红古区农业土壤的综合评价及改良利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过调查和试验,对几种土壤形态特征进行了系统性的比较,对土壤资源利用现状、特点及存在问题进行了深刻的分析,并结合土壤资源评价结果,提出了土壤资源改良利用的具体措施。结果表明:
     1.兰州市红古区主要的土壤类型有:灌淤土、黄绵土、灰钙土、潮土,其中灌淤土是红古区四大土类中的主要土类,集中分布于大通河和湟水河的河谷一、二级阶地。灌溉便利,主要生产粮食作物和经济作物。灰钙土占全区土地面积的81.72%,川水地面积约107.5hm~2,主要分布于海拔为1590~1770 m的位置。黄绵土全区均有分布,其中川水地中主要分布于湟水河流域,面积为126.4hm~2,占川水地总面积的3.11%。潮土的面积在该区为最小,面积仅有18.6hm~2,占川水地面积0.46%,主要分布在红古乡新庄村和窑街镇红山村一带。
     2.全区现有灌淤土面积3814.1hm~2,占川水地面积的93.79%,其中红吃劲土壤面积3597hm~2,占川水地面积的88.46%,是红古区的主要土壤类型。调查发现,在32~77cm深度,红吃劲土壤剖面存在一层粘土层,保水保肥性能强,透水透气性能差,土壤固气相比例不协调,导致果树叶片变黄、农作物烂根和死苗。
     3.红古区耕层土壤小于0.01mm粒级占总粒级的33.46%,大于0.01mm的占总粒级66.54%,中壤土占85.92%,轻壤土占14.08%,土壤剖面从上往下是由轻壤向重壤过渡。
     4.红古区耕层土壤pH值平均为8.26,碳酸钙含量变幅在8.44~14.17%,平均为11.44%,微碱性石灰土壤与pH值密切相关,对土壤磷的活性和利用率影响较大,导致农业低产。
     5.红古区土壤剖面全盐量耕作层平均为(0~20cm)0.1667%,犁底层平均为0.1733%,心土层平均为0.1974%,底土层平均为0.1571%。表明心土层有明显的盐分沉积作用,在干旱和排水不良的环境条件下,容易返盐和导致产生次生盐渍化。
     6.红古区农业土壤(0~20cm)养分状况为:缺氮、少磷、钾丰富,有机质偏低。各乡镇土壤养分分布次序平安镇>花庄镇>河嘴乡>红古乡>海石镇>窑街镇>坪台地。经回归分析发现,土壤养分含量、分布与作物产量有显著的线性相关关系。
     7.根据土壤资源评价原则和红古区四种土类的发生、发展的成土过程、数量、质量、分布、理化性质与环境的相关性,红古区耕作土壤可分为四等:一等耕作土壤包括灌淤土类中的红吃劲土、黄吃劲土、灰茬土三个土种,共计3636.2hm~2,占耕作土壤面积的54.43%,分布在河谷1~2阶地,海拔在1590~1770m。二等耕作土壤包括厚层灌淤漏砂土、薄层灌淤漏砂土、薄层灌淤淤砂土、底砂上潮土、中位湿潮土、川台水地黄绵土、川台水地绵白土七个土种,共计1534.3hm~2,占耕作土壤面积的22.97%,主要分布在1~4阶地,海拔在1590~1940m。三等耕作土壤包括耕种山台灰钙土、耕种山台黄绵土,共计1742.4hm~2,占耕作土壤面积的26.08%,在全区山地、丘陵、台地都有分布,海拔约1800~2100m。四等耕作土壤包括盐化灌淤土中的氯化物硫酸盐和硫酸盐两个土种,现有面积17.7hm~2,占耕地面积的0.026%。
     8.各种农业土壤类型的改良措施:
     8.1灌淤土:对厚层灌淤土而言,需加客土、掺砂、增加有机质;对薄层灌淤土而言,应筑坝围田,加深土体厚度;对地下水位高的盐化灌淤土而言,降低地下水位,进行少量多次灌溉,控制渠道渗漏。
     8.2灰钙土:对有水源的川台地和山坡地而言,应大力发展灌溉农业,增加有机肥料,提高地力;对无水源的地区而言,通过地膜覆盖和梯田种植等农业措施,提高土壤蓄水能力:对丘陵地区农田而言,水土流失严重,肥力下降明显,应退耕还林还草。
     8.3潮土:一是挖排水沟,降低地下水位;二是伏翻晒地,中耕除草;三是增施有机肥料,提倡高茬收割和秸秆还田;四是根据土壤情况调整作物布局,到用养结合。
     8.4黄绵土:兴修梯田,植树种草,好水土保持,加强抗旱保墒的耕作措施,进行绿肥和豆类作物的种植。
Characteristics of several soil types were systematically compared after investigation and experiment, at same time utilization status, specific and existing problem of soil resources were profoundly analyzed, the treatments of amendments and utilization were concluded according to result analysis of soil resources, and results were followed:
     1. Irrigation-silted soil is the main soil type in Honggu district of Lanzhou city along with loessial soil, sierozem and fluvo-aquic soil. Irrigation-silted soil is mainly distributed along the terrace 1 and terrace 2 in Datong river valley and Huangshui river valley. Irrigation was convenient, grain crops and economical corps are planted in this district, the area occupation rate of sierozem soil is 81.72%, the area is about 107.5 