农业非点源污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着点源污染得到逐步控制,非点源污染已经成为水环境污染的主要原因,其中又以农业非点源污染贡献率最大。农业非点源污染是指在农业生产活动中,农田中的土粒、氮素和磷素等营养物质、农药以及其他有机或无机污染物质,在降水或灌溉过程中,通过农田的地表径流、农田排水和地下渗漏,使大量污染物质进入水体,造成的水环境污染。
     大沙河是普兰店境内一条主要河流,大沙河流域面积964平方千米,长96.5千米,平均坡降1.34‰,径流量2.60亿立方米,径流深269.7mm。流域内以耕地为主要用地类型。农业非点源污染已经成为大沙河水质恶化的主要原因之一。因此,对该流域进行农业非点源污染研究对大沙河水环境的污染防治具有重要意义。
     本文在国内外农业非点源污染研究的基础之上,通过调查询问、监测分析和粗略估算等方法对普兰店大沙河流域的农业非点源污染情况进行了研究,主要研究该流域总氮TN、总磷TP的污染情况。
     本研究选取普兰店大沙河流域5个采样点,从上游到下游分别为元台、八家子、后线石、海皮大桥、后大院。通过对枯水期和丰水期两次采样的检测结果分析研究,得出总氮TN、总磷TP的污染情况。
     枯水期和丰水期两次检测,元台TN达到Ⅱ类水质标准;八家子、后线石、海皮大桥TN达到Ⅲ类水质标准;后大院TN达到Ⅳ类水质标准。TP均在Ⅱ类水质标准以上。造成这一状况的主要原因是大沙河流域农业的面源污染、工业的点源污染以及沿岸生活污水的排放。根据大连市农业非点源污染背景的研究,农业的面源污染是引起大沙河流域TN值增大的主要污染原因。
     从上游向下游水质TN浓度呈逐渐增大趋势,TN变化与流程相关性明显。八家子断面TN浓度增大幅度较大可能与该断面水量较少,河流自净能力降低有关。后大院断面TN浓度最高,超过地表水Ⅲ类水质标准,主要是由于后大院断面位于大沙河和其支流夹河交汇下游,上游氮素都随地表径流汇入大沙河,造成TN浓度显著增高。
     枯水期TN值略高于丰水期,主要是由于枯水期河水流量小、流速低,水体自净能力比较弱。同时春季施肥后的降雨过程也使大量氮素随地表径流流失,也是造成TN值高的原因。
Along gradual controlling the point source pollution, the non-point source pollution has become a majority of water contamination. Among non-point source pollutions, the agricultural non-point source pollution is the biggest one. The agricultural non-point source pollution is defined to be the runoff transports of constituents include the nutrients, the agricultural chemicals and soon nitrogen and phosphorus element and all that are organic or the inorganic pollution matter from diffuse sources on the land to streams. Through the farmland surface runoff, the agricultural drainage and the underground leakage, cause the water environmental pollution.
     The Dasha River is the main river in Pulandian. The area is 964 square kilometers, and the length is 96.5 kilometers. Average slope is 1.34‰, diameter current capacity 260 million cubic meters, and the depth is 269.7mm.In the basin plants crops is mainly type. The agricultural non- point source pollution already became one of main reasons which the Dasha River quality worsened. Therefore, conducting the agricultural non- point source pollution research to this basin is valuable.
     This paper summarizes the state of the agricultural non-point source pollution research at home and abroad, research the Pulandian the Dasha river basin agricultural non- point source pollution situation. Mainly studies are about the total nitrogen (TN) and the total phosphorus (TP) pollution situation.
     This research selects 5 sampling spots, from upstream to downriver respectively after Yuan Tai, Ba Jiazi, Hou Xianshi, Haipi Bridge, Hou Dayuan. The dry season and the abundant water time two examinations.
     The TN of Yuan Tai achieves II water-quality standard, The TN of Ba Jiazi, Hou Xianshi,Haipi Bridge achieve III water-quality standard; The TN of Hou Dayuan achieves IV water-quality standard. The main reason is the agricultural non- point source pollution of the Dasha River basin and the industry point source pollution. According to the Dalian agriculture non- point source pollution background research, the agricultural non- point source pollution the main pollution reason which increases the TN of the Dasha River basin.
