多泥沙河流饮用水水源地保护区划分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前水污染问题尤为严重,保护饮用水水源刻不容缓。建立水源保护区是有效保护集中式供水水源地,保障持续供水的有效手段。对于饮用水地表水源保护区划分方法以及划分范围的确定,《饮用水源保护区划分技术规范》(HJ/T338-2007)仅仅是定性、定量地提出了分级、分块保护河流型水源地的划分方法,以及对保护区的划分范围和对保护区的沿岸两侧工农业污染源分布和支流汇入情况进行了原则性的说明。然而,要使水源水质真正得到保护,不能仅仅局限于此,应该将此规范中规定的基本模型根据实际河流进行细化,并选择适合所研究河流的划分方法进行计算。
     本研究通过分析河流—泥沙—污染物系统中污染物主要物理化学及生物过程对水体污染物迁移的影响,基于污染物对流扩散方程,将河流的自然属性、泥沙对污染物吸附的影响进行合理概化,推导出描述溶解态污染物的源汇项,建立了多泥沙河流污染物的迁移模型。以该模型为基础,依据《饮用水源保护区划分技术规范》(HJ/T338-2007),运用环境规划多目标函数的原理和方法,综合考虑社会、环境、经济因素,建立环境经济费用效果分析的目标函数,考虑水源保护区边界控制浓度、污染物转换关系等构建出多泥沙河流型水源地保护区的最优化划分模型。通过模型求解,得到保护区的水域范围与河流中典型污染物浓度之间的最佳关系。结合《地表水环境质量标准》(GB3838 -2002)的水质标准,反推求得水源地保护区的水域范围边界。此外,通过对保护区陆域划分的分析,提出陆域范围划分的方法。
     研究表明:多泥沙河流饮用水源地保护区划分时要重视泥沙对污染物迁移的影响;以污染物迁移理论为基础形成的相对简约的多泥沙河流污染物迁移模型更符合实际;以此模型为基础,运用最优化原理,考虑整个保护区区域环境经济发展和环境代价,建立的最优化保护区划分模型,有较好的优越性;通过实例的分析,对模型进行了验证,结果基本符合实际,体现出了较好的科学性和经济性。
     本研究综合应用环境科学、水资源环境规划学、环境经济学,不仅夯实了理论基础,而且所提出的方法具有很好的科学合理性和实际操作性。
The current water pollution problem is particularly serious, so it is urgent to protect drinking water sources. The establishment of effective of water source protection areas is centralized water supply sources to ensure an effective mean of continuous water supply. Regarding determining drinking water and ground water protection zones division and demarcation, HJ/T338-2007 was merely quota qualitative and quantitative classification of river-type water block piecemeal protect the land classification methods, and principled explain the demarcation of protected areas and coastal protected areas on both sides of the distribution of industrial and agricultural pollution sources and tributaries. However, it is not just limited to this to truly protect the water quality, this specification should be provided for the basic model refinement based on actual rivers. Choose the suitable method of the division of river researched to calculate.
     This study was to analyze the river - sediment - the main pollutants of pollutant system processes the physical chemical and biological contaminants and migration of water, based on pollutant transfers diffusion equations, the natural attributes of rivers and sediment pollutant adsorption are reasonable generalized, describing the source of dissolved contaminants is derived, a number of pollutants in the river sediment transport model is established .Based on the model, according to (HJ/T338-2007), using multi-objective function of environmental planning principles and methods, considering the social, environmental and economic factors, establishing the economic costs of environmental effects analysis of the objective function, considering the boundary control of the concentration of water conservation and pollutant transformation relations to construct sediment-laden river water source protection areas classified model optimization. By solving the model, obtain the protectorate water scope and the rivers between the typical pollutant density best relations combination of GB3838 -2002 water quality standards, obtain inverse wellhead protection area boundary waters. In addition, divided by the analysis of terrestrial protected areas, then methods of delineating land area were proposed.
     The study showed the impact of sediment on the transport of pollutants must be paid attention to when sediment-laden rivers and drinking water source protection zoning timeshare; it was more match with actual that multi-silt rivers pollutant transport model relatively brief which formatted by taking the pollutant transport theory as the foundation; then under the foundation of this model, we used the most optimized principle as well as considering the entire protectorate region environment economic development and the environment price, so optimized protectorate division model was established which has strong superiority; perfect scientific nature and the efficiency was manifested according to anglicizing actual example and confirmation models which result tallied with the reality basically.
     The research synthesized application environmental science, study of environmental water resources project and econology which was not only having rammed the rationale, but also the methods stated having strong scientific rationality and actual operation.
引文
[1]赵华林.加强饮用水水源环境保护[J].机关传真,2007,18:18~21.
    [2]HJ/338-2007.饮用水水源保护区划分技术规范[S].北京:国家环保总局,中国环境科学出版社,2007.
    [3]李建新.德国饮用水水源保护区的建立与保护[J].地理科学进展,1998,17(4):88~97.
