黄河中游水沙变化及其对人类活动的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河中游(河口镇-花园口区间)的水沙变化及其驱动因素是社会各界关注的焦点之一,同时也是评价黄土高原生态建设和生态系统修复的一个重要依据。本文以黄河中游为对象,利用研究区1950-2008年降水、径流、输沙序列资料,采用数理统计及小波分析等方法,分析了黄河中游各区间水沙变化过程及其对降水及人类活动的响应,并利用灰色预测模型对水沙变化趋势进行了模拟预测研究。得到以下主要结论:
     (1)分析了近60年来黄河中游水沙特征变化。1950-2008年,黄河中游年均来水量及来沙量分别为165.2×10~8m~3、8.2×10~8t,多年平均变差系数分别为0.5、0.7。黄河中游来水来沙量变化具有明显的阶段性。其中来水量分为三个时期:1950-1970年为丰水期;1971-1985年为平水期; 1986-2008年为枯水期。来沙量分为两个时期:1950-1981年为丰沙期;1982-2008年为枯沙期。黄河中游年均来水来沙量存在明显的周期性变化规律。年均来水量存在27a、10a、以及4a周期,其中第一主周期为27a;年均来沙量存在31a、20a、以及7a周期,其中第一主周期为31a。
     (2)黄河中游来水来沙量呈显著的减小趋势,且都通过了Pettitt’s统计检验指标临界值(P=0.05)。来水量与来沙量分别从1985年、1981年发生突变性减少趋势。突变年份后,区间年均来水来沙量在同一频率下均呈显著减少趋势。年均来水量在突变年份后减少幅度为43.9%-69.8%。其中在丰年减少51.6%;平年减少44.0%;枯年减少60.5%。年均来沙量在突变年份后减少幅度为44.9%-96.2%。其中在丰年减少46.8%;平年减少61.4%;枯年减少96.0%。
     (3)降水和人类活动是影响黄河中游水沙变化的主要驱动因素。降水和人类活动的减水贡献率分别为30%、70%;减沙贡献率分别为20%、80%。定量分析了人类活动对黄河中游水沙变化的影响程度。生产生活用水是区间来水量减少的一个主要因素。区间年均耗水量约为45.0×10~8m~3,占人类活动减水总量的73.8%。水土保持是一项减水减沙的综合性措施,是区间来沙量减少的一个主要因素。由于水土保持措施每年的减水减沙量分别为6.0×10~8m~3、2.7×10~8t,分别占人类活动减水减沙总量的9.8%、52.9%。大中型水库的泥沙淤积是区间来沙量减少的一个重要因素。由于水库、河道淤积泥沙年均约1.8×10~8t,占人类活动减沙总量的35.3%。
     (4)利用GM灰色预测模型对黄河中游河龙区间水沙变化进行了模拟研究。虽然模型预测结果较实测值都要偏大,但该方法对水沙变化趋势的波形模拟能力较强,能较为准确地判断出实测序列的峰谷变化趋势。
The middle reaches of the Yellow River (from Toudaoguai to Huayuankou) water and sediment and their driving factors is the focus of attention of the community. It is also an important basis for evaluation of ecological construction and ecosystem restoration in the Loess Plateau. In this paper, the middle Yellow River as the research object, based on the precipitation, streamflow and sediment discharge series data (1950-2008), using mathematical statistical test methods and wavelet method, analysis of streamflow and sediment discharge variation and its impact on precipitation / response to human activities. And to use gray prediction model to simulate changes in streamflow and sediment discharge prediction. The main conclusions are as follows:
     (i) Analysis the change of streamflow and sediment discharge eigenvalues nearly 60 years in the middle reaches of the Yellow River. The annual average streamflow and sediment discharge is 165.2×10~8m~3 and 8.2×10~8t respectively; and the mean coefficient of variation(Cv) is 0.5 and 0.7 respectively in the middle reaches of the Yellow River during 1950-2008. Changes in streamflow and sediment have obvious stages. In which streamflow is divided into three periods: 1950-1970 for the wet period; 1971-1985 for the normal period and 1986-2008 for the dry period. Sediment discharge is divided into two periods: 1950-1981 for the wet period and 1981-2008 for the dry period. Streamflow and sediment discharge have significant periodicity. Streamflow periodicity is 27a, 10a and 4a, and the first main periodicity is 27a. Meanwhile, the sediment discharge periodicity is 31a, 20a and 7a, and the first main periodicity is 31a.