     The TN increases from the upriver to the downriver. Ba Jiazi cross sections TN density increases the scope to be comparatively greatly possible with this cross section water volume to be less; the rivers reduce from only the ability concern. The latter yard cross section TN density is highest, surpasses the surface water III water-quality standard.
     The dry season TN value slightly is higher than the abundant water time, mainly is because dry season river water current capacity small, speed of flow is low, the water body quite is only weak from the ability. In spring the apply fertilizer after rain causes the nitrogen run off along with the surface, also creates the TN higher.
引文
[1] Dennis L.C., Peter J.V., Keith L. Modeling non - point source pollution in vadose zone with GIS[J].Environmental Science and Technology,1997,8:2157~2175
    [2] Miller G T. Living in the Environment: An Introduction to Environmental Science [M].Seventh Edition Belmont: Wadsworth Publishing Company, 1992.602~611
    [3] Boers. P. C. M. Nutrient Emissions from Agriculture in the Netherlands: Causes and Remedies [J].Water Science and Technology (G.B.).1996,33 (183):22~25
    [4] Novotny V. and Olem H. Water quality: prevention, identification and management of diffuse pollution [M].New York: Van Nostrand Reinhold Company, 1993.2~6
    [5] Lee S.I. Non-point source pollution [J].Fisheries,1979,2:50~52
    [6] 张红艳.非点源污染的经济学研究进展[J].上海环境科学,2002,9:16~19
    [7] 朱铁群.我国水环境农业非点源污染防治研究简述[J].农村生态环境,2000,16(3):55~57
    [8] 杨爱玲,朱颜明.地表水环境非点源污染研究[J].环境科学进展,1999,7(5):60~67
    [9] 汪水兵.农业非点源污染与防治对策[J].安徽农业科学,2006,34(2):294~295
    [10] 屈宝香.农业中的化肥使用与环境影响[J].环境保护,1994,(8):41-44
    [11] 贺缠生.非点源污染的管理及控制[J].环境科学,1998,19(5):87-91
    [12] 任磊,黄廷林.水环境非点源污染的模型模拟[J].西安建筑科技大学学报(自然科学版),2002,34(1):9-13
    [13] Mckissock G, Jefferies C, Darcy B J. An assessment of drainage best management practices in Scotland [J].Water and Environment Management,1999,13(1):47~48
    [14] Bouraoui F., Dllaha T A. Answers-2000: runoff and sediment transport model [J].Journal of Environment Engineering,1996,122(6):493~502
    [15] Yong R A., Onstad C A., Bosch D D. AGNPS: A non-point source pollution model for evaluating agricultural watersheds [J]. Journal of Soil Water Conservation,1989,44(2):168~173
    [16] 李怀恩,沈冰.暴雨径流污染负荷计算的响应函数模型[J].中国环境科学,1997,17(1):15~18
    [17] 李怀恩.流域非点源污染模型研究进展与发展趋势[J].水资源保护,1996,2:14~18
    [18] 李怀恩.估算非点源污染负荷的平均浓度法及其应用[J].环境科学学报,2000,4(7):397~400
    [19] 彭盛华,赵俊琳.基于 GIS 技术的流域水文水环境信息系统开发初探—以汉水流域为例[J].水文,2001,21(1):10~14
    [20] 朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992.288~303
    [21] 韦鹤平.环境系统工程[M].上海:同济大学出版社,1993.156~168
    [22] 张水龙,庄季屏.农业非点源污染研究现状与发展趋势[J].生态学杂志,1998,17 (6):51~55
    [23] 黄满湘,章申,唐以剑,等.模拟降雨条件下农田径流中氮的流失过程[J].土壤与环境, 2001,10(1):6~10
    [24] Withers P J, Lord E I. Agricultural nutrient inputs to rivers and ground waters in the UK: policy, environmental management and research needs[J].The Science of the Total Environment, 2002,282-283: 9~24
    [25] Prunty L and Greenland R.Nitrate leaching using two potatocorn N-fertilizer plans on sandy soil[J].Agriculture, Ecosystems & Environment,1997,65(1):1~13 [26 ] Singh M, Bhattacharya A K, Nair T V, et al. Nitrogen loss through subsurface drainage effluent in coastal rice field from India[J].Agricultural Water Management, 2002,52(3):249~260
