.明渠挟沙水流运动的力学和统计规律.北京:科学出版社,1995
    [106]Rijn, L. C. V. Sediment Transport, Part Ⅱ:Suspended Load Transport, Proc. ASCE, J. Hydr. Engr.Vol.110, No.11:1984
    [107]Coleman, M. L. Flume Studies of the Sediment Transfer Coefficient, Water Resources Research, Vol.6, No.3,1970
    [108]王兆印,钱宁.粗颗粒高含沙两相紊流运动规律的实验研究.中国科学,1984(8)
    [109]Ikeda, S. Suspended Sediment on Sand Ripples. Third Int. Symp. On Stochastic Hydraulics, Tokyo,1980
    [110]谢鉴衡,邹履泰.关于扩散理论含沙量沿垂线分布的悬浮指标.武汉水利电力学院学报,1981(3)
    [111]Motes, J. S. and Ippen, A. J. Interaction of Two-Dimensional Turbulent Flow with Suspended Particles. Res. No.164, Lab. Water Resources and Hydrodynamics. MIT,1973
    [112]Doblins, W. E. Effect of turbulence on sedimentation. Trans. ASCE, Vol.109
    [113]Wang, Z. B. and Ribberink, J. S. the validity of a depth-integrated model for suspended sediment transport. Journal of Hydraulic Research,24:53-67
    [114]Van Rijn, L. C. sand transport at high velocities. Delft Hydraulics Laboratory Report, M2127A and M2127B
    [115]张启舜.含沙量沿程扩散恢复的水槽试验研究.水利水电科学研究院研究报告,1962
    [116]Neill, C. R., A reexamination of the beginning of movement for coarse granular bed materials, Report INT 68, Hydraulics Research Station, Wallingford, England,1968,
    [117]Parker, G, in press, Transport of gravel and sediment mixtures, ASCE Manual 54, Sediment Engineering, ASCE, Chapter 3
    [118]杨国录.河流数学模型.北京:海洋出版社,1992
    [119]韩其为.悬移质不平衡输秒的初步研究.河流泥沙国际学术讨论舍论文集.北京,1980年
    [120]钱宁.黄河下游的河床粗化问题.泥沙研究.1959(1):16-23
    [121]李义天,胡海明.床沙混合层活动层的计算方法探讨.泥沙研究,1994(1):64-71
    [122]Karim. F. and Kennedy. J. F. Missouri river computer-based predictions for mobile-bed modeling. Parts 1:J. of Hydro. Res., Vol.28,1990
    [123]赵连军,张红武,江恩惠.冲积河流悬移质泥沙与床沙交换机理及计算方法研究.泥沙研究,1999(4):49-54
    [124]王士强.沙波运动与床沙交换调整.泥沙研究,1992(4):14-23
    [125]Karahan. M. E. and A.W. Peterson. Visualization of Seperation Over Sand Waves. J. Hyd. Div., Proc., Amer. Soc. Civil Engrs., Vol.106, No. HY8, Aug.1980:1345-1352
    [126]Broah. J. P., Alonso. C. V. and Prasad. S. N. Routing Geaded sediment in streams. Formulations, J. of Hydro. Division, ASCE, Vol.108, No.12,1982
    [127]U. S. Army Corps of Engineering, HEC-6, Scour and Deposition in river and reservoir, Computer Program 723-G2-L2470. User Manual, Exhibit 3, Theoretical Dasis.