     (ii) Results show that strong decreasing trends in annual streamflow and sediment discharge have existed of the middle reaches of the Yellow River. Change point analyses reveal that more rapid declines for streamflow began in 1985, and sediment discharge began in 1981 (P=0.05). The average annual streamflow and sediment discharge shows a significant decreasing trend at the same frequency after the transition year. Decrease of streamflow after the transition year ranged from 43.9% to 69.8%. In which its decrease 51.6% for wet years, 44.0% for normal year and 60.5% for dry year. Decrease of sediment discharge after the transition year ranged from 44.9% to 96.2%. In which its decrease 46.8% for wet years, 61.4% for normal year and 96.0% for dry year.
     (iii) Precipitation and Human activity are the main driving factors affecting the streamflow and sediment changes in the middle reaches of the Yellow River. Precipitation and human activities contribute rate of streamflow reduction was 30% and 70%, and the contribution rate of sediment reduction was 20% and 80%. Quantitative analysis the impacts of human activities on changes of streamflow and sediment discharge in the middle reaches of the Yellow River. Diversion is a major factor in reduction stereamflow of the middle reaches Yellow River. The average annual water consumption is about 45.0×10~8m~3, accounting 73.8% for the total amount of water reduction impacting of human activities. Soil and water conservation is a comprehensive water and sediment reduction measures,and it is a a major factor in reduction sediment of the middle reaches Yellow River. Annual reduction in water is 6.0×10~8m~3, and sediment is 2.7×10~8t, respectively, accounting 9.8% and 52.9% for the total amount of water and sediment reduction impacting of human activity. Large and medium-size reservoirs were constructed to reduce the sediment discharge is an important factor in the middle reaches of the Yellow River. The annual average is about 1.8×10~8t due to sediment deposition of reservoirs and riverway, accounting 35.3% for the total amount of sediment reduction impacting of human activities.
     (iv) Gray prediction model was used to simulate changes in streamflow and sediment discharge prediction in middle reaches of the Yellow River. This method is good for waveform simulation, and be able to more accurately determine the peak and valley trend of hydrological data series.
引文
[1] Newson M, Arnell N. Land water and development [M]. London: Routledge, 1997.
    [2] Thorne, C R, Hey, R D, Newson, M D,et al. Applied fluvial geomorphology for river engineering and management [M]. Chichester: John Wiley & Sons,1997.
    [3] Wang, G Q, Wu B S, Wang, Z Y. Sedimentation problems and management strategies of Sanmenxia Reservoir, Yellow River, China [J]. Water Resour. Res, 2005, 41: W09417, doi:10.1029/2004WR003919.
    [4]李义天,李荣,邓金运.长江中游泥沙输移规律及防洪影响研究[J].泥沙研究,2000,(3):12-20.
    [5]师长兴,章典.中国洪涝灾害与泥沙关系[J].地理学报,2000,(9):627-636.
    [6] WMO,Water resources and climate change: sensitivity of water resources systems to climate change and variability[R]. Geneve: WMO, 1987.
    [7] IPCC. Climate Change 1995, Impacts Adaptation, and Mitigation [M]. Cambridge: Cambridge University Press, 1996.
    [8] IPCC. Climate Change 2001, Impacts Adaptation, and Mitigation [M]. Cambridge: Cambridge University Press, 2001.
    [9] IPCC. Climate Change 2007, Impacts Adaptation, and Mitigation [M]. Cambridge: Cambridge University Press, 2007.
    [10]唐丽霞.黄土高原清水河流域土地利用/气候变异对径流泥沙的影响[D].北京林业大学,2009.
    [11]任美锷.黄河的输沙量:过去、现在和将来[J].地球科学进展,2006,21(6):551-563.
    [12]翟禄新.近50a来中国西北气候变化及其水文响应分析[D].甘肃:兰州大学,2008.
    [13] Nemec J, Schaake J. Sensitivity of water resource systems to climate variation[J].Hydrologic Science,1982,27(3):327-343.