    [4]王小钢.我国饮用水水源保护区制度浅析[J].水资源保护,2004(5).
    [5]车越.中国东部平原河网地区水源地的环境管理:理论、方法与实践[D].上海:华东师范大学,2005,5.
    [6]卫监发[2001]161.生活饮用水集中式供水单位卫生规范[S].北京:卫生部,2001.
    [7]郑毅.黄土高原地区河流型水源地保护区的划分研究[D].太原:太原理工大学,2006(6).
    [8]崔建国,罗小锐.河流型饮用水水源地保护区划分方法探讨[J].太原理工大学学报(增刊),2007(5).
    [9]常德政.河流型饮用水水源保护研究—以白银市为例[D].兰州:兰州大学,2008(6).
    [10]尹真真,谢治国等.岸边污染带计算在饮用水源保护区划分中的应用[J].环境研究与监测,2004(9),17(3):6~7.
    [11]刘东生.黄河中游黄土[M].北京:科学出版社,1964.
    [13]郭怀成.黄河中游悬浮物对河流水质影响的初步研究[C]//关伯仁、徐云膦.黄河水资源保护研究文集.北京:北京大学出版社,1990,70~76.
    [14]朱铁群,李文亮等.黄河泥沙对水中细菌吸附作用研究[J].华北水利水电学院学报,2006(8),27(3):89~91.
    [15]中国环境状况公报.北京:国家环保总局,中国环境科学出版社,2009.
    [16]傅国伟.河流水质数学模型及其模拟计算[M].北京:中国环境科学出版社,1987.
    [17]王金生.黄河典型污染物迁移转化规律[C]//《黄河水科学前沿》编著委员会.《黄河水科学前沿》[C]北京:科学出版社,2009(2):223~252.
    [18]周金全.地表水取水[J].北京:中国建筑工业出版社,1986,4~7.
    [19] Guo Jinsong,Li Shenghai and Long Tengrui.Study and progress of water quality modeland its application[J].Journal Chong qing Jian zhu University,2002,24(2):109~115.
    [20]汪家权,陈众,武君.河流水质模型及其发展趋势[J].安徽师范大学学报(自然科学学报),2004,27(3):242~247.
    [21]叶常明.水环境数学模型的研究进展[J].环境科学进展,1993,1(1):74~80.
    [22]谢永明.环境水质模型概论[M].北京:中国科学技术出版社,1996.
    [23]徐祖信,廖振良.水质数学模型研究的发展阶段与空间层次[J].上海环境科学,2003,22(2) :79~85.
    [24]金士博.水环境数学模型[M].北京:中国建筑工业出版社,1987.
    [25]Linfield C Brown,Tomas O Barnwell Jr.The enhanced stream water qulity models QUAL2E and QUAL2E-UNCAD:Documentation and User Manual[R].Ahens,GA:US Environmental Protection Agency,Environmental Research Laboratory,1987.
    [26]Park S S,Lee Y S.A multiconstituent moving segment model for the water quality predictions in steep and shallow stream [J].Ecological Modelling,1996,89:121~131.
    [27]Seok Soon Park,Yong Seok Lee.A water quality modelling study of the Nakdong River,Korea[J].Ecological Modelling,2002,152:65~75.
    [28]吴燕华,王金如.河流综合水质模型QUAL2E在通惠河的应用[J].水资源保护,1995,1:34~38.
    [29]郭永彬,王焰新.汉江中下游水质模拟与预测—QUAL2K模型的应用[J].安全与环境工程,2003,10(1):4~7.
    [30]Ditoro D M,Sifitzpatric J J.Documentation for water qulity analysis simulation program(WASP) and model verification program(MVP)[C].Duluth M N:US Environmental Protection Agency,1983.
    [31]Ambrose R B,Wool T A,Connolly J P,WASP4.A Hydrodynamic and water quality model-model theory,User’s manual,and programmer’s Guide[C].Athens,GA:US Environmental Protection Agency,1988.
    [32]Ambrose R B,Wool T A,Matin J L,et al,WASP5.x.A Hydrodynamic and water quality model-model theory,User’s manual,and programmer’s Guide[C].Draft:Environmental Research Laboratory,US Environmental Protection Agency,1993.
    [33]Tim A Wool.Water qulity analysis simulation program(WASP) version6,0RAFT:User’s manual[C].Region4,Atlanta,GA:US Environmental Protection Agency,MS Tetre,Inc,2001.
    [34]Thomann R V,Fitzpatrick J J.Calibration and verification of a mathematic model of a eutrophication of the potomas estuary[R].Prepared for Department of Environmental Services,Government of the District of Columbia,Washington,D,C,1982.
    [35]JRB,Inc.Development of heavey metal waste load allocations for the deep river,North Carolina[R].JRB Associations,McLean,VA,for U,S,EPA Office of Water Enforcement and Permits,Washington,D C,1984.