    [128]Tomas, W. A., Calculation of Sediment Movement in Gravel Bed Rivers. Workgroup on Engineering Problem on the Management of Gravel Bed Rivers, Newton, Wales, UK,1980
    [129]van Rijn L C. Sediment transport, PartⅢ:bed forms and alluvial roughness. Journal of Hydraulic Engineering,1984(12):1733-1754
    [130]张柏年等.长江沙波运动的基本规律.长江流域规划办公室汉口观测队报告.1960
    [131]Grade. R. J. and M. L. Albertson. Characteristics of bed forms and regimes of flow in alluvial channels. Rep. CER 59 RJG 9, Colorado State Univ.,1959:18
    [132]张柏英.沙质河床清水冲刷研究.长沙理工大学博士学位论文,2009.04
    [133]吴伟明,李义天.一种新的河道一维水利泥沙运动数值模拟方法.泥沙研究,1992.03,No.1:1-8
    [134]韩其为,何明民.水库淤积与河床演变的(一维)数学模型.泥沙研究,1989.03,No.3:14-29
    [135]王小艳,徐秋宁.三门峡水库潼关至三门峡段冲淤计算方法.西北水资源与水工程,1994,No.4:64-67
    [136]赵士清,窦国仁.在三峡工程变动回水区中一维全沙数学模型的研究.水利水运科学研究,1990.06,No.2:115-124
    [137]杨国录,吴卫民,陈振虹等SUSBED-1 动床恒定非均匀全沙模型.水利学报,1994.04,No.4:1-11
    [138]陆永军,张华庆.水库下游冲刷的数值模拟——模型的构造.水动力学研究与进展,193.03,No.1:81-89
    [139]张启卫.黄河下游泥沙数学模型及其应用.人民黄河,1994.01,No.1:4-8
    [140]冯普林,陈乃联,马雪妍,薛亚莉.渭河下游一维洪水演进数学模型研究.人民黄河,2009.06,No.6:46-52
    [141]史英标,林炳尧,徐有成.钱塘江河口洪水特性及动床数值预报模型.泥沙研究,2005.02,No.1:7-13
    [142]刘月兰,韩少发,吴知.黄河下游河道冲淤计算方法.泥沙研究,1987.09,No.3:30-42
    [143]Chang H H. Minimum Stream power and river channel patterns. Journal of Hydrology,1979, 41(3-4):303-327
    [144]Yang C T. Minimum unit stream power and fluvial hydraulics. ASCE Journal of Hydraulic Division,1976,102(7):919-934
    [145]Millar R G and Quick M C. Stable width and depth of gravel-bed rivers with cohensive banks. ASCE, Journal of Hydraulic Engineering,1998,124(10):1005-1013
    [146]Chang, Howard H. Background and applications of Fluvial-12. Sediment Transport Model Proc. Int Symp:648-652
    [147]Yang Chih Ted. Applications of GSTARS Computer Models for Solving River and Reservoir Sedimentation Problems. Transactions of Tianjin University,2008.04, No.4:235-247
    [148]徐国宾.最小能耗率原理及其在河流动力学中的应用.西北水资源与水工程,1994,No.4:50-58
    [149]Griffiths G A. Extremal hypotheses for river regime:an illustration of progress. Water Resource Research,1981,20(1):113-118
    [150]麦乔威,赵业安,潘贤娣.多沙河流拦洪水库下游河床演变计算方法.黄河建设,1965,No.3
    [151]陈立,王明甫,周宜林.漫滩高含沙水流结构和滩槽冲淤演变规律//“八五”国家重点科技攻关子专题报告.武汉:武汉水利电力大学,1995
    [152]高幼华,张红武,马怀宝.冲击河流河床变形的数值模拟方法//河南省首届泥沙研究讨论会论文集.郑州:黄河水利出版社,1995:34-39
    [153]江恩惠,赵连军,张红武.多沙河流洪水演进与冲淤演变数学模型研究及应用.郑州:黄河水利出版社,2008:163-172
    [154]李彪,胡旭跃,徐立君.复式断面滩槽流速分布研究综述.水道港口,2005.12,No.4:228-232
    [155]李义天,谢鉴衡.冲积平原河流平面流动的数值模拟.水利学报,1986,No.11:11-15
    [156]要威,李义天.游荡型河道阻力沿河宽分布的研究.四川大学学报(工程科学版),2007,No.1:38-43
    [157]刘臣,平克军.河道二维数值模拟糙率横向分布研究.水道港口,2008.04,No.2:1 13-118
    [1]谢鉴衡论文集.武汉水利电力大学.1955年,武汉
    [2]中国水利水电科学院研究院.三峡水库下游河道冲刷计算研究.长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002年:115-210