    [14] Nash. Sensitivity of streamflow in the Colorado Basin to Climate Change[J]. Journal of hydrology,1990,125(1): 221-241.
    [15] Chiew F, Mcmahon T. Application of the daily rainfall-runoff model MODHYDROLOG to 28 Australian catchments [J]. Journal of hydrology, 1994,153(1-4):383-416.
    [16] Kwadijk J. Rotmans J. The impact of climate change on the river Rhine: a scenario study [J].1995,30(4):397-425.
    [17]刘国旭.试从气候和人类活动看黄河问题[J].地理学与国土研究,2002,18(3):52-56.
    [18]龙虎,毛利强,车振学,等.气候变化对黄河水资源的影响[J].水资源与水工程学报,2006,17(4):74-77.
    [19]张世法.气候变化对海河流域水资源影响的研究与展望[J].海河水利,1995,(10):10-12.
    [20]张济世,康尔泅,姚敬忠,等.气候变化对洮河流域水资源的影响[J].中国沙漠,2003, 23(3):263-267.
    [21]王守荣,郑水红,程磊,等.气候变化对西北水循环和水资源影响的研究[J].气候与环境研究,2003, 8(1):43-51.
    [22]王国庆,王云璋,尚长昆,等.气候变化对黄河水资源的影响[J].人民黄河,2000,22(9):40-41.
    [23]施雅风,张祥松.气候变化对西北干旱区地表水资源的影响和未来趋势[J].中国科学(B辑),1995, 25(9):968-977.
    [24]刘春纂,杨建青.我国西南地区年径流变异及变化趋势研究[J].气候与环境研究,2002, 7(4):415-422.
    [25]范广洲,吕世华,程国栋,等.华北地区夏季水资源特征分析及其对气候变化的响应(Ⅰ):近40年华北地区夏季水资源特征分析[J].高原气象,2001,20(4):421-428.
    [26]范广洲,吕世华,程国栋,等.华北地区夏季水资源特征分析及其对气候变化的响应(Ⅱ):华北地区夏季水量丰、枯与气候变化的关系[J].高原气象,2002,21(1):45-51.
    [27]景气书,缪启龙.气候变化对长江干流流区径流量的影响[J].长江流域资源与环境,1998,7(4):337-340.)
    [28]张建云,王国庆,等著.气候变化对水文水资源影响研究[M].北京:科学出版社,2007.
    [29]郭生练,杨井,等.气候异常变化对长江中下游水文水资源的影响评价[A].刘昌明,主编.21世纪中国水文科学研究的新问题新技术和新方法[C].北京:科学出版社,2001.
    [30] Langbein L B, Schumm S A. Yield of sediment in relation to mean annual precipitation [J]. Transactions, American Geophysical union. 1958,(39): 1076-1084.
    [31] Dendy F E, Boilton G C. Yield-runoff-drainage area relationships in the United States [J]. Journal of soil and water conservation. 1976, (32):264-266.
    [32] Douglas I. Man. Vegetation and sediment yield of river [J]. Nature, 1967,215:925-928.
    [33] Walling D E, Webb BW. Patterns and sediment yield [A]. Gregory K J. Background to Palaeohydrology [C]. UK, Chichester: John Wiley,1983.
    [34]姚志君,廖俊国,陈传友,等.云南玉龙山东南坡降雨因子与土壤流失关系的研究[J].自然资源学报,1991,6(1): 45-54.
    [35]王万忠,焦菊英,郝小品,等.黄土高原暴雨空间分布的不均匀性及点面关系[J].水科学进展,1999,10 (2): 165-169.
    [36] Xu Jiongxin. Zonal distribution of river basin erosion and sediment yield in China [J]. Chinese Science Bulletin, 1994, 39(16): 1356-1361.
    [37] Xu Jiongxin. The wind-water two-phase erosion and sediment producing processes in the middle Yellow River Basin [J]. Science in China (D), 2000, 43(2): 176-186.
    [38]卢金发.黄河中游流域地貌形态对流域产沙量的影响[J].地理研究,2002,21(2): 171-178.
    [39]李素清,李斌,张金屯,等.不同降雨量下的黄土高原土壤侵蚀特征分析[J].农业环境科学学报,2005,24(1): 94-97.