hectares in plain, and the altitude of sierozem soil is from 1590 m to 1770 m. The loessial soil was can be found in many places in the district, but the loessial soil is mainly distributed in Huangshui river valley, the area of loessial soil is about 126.4 hectares, the area occupation rate is about 3.11%. The area of fluvo-aquic soil is the minimum in the district, which is about 18.6 hectares, the area occupation rate is about 0.46%, the fluvo-aquic soil are mainly distributed along Honggu new village and Yiaojie red mountain village.
     2. The area of irrigation-silted soil is about 3814.1 hectares, the area occupation rate is about 93.79% in plain irrigation lands, Hongchijin soil is main soil type of irrigation-silted soil in the district, the area of Hongchijin soil is about 3597 hectares, its area occupation rate is 88.46%.The clay soil layer was existed in 32-77cm profile in Hongchijin soil, clay soil layer had a good effect of water retained and fertilizer retain, at same time it had a bad effect of water permeation and air permeation, the rate of solid particle to air and to soil water is not better for crops growth, resulting in leaves becoming yellow, root decay and seeding death.
     3. The rate occupation of less than 0.01mm soil particle size is 3.46%, the rate occupation of more than 0.01mm soil particle size is 66.54%, the rate occupation medium clay soil is 85.92%, the rate occupation light clay soil is 14.08%, the light clay soil is becoming heavy clay soil with the depth increase in soil profile.
     4. The soil pH value is 8.26 in plough layer, the CaCO_3 content is varied from 8.44% to 14.17%, the average value is 11.44%, the alkaline limestone soil has good correlation with pH, pH has evident impact on activity and utilization of phosphorus, which result in the agriculture production decreased.
     5. The average salt content is about 0.1667% in 0-20 cm soil profile, the average salt content is about 0.1733%, 0.1974% and 0.1571 % under plough payer, in medium plough layer and at bottom of plough layer respectively, the medium plough layer has an evident salt accumulation, it is easy to come into being salinization under dry and bad drainage condition
     6. The soil nutrient status is lack of nitrogen, less phosphorus, rich kalium and low organic matter. Soil nutrient in order of is Pingan town > Huazhuang town > Hezui rural > Honggu rural > Haishi town > Yaojie town > Ping platform. The regression analysis showed that the content and distribution of soil nutrients had a significant linear correlation with crop yield.