    [36]贾海峰,程声通,杜文涛.GIS与地表水水质模型的集成[J].清华大学学报(自然科学版),2001,41(8):125~!28
    [37]Better Assessment Science Integrating point and Nonpoint Sources,BASINS Version3.0,User’s Manual[R].US Environmental Protection Agency,2001.
    [38]P Duda,J Kittle,M Gray,et al.WinHSPF Version2.0.An interactive windows interface to HSPF user’s manual[R].Health Protection and Modeling Branch Standards and Health Protection Division Office of Science and Technology Office of Water.United States Environmental Protection Agency,2001.
    [39]Robert L Runkel.One-Dimensional Transport with Inflow and Storage(OTIS):A Solute Transport Model for Streams and Rivers[R],US,Geological Survey water-Resourses Investigations Report 98-4018,998.
    [40]Bencala K E,Walters R A.Simulation of solute transport in a mountain pool-and-riffle stream-A transient storage model[J].Water Resources Research,1983,19(3):718~724.
    [41]Broshears R E,Bencala K E,Kimball B A,et al.Tracer-dilution experiments and solute-transport simulations for a mountain stream.Saint Kevin Gulch,Colorado[R].US,Geological Survey Water-Resources Investigations Report 92-4081(18),1993.
    [42]Valet H M,Morrice J A,Dahm C N,et al.Parent Lithology,surface groundwater exchange,and mitrate retention in head water stream[J].Limnology and Oceanography,1996,41(2):333~345.
    [43]MIKE11:users&reference manual[R].Danish Hydraulics Institute,Horsholm,Denmark,1993.
    [44]MIKE21 User Guide and Reference M anual[R].Danish Hydraulics Institute,1996.
    [45]MIKE3 Entrophication Module,User guide and reference manual,release 27[R].Danish Hydraulic Institute,1996.
    [46]李军,井艳文,潘安君等.MIKE11模型结构及其在南沙河流域规划中的应用[J].北京水利,1998,5:5~10.
    [47]Li YuLiang.Study and main advancesin environmental hydraulics[C]//Zhang ChuHan,etc.Scientific Frontiers on Water Resources and Hydropower Engineering.Beijing:Tsinghua University press,2002,83~102.
    [48]司毅铭.多泥沙河流水环境演变规律及仿真系统研究[D].南京:河海大学,2007(12).
    [49]禹雪中,钟德钰,李锦秀等.水环境中泥沙作用研究进展及分析[J].泥沙研究,2004(6):75~81.
    [50]胡国华,赵沛伦,肖翔群.黄河泥沙特性及对水环境的影响[J].水利水电技术,2004(8),35:17~20.
    [51]高宏,暴维英,冯化涛.黄河泥沙对重金属吸附与解吸特性的研究[J].人民黄河,1996(7):19~28.
    [52]胡国华.多泥沙河流水质模型研究[J].安全与环境学报,2004,4(4):45~48.
    [53]禹雪中,杨志峰,钟德钰等.河流泥沙与污染物相互作用数学模型[J].水利学报,2006,37(1):10~15.
    [54]戴树桂.环境化学[M].北京:高等教育出版社,1995,112~113.
    [55]程声通.环境系统分析教程[M].北京:化学工业出版社,2006(1).
    [56]谢鉴衡.河流模拟[M].北京:水利电力出版社,1988.
    [57]薛强,梁冰等.土壤水环境中有机污染物运移环境预测模型的研究[J].水利学报,2003(6),6:48~55.
    [58]何用,李义天,郜会彩等.泥沙污染水质模型研究[J].四川大学学报(工程科学版),2004,36 (6):12~17.
    [59]占伟,吴文忠,徐盈等.有机有毒污染物在土壤及底泥系统中的吸附/解吸行为研究进展[J].环境科学进展,1998,6(3):1~13.
    [60]彭泽洲,杨天行等.水环境数学模型及其应用[M].北京:化学工业出版社,2007,146~148.
    [61]陈华林,陈英旭,王子健等.中国南方河流和湖泊沉积物对菲的吸附特性[J].环境科学,2003,24(5):120~124.
    [62]王薇宇.复合污染条件下水环境中污染物质的迁移转化研究[D].北京:清华大学,2008.
    [63] L.D詹姆斯,R.R李,常锡厚.水资源规划经济学[M].北京:水利电力出版社,1984,255.
    [64]葛吉琦.污染损失与环境效益分析[J].长江流域资源与环境,1994,3(2):162~166.
    [65]梁嘉骅,张志耀等.环境管理系统工程[M].北京:北京科学技术出版社,1992.
    [66]吴吉春,张景飞.水环境化学[M].北京:水利水电出版社,2009(2).
    [67]方红卫,王光谦.一维全沙泥沙输移数学模型及其应用[J].应用基础与工程科学学报.2000,8(2):154-164.
    [68]郭沛源,方人也.GDP的绿色革命,人大书报资料中心,2004,6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700