    [40]许炯心.降水-植被耦合关系及其对黄土高原侵蚀的影响[J].地理学报,2006.61(1): 57-64.
    [41]刘昌明.21世纪水文学研究展望[C].第六次全国水文学术会议论文集.北京:科学出版社,1997:1-7.
    [42]黄领梅.水文要素对人类活动响应的研究[D].西安:西安理工大学,2005.
    [43]叶守泽主编.气象与洪水[M].武汉:武汉水利电力大学出版社,1999.
    [44]顾大辛,谭炳卿.人类活动的水文效应及研究方法[J].水文,1989,(5):61-64.
    [45]冉大川.泾河流域人类活动对地表径流量的影响分析[J].西北水资源与水工程, 1998,9(1):32-36.
    [46]穆兴民,王文龙,徐学选,等.黄土高塬沟壑区水土保持对小流域地表径流的影响[J].水利学报,1999,(2):71-75.
    [47]穆兴民,徐学选,陈霁巍,等著.黄土高原生态水文研究[M].北京:中国林业出版社,2001.
    [48]李丽娟,郑红星.华北典型河流年径流演变规律及其驱动力分析-以潮白河为例[J].地理学报,2000,55(3):309-317.
    [49]任立良,张炜,李春红,王美荣,等.中国北方地区人类活动对地表水资源的影响研究[J].河海大学学报(自然科学版),2001,29(4):13-18.
    [50]王浩,贾仰文,王建华,等.人类活动影响下的黄河流域水资源演化规律初探[J].自然资源学报,2005,20(3):157-162.
    [51]李艳,陈晓宏,王兆礼,等.人类活动对北江流域径流系列变化的影响初探[J].自然资源学报,2006,21(6):910-915.
    [52]粟晓玲,康绍忠,魏晓妹,等.气候变化和人类活动对渭河流域入黄径流的影响[J].西北农林科技大学学报,2007,35(2):153-159.
    [53]邹振华,李琼芳,夏自强,王鸿杰,等.人类活动对长江径流量特性的影响[J].河海大学学报(自然科学版),2007,35(6):622-626.
    [54]朱恒峰,赵文武,康慕谊,郭雯雯,等.水土保持地区人类活动对汛期径流影响的估算[J].水科学进展,2008,19(3):400-406.
    [55] Thomas HE, Effects of drought in the Colorado River Basin [J]. U.S. Geol. Surv., Pro/Pap, 1962(372-F):50.
    [56] Meade R H, Parker R S. Sediment in rivers of the United States. In: National Water Summary 1985[J]. U.S.Geol. Surv. Water Supply Pap, 1985,(2275):49-60.
    [57] Gellis Allen, Hereford Richard, Schumm S A. et al. Channel evolution and hydrologic variations in the Colorado River basin: Factors influencing sediment and salt loads[J]. Journal of Hydrology, 1991(124):317-344.
    [58]程天文,赵楚年.我国沿岸入海河川径流量与输沙量的估算[J].地理学报,1984,39 (4):418-427.
    [59]程天文,赵楚年.我国主要河流入海径流量、输沙量及对沿岸的影响[J].海洋学报,1985,7(4):460-471.
    [60]顾文书.黄河中游水沙变化的宏观分析[J].人民黄河,1988,(4): 10-14.
    [61]胡荣轩,毛荣生.黄河中游区水、沙变化趋势及其预测[J].地理学报, 1992, 47(4):315-324.
    [62]张胜利.略论黄河中游水沙变化及水土保持减沙效益[J].水土保持通报,1994,14(3):8-11.
    [63]张学成,王玲,高贵成,等.黄河泥沙动态分析[J].泥沙研究,2002(1):43-52.
    [64]许炯心.流域降水和人类活动对黄河入海泥沙通量的影响[J].海洋学报,2003,25(5): 125-135.
    [65]冉大川,刘斌,罗全华,等.泾河流域水沙变化水文分析[J].人民黄河,2001,23(2):9-11.
    [66]于涛,邓义祥,富国,等.近50年来黄河输沙量变化特征及原因分析[J].人民黄河,2007,29(12):27-28.