     7. The tillage soil can classified to 4 grades, according to principles of soil resources evaluation and the correlation between occurrence, development process, quantity, quality, distribution, physic-chemical properties with environment,. The area of Hongjin soil, Huangjin soil and Huicha soil is 636.2 hectares in grade 1, the area occupation rate of Hongjin soil, Huangjin soil and Huicha soil to whole farming lands is 54.43%, distributing in terrace land terrace 2 lands, and the altitude is from 1590m to 1770m. The thick irrigation-silted permeation sandy soil, thin irrigation-silted permeation sandy soil, thin irrigation-silted accumulation sandy soil, bottom fluvo-aquic sandy soil, medium fluvo-aquic soil, terrace loessial soil and terrace white loessial soil are classified in grade 2, the total area of those soil types is 1534.3 hectares, the area occupation rate is 22.97%, mainly distributing from terrace 1 lands to terrace 4 lands, and the altitude is from 1590m to 940m. The mountain sierozem soil, tillage loessial soil are classified in grade 3, the total area is 1742.4 hectares, the area occupation rate is 6.08%, distributing in mountains and hilly and plain lands, and the altitude is from 1800m to 2100m. The salty irrigation-silted soil are containing kraft chloride and sulphate in grade 4, the area is 17.7 hectares, the area occupation rate is 0.026%,
     8. The improvement measures of several agriculture soil types
     8.1 Irrigation-silted soil: farmlands soil, sandy and organic matter should be added to thick irrigation-silted Hongjin soil, dam construction should be used for land reforming and increase soil layer for thin irrigation-silted, the underground water level should be controlled to avoid salinization, less amount of irrigation water should be supplied with more times, at same time canal seepage should be controlled.
     8.2 Fluvo-aquic soil: irrigation agriculture should be developed in terrace and sloppy lands in irrigation regions, adding organic fertilizer in order to promote the land productivity; mulching plant and terraced field plant should adopted to promote soil water storage in no irrigation areas; slope cropland should be converted to woodland and grassland in hilly region, in order to avid the high water and soil loss, and land soil fertility decline in the region.
     8.3 Fluvo-aquic soil: digging drain ditch in order to low underground water level, ploughing firstly, sunning soil and weeding control in mid-summer secondly, organic fertilizer supplying and high height stubble standing and returning straw to soil thirdly, crop arrangement patterns adapting according to soil fertility status, coupling land utilization and land cultivating fourthly,