    [3]长江科学院,三峡水库下游宜昌至大通河段冲淤一维数模计算分析(一)、(二).长江三峡工程泥沙问题研究(第七卷).北京:知识产权出版社,2002年:211-311
    [4]清华大学.对长科院及水科院三峡水库下游河道长距离冲刷计算成果的评论,长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002年:312-322
    [5]武汉水利电力大学.三峡水库下游一维数学模型计算成果比较.长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002年:323-338
    [6]长江科学院.溪洛渡建坝后三峡工程下游宜昌至大通河段冲淤计算分析.长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002年:339-359
    [7]中国水利水电科学研究院.向家坝建坝后三峡工程下游宜昌至大通河段冲淤计算分析.长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002年:360-381
    [8]长江科学院.三峡工程下游江口至观音寺河段冲淤计算分析.长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002年:382-412
    [9]中国水利水电科学研究院.长江阱湖堤河段泥沙二维冲淤计算.长江三峡工程泥沙问题研究(第七卷),北京:知识产权出版社,2002年:413-469
    [10]清华大学水利水电工程系.葛洲坝枢纽下游河段一维泥沙数学模型研究.长江三峡工程 泥沙问题研究(第六卷),北京:知识产权出版社,2002年:308-329
    [11]天津水运工程科学院研究所.葛洲坝枢纽船闸航道水深问题二维泥沙数学模型研究.长江三峡工程泥沙问题研究(第六卷),北京:知识产权出版社,2002年:330-343
    [12]长江科学院.葛洲坝枢纽下游近坝段整治二维水流泥沙学说模型研究.长江三峡工程泥沙问题研究(第六卷),北京:知识产权出版社,2002年:344-359
    [13]长江航道局,武汉水利电力大学.三峡工程坝下游砂卵石浅滩河段—二维数学模型计算.长江三峡工程泥沙问题研究(第六卷),北京:知识产权出版社,2002年:486-529
    [14]三峡工程坝下游浅滩整治一维及二维数值模拟研究.长江三峡工程泥沙问题研究(第六卷),北京:知识产权出版社,2002年:530-549
    [15]武汉大学,南京水利科学研究院.长江中游荆江沙质河床段长距离一、二维嵌套水利泥沙数值模拟研究,2004年1月
    [16]湖北省水利水电科学研究院,长江水利委员会长江科学院.三峡工程运用对长江中游湖北段何时与闸站工程影响及对策研究,2007年12月
    [17]谢鉴衡.河流模拟.北京:水利电力出版社.1990年.
    [18]杨国录.河流数学模型.武汉水利电力学院.1992年5月.
    [19]李义天.河网非恒定流隐式方程组的汊点分组解法.水利学报.1997(3):49-57.
    [20]曹志芳.洪泛区水沙调度及洪灾损失快速评估模型研究.武汉大学博士学位论文,2001年4月
    [21]李义天,尚全民.一维不恒定流泥沙数学模型研究.泥沙研究.1998(1)
    [22]武汉大学.长江中下游河段一维水沙数值模拟及其关键技术研究.2005.11
    [23]张瑞谨.河流泥沙动力学.北京:中国水利水电出版社,1989
    [24]余明辉.平面二维非均匀水沙数学模型的研究与应用.武汉水利电力大学博士学位论文.1999年.
    [25]武汉大学.宜昌-沙市河段航道治理与控制宜昌水位下降对策研究.2007年8月.
    [26]中国水利水电科学研究院.三峡水库下游河道冲淤计算研究.长江三峡工程泥沙问题研究(第七卷)[C].北京:知识产权出版社,2002年:149-210
    [27]长江水利委员会水文局.2007年度三峡工程坝下游宜昌-湖口河段冲淤及河床组成变化分析[R].2008年
    [28]长江航道规划设计研究院.长江三峡工程航道泥沙原型观测2008-2009年度分析报告[R].2009年.
    [29]李义天,邓金运等.输沙量法和地形法计算螺山汉口河段淤积量比较.泥沙研究,2002(4).
    [30]郭小虎,李义天.枝城-城陵矶河段冲刷量分析.水利发电学报(待刊)
    [3l]郭小虎.荆江河段冲刷与三口分流变化相互作用机制.武汉大学博士论文,2009年
    [32]李义天,邓金运等.三峡水库提前蓄水调度方案研究.武汉大学科研报告.2006年
    [33]毛北平.长江中游荆江三口洪道水沙输移变化及其对洞庭湖的影响.武汉大学硕士学位论文.2008年
    [34]孙昭华.水沙变异条件下河流系统调整机理及其功能维持初步研究.武汉大学博士学位论文,2004年4月
    [35]黄悦,董耀华.三峡工程蓄水运用后长江中下游河道采砂影响及对策研究
    [36]武汉大学.长江中下游长河段一维水沙数值模拟及其关键技术研究.2005年
    [37]李义天,胡海明.床沙混合活动层计算方法探讨.泥沙研究,1994(1)
    [38]尹学良.清水冲刷河床粗化研究.水利学报,1963(1)
    [39]武汉大学.三峡蓄水运用后下游河床冲刷对城陵矶水位影响分析.2009
    [40]李义天,孙昭华,邓金运.论三峡水库下游的河床冲淤变化.应用基础与工程科学学报,2003,11(3):283-295
    [4l]贾锐敏.从丹江口、葛洲坝水库下游河床冲刷看三峡工程下游河床演变对航道的影响.
    水道港口,1996,(3):1-13
    [42]长江水利委员会水文局.2007年度长江三峡水库进出库水沙特性、水库淤积及坝下游河道冲刷分析.2008年4月
    [43]陈飞.水库下游泥沙输移时空变化规律研究.武汉大学科研报告.2009年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700