    [67]穆兴民,巴桑赤烈,ZHANG Lu,等.黄河河口镇至龙门区间来水来沙变化及其对水利水保措施的响应[J].泥沙研究,2007,(2):36-41.
    [68] Zhongyuan Chen, Jiufa Li. Yangtze river of China: historical analysis of discharge variability and sediment flux [J]. Geomorphology, 2001(41):77-91.
    [69]李香萍,杨吉山,陈中原,等.长江流域水沙输移特性[J].华东师范大学学报(自然科学版),2001(4):88-95.
    [70]张二凤.长江中下游人类活动对河流泥沙来源及入海泥沙的影响研究[D].上海:华东师范大学,2004.
    [71]许全喜,陈松生,熊明,陈泽方,等.嘉陵江流域水沙变化特性及原因分析[J].泥沙研究,2008,2:1-8.
    [72]周跃,朱云梅,吕喜玺,等.人为活动对金沙江一级支流龙川江流域输沙量的影响分析[J].昆明理工大学学报,2006,3 1(1):77-82
    [73]戴仕宝,杨世伦,蔡爱民,等.51年来珠江流域输沙量的变化[J].地理学报,2007,62(5):545-554.
    [74]穆兴民.黄土高原水土保持对河川径流及土壤水文的影响[D].杨陵:西北农林科技大学,2002.
    [75]熊贵枢.黄河流域水利水保措施减少减沙分析方法简述[J].人民黄河,1994,17(11):33-36.
    [76]王书功,康尔泗,李新,等.分布式水文模型的进展及展望[J].冰川冻土,2004,26(1):61-65.
    [77] Linsley R K, Crawford N H. Computation of a synthetic stream-flow record on a digital computer[J]. Hydro1ogical Sciences Bulletin, 1960,(5l):526 -538.
    [78]陈仁升,康尔泗,杨建平,等.水文模型研究综述[J].中国沙漠,2003,23(3):221-229.
    [79] Singh, V P. Computer models of watershed hydrology[M]. Colorado USA: Water Resources Publications,1995.
    [80] Beven K. Binley A. Future of distributed models: Model calibration and uncertainty prediction[J]. Hydro1ogical Process, 1992,(6):279-298.
    [81]钱宁,王可钦,阎林德,等.黄河中游粗泥沙来源区来水来沙对黄河下游冲淤的影响.北京河流泥沙国际学术讨论会文集[M].北京:光华出版社, 1980.
    [82]龚时旸,熊贵枢.黄河泥沙来源与输移.北京河流泥沙国际学术讨论会文集[M].北京:光华出版社,1980.
    [83]唐克丽.黄河流域的侵蚀与径流泥沙变化[M].北京:中国科学技术出版社,1993.
    [84]叶青超.黄河流域环境演变与水沙运行规律[M].济南:山东科技出版社,1994.
    [85]汪岗,范昭.黄河水沙变化研究(第二卷)[M].郑州:黄河水利出版社, 2002.
    [86]陈永宗.黄河泥沙来源及侵蚀产沙的时间变化[J].中国水土保持,1988,1:23-29.
    [87]叶青超.黄河流域环境演变与水沙运行规律研究取得丰硕成果[J].中国科学院院刊,1995,3:254-255.
    [88]熊贵枢.黄河1919-1989年的水沙变化[J].人民黄河,1992,6:9-13.
    [89]饶素秋,霍世青,薛建国,等.黄河上中游水沙变化特点分析及未来趋势展望[J].泥沙研究,2001(2):74-77.
    [90] Mu, XM., Zhang, L, McVicar, TR, et al. Analysis of the impact of conservation measures on stream flow regime in catchments of the Loess Plateau, China [J].. Hydrological Processes,2007, 21(16): 2124-2134.
    [91] Xiaoping Zhang, Lu Zhang, Jing Zhao. et al. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China[J]. Water Resources Research, 2008, 44, W00A07, doi:10.1029/2007WR006711.
    [92]景可.黄河泥沙与环境[M].北京:科学出版社,1993.
    [93]张晓华,张敏,张学成,等.河龙区间水沙变化特点及减水减沙量分析[J].中国水土保持,2008,11:32-35.
    [94]洪业汤,朴河春,姜洪波,等.黄河沙量记录与黄土高原侵蚀[J].第四纪研究,1990,1:10-20.