    [27] 中国农业科学院土壤肥料研究所.中国肥料[M].上海:上海科学技术出版社, 1994.104~108
    [28] 朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1~6
    [29] Fernández Escobar R, Benlloch M, Herrera E, et al. Effect of traditional and slow release N fertilizers on growth of olive nursery plants and N losses by leaching[J].Scientia Horticulturae, 2004,101(1-2):39~49
    [30] Brye K R, Norman J M, Gower S T, et al. Methodological limitations and N-budget differences among a restored tall grass prairie and maize agro-ecosystems[J].Agriculture, Ecosystems and Environment, 2003, 97(1-3): 181~198
    [31] Bruckler L, Cockborne AM, Renault P, et al. Spatial and temporal variability of nitrate in irrigated salad crops[J].Irrigation Science,1997,17(2):53~61
    [32] Angle J S. Nitrate leaching losses from soybeans (Glycine maxL.Merr.)[J].Agriculture, Ecosystems and Environment,1990,31(2): 91~97
    [33] 王德建,林静慧,孙瑞娟,等.太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响[J].土壤学报,2003,40(3):426~432
    [34] 黄满湘,章申,唐以剑,等.模拟降雨条件下农田径流中氮的流失过程[J].土壤与环境,2001,10(1): 6~10
    [35] Fu G M, Yuan F M, Yao Z H, et al. Downward movement and leaching of NO-3—N from Nitrogen-fertilized corn on dryland soil [J].Pedosphere,1998,8(1):59~64
    [36] Hatch D J, Jarvis S C, Parkinson R J. Concurrent measurements of net mineralization, nitrification, denitrification and leaching from field incubated soil cores[J].Biology and Fertility of Soils,1998,26(4):323~330
    [37] 王庆仁,李继云.论合理施肥与土壤环境的可持续发展[J].环境科学进展,1999,7(2):116~123
    [38] Ramos C, Agut A, Lidón A L. Nitrate leaching in important crops of the Valencian Community region (Spain) [J].Environmental Pollution, 2002, 118(2):215~223
    [39] 杨金玲,张甘霖,张华,等.丘陵地区流域土地利用对氮素径流输出的影响[J].环境科学,2003,24(1):16~23
    [40] Jansons V, Busmanis P, Dzalbe I, et al. Catchment and drainage field nitrogen balances and nitrogen loss in three agriculturally influenced Latvian watersheds[J].European Journal of Agronomy,2003,20(1-2):173~179
    [41] 张兴昌,邵明安.植被覆盖度对流域有机质和氮素径流流失的影响[J].草地学报,2000,8(3):198~203
    [42] Mitchell R D, Harrison R, Russell K J, et al.The effect of crop residue incorporation date on soil inorganic nitrogen, nitrate leaching and nitrogen mineralization[J].Biology and Fertility of Soils,2000,32(4):294-301
    [43] Choudhary M A, Lal R, Dick W A.Long-term tillage effects on runoff and soil erosion under simulated rainfall for a central Ohio soil[J].Soil & Tillage Research,1997,42(3):175~184
    [44] 张兴昌.耕作及轮作对土壤氮素径流流失的影响[J].农业工程学报,2002,18(1): 70~73
    [45] 晏维金.模拟降雨条件下沉积物对磷的富集机理[J].环境科学学报,2000,20(3):332~337
    [46] 段水旺,章申.中国主要河流控制站氮、磷含量变化规律初探[J].地理科学,1999,05:232~235
    [47] 鲁如坤.土壤植物营养学原理与施肥[M].北京:化学工业出版社,1998.428~436
    [48] 胡泽友,郭朝晖,周作明,等.湖南省稻田化肥施用与氮磷流失状况的研究[J].湖南农业大学学报,2000,26(4):264~266
    [49] SHARPLEY A N. Assessing phosphorus bioavailability in agricultural soils and runoff[J].Fertilizing research,1993,36:259~272
    [50] 单保庆.降雨—径流过程中土壤表层 P 迁移过程的模拟研究[J].环境科学学报,2001,21(1):7~12
    [51] 单保庆.小流域磷污染物非点源输出的人工降雨模拟研究[J].环境科学学报,2000,20(1):33~37
    [52] Mahapatraic, Wpatrick J.Inorganic phosphate transformation in waterlogged soil[J].Soil Sci.,1969,107:28~288
    [53] 邬伦.降雨—产流过程与氮、磷流失特征研究[J].环境科学学报,1996,16(1):111~115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700