    [95]张晓萍.黄河中游河龙区间土地利用/覆被变化对河川径流影响研究[D].杨陵:中国科学院、教育部水土保持与生态环境研究中心,2007.
    [96]李焯.黄河河口镇-龙门区间年输沙量变化原因分析[J].人民黄河,2008,30(8):41-42.
    [97]刘成,王兆印,隋觉义,等.黄河干流沿程水沙变化及其影响因素分析[J].水利水电科技进展,2008,28(3):1-7.
    [98] Houjie Wang, Zuosheng Yang, Yoshiki Saito, at el. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): Impacts of climate change and human activities [J]. Global and Planetary Change, 2007, 57(3-4): 331-354.
    [99]冉大川,柳林旺,赵力仪,等.黄河中游河口镇至龙门区间水土保持与水沙变化[M].郑州:黄河水利出版社,2000.
    [100]叶青超.黄河下游河流地貌[M].北京:科学出版社,1990.
    [101]张建云,王国庆,贺瑞敏,等.黄河中游水文变化趋势及其对气候变化的响应[J].水科学进展,2009,20(2):153-158.
    [102]刘昌明,曾燕,邱新法,等,主编.黄河流域气象水文学要素图集[M].郑州:黄河水利出版社,2004.
    [103]刘东生.黄河中游黄土[M].北京:科学出版社,1964.
    [104]刘宝元,唐克丽,焦菊英,等.黄河水沙时空图谱[M].北京:科学出版社,1993.
    [105]苏人琼,杨勤业,关志华,等,编著.黄河流域灾害环境综合治理对策[M].郑州:黄河水利出版社,1997.
    [106]桑广书.黄土高原历史时期植被变化[J].干旱区资源与环境,2005,19(4):54-58.
    [107]刘国彬,主编.西北黄土区水土流失与生态安全[M].北京:中国环境科学出版社,2009.
    [108]信忠保,许炯心,郑伟,等.气候变化和人类活动对黄土高原植被覆盖变化的影响[J].中国科学(D辑),2007,37(11):1504-1514.
    [109]项晓光,孙太旻,马建才.高原披锦绣功业利千秋―黄土高原60年水土保持的治理与探索.http://unn.people.com.cn/GB/4927677.html[EB/OL],2009-12-01.
    [110] Hirsch, R M, Slack, J R, Smith, R A. Techniques of trend analysis for monthly water quality data [J]. Water Resour. Res. 1982,(18), 107-121.
    [111] Burn, D H, Elnur, M A. Detection of hydrologic trends and variability [J]. J. Hydrol. 2002, 255(1-4), 107-122.
    [112] Yue, S, Pilon, P. A comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend detection [J].. Hydrol. Sci. J. 2004,49(1), 21-37.
    [113] Yue, S, Pilon, P. Phinney, B. Canadian streamflow trend detection: impacts of serial and cross-correlation [J]..Hydrol. Sci. J. 2003,49(1), 51-63.
    [114] Mann H B. Non-parametric tests against trend [J]. Econometrica, 1945, 13:245-259.
    [115] Kendall M G. Rank Correlation Measures [M]. London :Charles Griffin, 1975.
    [116] Pettitt, A N. A non-parametric approach to the change-point problem[J]. Applied Statistics. 1979,28(2), 126-135.
    [117]穆兴民,李靖,王飞,等.黄河天然径流量年际变化过程分析[J].干旱区资源与环境,2003,17(2):1-5.
    [118] Vogel, R M, Fennessey NM. Flow Duration Curves I:A New Interpretation and Confidence intervals [J].Journal of Water Resources Planning and Management, 1994, 120(4): 210-215.
    [119] Foster, H A. Duration curves [J]. American Society of Civil Engineers Transactions, 1934 (99):1213-1267.
    [120]马学尼,黄延林.水文学[M].北京:中国建筑工业出版社, 1997.
    [121] Morlet J,Arens G,Fourgeau,et a1.Wave propagation and sampling theory an d complex waves[J].Geophysics,1982, 47(2):222-236.
    [122]王文圣,丁晶,李跃清,等.水文小波分析[M].北京:化学工业出版社,2005.
    [123]刘贤赵,张安定,李嘉竹,等.地理学数学方法[M].北京:科学出版社,2009.
    [124]李勇,黎桂喜,潘贤娣,等.黄河干流径流泥沙特性变化[J].泥沙研究,2002,(4):1-7.
    [125]蒋晓辉,刘昌明,黄强,等.黄河上中游天然径流多时间尺度变化及动因分析[J].自然资源学报,2003,18(2):142-147.
    [126]杨志峰,李春晖.黄河流域天然径流量突变性与周期性特征[J].山地学报,2004,22(2):140-146.
    [127]王文圣,袁鹏,丁晶,等.小波分析及其在日流量过程随机模拟中的应用[J].水利学报,2002,(11):43-48.
    [128] Cahill, A T. Determination of changes in streamflow variance by means of a wavelet-based test [J], Water Resour. Res., 2002, 38(6), 1065, doi: 10.1029/2000 WR000192.
    [129]刘俊萍,田峰巍,黄强,等.黄河上游河川径流变化多时间尺度分析[J].应用科学学报, 2003,21(2):117-121.
    [130]冉启文.小波变换与分数傅里叶变换理论及应用[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [131]郑治真,沈萍,杨选辉,等.小波变换及其MATLAB使用[M].北京:地震出版社,2001.
    [132]冯象初,甘小冰,宋国乡,等.数值泛函与小波理论[M].西安电子科技大学出版社,2003.
    [133]张少文.黄河流域天然年径流变化特性分析及其预测[D].成都:四川大学,2005.
    [134]刘贤赵,张安定,李嘉竹,等.地理学数学方法[M].北京:科学出版社,2009.
    [135]李晶莹,张经.中国主要河流的输沙量及其影响因素[J].青岛海洋大学学报,2003,33(4): 565-573.
    [136]朱道清编.中国水系大辞典[M].青岛:青岛出版社,1993.
    [137]汪丽娜,穆兴民,高鹏,等.黄土丘陵区产流输沙量对地貌因子的响应[J].水利学报,2005,8(36):956-960.
    [138] Pinet P, Souriau M. Continental erosion and large-scale relief [J]. Tectonics, 1988, 7(3): 563-582.
    [139] Summerfield M A, Hulton N J. Natural controls of fluvial denudation rates in major world drainage basins [J]. Journal of Geophysical Research, 1994, 99 (B7): 13871-13883.
    [140]黄强,赵雪花,编著.河川径流时间序列分析预测[M].郑州:黄河水利出版社,2008.
    [141] Walling, D E, Fang, D. Recent trends in the suspended sediment loads of the world’s rivers [J]. Global and Planetary Change, 2003,39:111-126.
    [142] Chakrapani, G J. Factors controlling variations in river sediment loads[J]. Current Science, 2005,33(3):161-164.
    [143]王绍武,翟盘茂,龚道溢,等.2002年是近百年来中国第二个最暖的年[J].气候变化通讯,2003,2(3):11-12.
    [144]翟盘茂,任福民,张强,等.中国降水极端值变化趋势检测[J].气象学报,1999,57(2):208-216.
    [145] Trenberth K E. Atmospheric moisture residence times and cycling: implications for rainfall rates with climate change[J]. Climate Change, 1998,(39):667-694.
    [146]陆宗磐,贾世良,任洪俊,等.万家寨水库初期运用及泥沙冲淤分析[J].水利水电工程设计,2006,25(4):17-19.
    [147]山西青年报.黄河天桥水电站库区淤积量加剧急待整治[EB/OL]. http://www.chinapower.com.cn/article/1074/art1074315.asp,2009-12-18.
    [148]张振克,陈云增,田海涛,等.黄河流域水库拦截泥沙量的计算机泥沙分布特征[J].中国水土保持,2008,(4):20-22.
    [149]李春晖,杨志峰.黄河干流主要水库对径流的影响[J].人民黄河,2004,26(7):15-16.
    [150]田景环,崔庆,徐建华,等.黄河流域大中型水库水面蒸发对水资源量的影响[J].山东农业大学学报(自然科学版),2005,36 (3):391-394.
    [151]张学成,王玲.黄河河川天然径流量与地表水资源量的差异[EB/OL]. http://www.cjh.com.cn/doc/je/04-6-4-15171412505032/uploadfile.htm,2009-12-18.
    [152]张永亮,罗琦,刘广振,等.绿染三秦果飘香—陕西省退耕还林工程纪实[J].中国林业,2009,21:28-29.
    [153]黄河新闻网.山西:退耕还林十年,山变绿民增收[EB/OL]. http://www.sxgov.cn/shanxi/shanxi_content/2009-09/17/content_193290.htm, 2010-02-10.
    [154]新华网.黄河流域水土流失治理取得一定成效[EB/OL]. http://news.xinhuanet.com/society/2007-05/13/content_6093098.htm,2009-12-20.
    [155]黄河风情网.http://www.yellowriver.org/huanghe/hh-shuibao.htm[EB/OL],2008-12-21.
    [156]冉大川.黄河中游水土保持措施的减水减沙作用研究[J].资源科学,2006,28(1):93-100.
    [157]杨瑞霞,詹志明.太阳黑子周期长度-与气候密切相关的太阳活动指标[J].地理译报,1996,15(2):1-4.
    [158]陈健,胡世巧,赵佩章,等.太阳活动对天气气候的影响[J].河南师范大学学报(自然科学版),2001,29(4):43-45.
    [159]王昌高,王云璋,王国庆.太阳活动峰期黄河径流洪水变化分析[J].河南气象,1998(1):40-41.
    [160]王云璋,薛玉杰,彭子芳.太阳黑子活动与黄河径流、洪水关系初探[J].西北水资源与水工程,1997,8(3):30-38.
    [161]李春晖,杨志峰.基于Morlet小波的太阳活动与黄河流域径流量关系分析[J].水资源与水工程学报,2004,15(3):1-4.
    [162]韩敏,席剑辉,许士国.太阳黑子对黄河年径流量影响的初步研究[J].水科学进展,2003,14(增刊):9-14.
    [163]王飞.人类活动对区域水土流失影响的定量评价[D].杨凌:西北农林科技大学,2004.
    [164]徐建华.水利水保工程对黄河中游多沙粗沙区径流泥沙影响的研究[M].郑州:黄河水利出版社,2000.
    [165] Huang, M B. and Zhang, L. Hydrological responses to conservation practices in a catchment of the Loess Plateau, China[J]. Hydrological Processes, 2004,18(10): 1885-1898.
    [166]许炯心.无定河流域侵蚀产沙过程对水土保持措施的响应[J].地理学报,2004,59(6):972-981.
    [167]陕西省统计局.陕西统计年鉴[M].北京:中国统计出版社,2000,252-298.
    [168]杨新,延军平,刘宝元,等.无定河年径流量变化特征及人为驱动力分析[J].地球科学进展,2005,20(6):637-642.
    [169]丁晶,刘权授.随机水文学[M].北京:水利水电出版社,1997.
    [170]王文圣,向红莲,丁晶,等.最近邻抽样回归模型在水文水资源预报中的应用[J].水电能源科学,2001,19(2):8-10.
    [171]邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1986.
    [172]夏军.灰色系统水文学理论方法及应用[M].武汉:华中理工大学出版社,1999.
    [173]王秀英,曹文洪,覃莉,等.灰色系统GM(1,1)模型在河流水沙变化中的应用[J].土壤侵蚀与水土保持学报,1999,5(6):110-115.
    [174]陈守煜.工程模糊集理论及应用[M].北京:国防工业出版社,1998.
    [175]金菊良,丁晶.水资源系统工程[M].成都:四川科学技术出版社,2002.
    [176]秦蓓蕾,王文圣,丁晶,等.偏最小二乘回归模型在水文相关分析中的应用[J].四川大学学报(工程科学版),2003,35(4):115-118.
    [177]袁嘉祖.灰色系统理论及其应用[M].北京:科学出版社,1991.
    [178]李柞泳.灰色系统及其应用进展[J].自然杂志,1989,12(7):483-487.
    [179]蓝永超,杨志怀,权建民,等.灰色预测模型在径流长期预报中的应用[J].中国沙漠,1997,17(1):49-52.
    [180]饶素秋,霍世青.灰色系统模型在黄河径流量分析预测中的应用[J].人民黄河,1997,7:39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700