     8.4 Loessial soil: building terraces farmlands, planting trees and grass, soil and water conservation, strengthening drought resisting and increase soil water storage, green manure crops and bean crops are planting.
引文
[1]鲁如坤.土壤与植物营养[M].北京:化学工业出版社.1998
    [2]付强.农业水土资源系统分析与综合评价[M].北京:中国水利水电出版社.1999
    [3]付强,梁川.节水灌溉技术建模与优化技术tM].成都:四川科学技术出版社.2002
    [4]刘春花.综合评价模型在土壤分类及其质量动态变化中的应用研究[J].东北农业大学学报,2004,12:1-5
    [5]胡金明,刘兴土.三江平原土壤质量变化评价与分析[J].地理科学,1999,19(5):417-421
    [6]赵其国,孙波,张桃林.土壤质量与持续环境Ⅰ.土壤质量的定义与评价方法[J].土壤,1997,29(3):113-120
    [7]刘兴土.松嫩平原湿地资源及其可持续利用[J].地理科学,1997,17(增刊):451-460
    [8]林成谷主编.土壤学[M].北京:中国农业出版社.1996
    [9]姜志德.中国土地资源可持续利用战略研究[M].北京:中国农业出版社.2004
    [10]陈韶君.我国水资源开发利用中亟待解决的几个认识问题[J].中国人口,资源与环境,2000,10(4):58-60
    [11]H.D.福斯.土壤科学原理[M].北京:中国农业出版社.1984
    [12]B.A.柯夫达.土壤学原理[M].北京:科学出版社.1981
    [13]朱祖祥主编.土壤学(上册)[M].北京:中国农业出版社.1983
    [14]南京大学,中山大学,北京大学等合编.土壤学基础与土壤地学[M].人民教育出版社.1982
    [15]北京林业学院.土壤学(上册)[M].中国林业出版社.1982
    [16]中国科学院南京土壤研究所编.中国土壤[M].北京:科学出版社.1978
    [17]侯光炯.中国农业土壤概论[M].北京:中国农业出版社.1982
    [18]刘兴久.模糊聚类分析在土壤分类中的应用[J].东北农学院学报,1988,(2):12-126
    [19]甘肃省土壤普查办公室编著.甘肃土壤[M].北京:中国农业出版社.1991
    [20]谢永刚,付强.三江平原湿地资源现状、问题及可持续发展对策研究[J].自然灾害学报,2001,10(4):190-195
    [21]王瑞等.我国湿地资源现状、问题及对策[J].资源科学,2000,22(1):9-13
    [22]周鸣铮.土壤肥力学概论[M].浙江科学技术出版社.1985
    [23]姚贤良.重视和保护土壤结构[J].土壤,1987,16(7):114-120
    [24]张怀福.红古现代农业展望[M].兰州:红古区地方志编纂委员会.2003
    [25]兰州市土壤肥料工作站.兰州土壤[M].北京:中国农业出版社.1988
    [26]河南农业大学主编.土壤肥料学[M].河南科学技术出版社.1985
    [27]陈子明.海绵田土壤结构特性与土壤肥力关系研究法[J].土壤学报,1981,18(2):175-179
    [28]成田保三郎.论连作灾害的相应措施[J].日本土壤肥料学杂志,1983,54(2):170-179
    [29]松本满夫等.不同地区连作水稻根棉丝状真菌的研究[J].日本土壤肥料学杂志,1978,49:443-447
    [30]马庆祥,刘爱琴,黄宝龙.杉木人工林自毒作用研究[J].南京林业大学学报,2000,24(1):12-16
    [31]张福锁.根分泌物及其在植物营养中的作用Ⅰ:缺锌对双子叶植物根系分泌物的影响[J].北京农业大学学报,1991,17(2):63-67
    [32]蒋秋怡.杉木根际土壤微生物和酶活性初探[J].土壤,1993,28(5):271-173
    [33]张其水、俞新妥.杉木连栽营造混交林后土壤微生物的季节性动态研究[J].生态学报,1990,10(2):121-125
    [34]许艳丽.重迎茬大豆土壤微生物生态分布特征研究.见:许艳丽、韩晓增主编.大豆重迎茬研究[M].哈尔滨:哈尔滨工程大学出版社.1995
    [35]陈宗泽,殷勤燕.大豆连作对土壤微生物量的影响[J].大豆通报,1997,(6):15-17
    [36]汪立刚,沈阿林,孙克刚等.大豆连作障碍及调控技术研究进展[J].土壤肥料,2001,(5):3-7
    [37]Elroy AC.The Rhizosphere[M].Berlin:Spring-Verlag.1986
    [38]许艳丽,王光华,韩晓增.连、轮作大豆土壤微生物生态分布特征与大豆根部病虫害关系的研究[J].农业系统科学与综合研究,1995,11(4):311-314
    [39]吴凤芝,赵凤艳.根系分泌物与连作障碍[J].东北农业大学学报,2003,34(1):114-118
    [40]沈志远,王其传.作物连作障碍发生原因及解决办法[J].生物学教学,2002,27(3):39
    [41]中国科学院南京土壤研究所主编.中国土壤[M].北京:科学出版社.1985
    [42]中国农学会等编著.黄淮海平原农业发展学术讨论会论文选集(第五卷)[M].北京:中国农业出版社.1985
    [43]秦代刚,屈超芬.川西北沼泽土壤的特性及其改良利用[J].土壤,1986,20(3):88-91
    [44]林成谷主编.土壤学[M].北京:中国农业出版社.1981
    [45]新疆农科院,新疆八一农学院合编.新疆的土壤及其改良[M].北京:中国农业出版社.1987
    [46]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社.1999
    [47]农业部全国土壤肥料总站编.土壤分析技术规范[M].北京:中国农业出版社.1999
    [48]红古区地方志编纂委员会.红古区志[M].兰州:兰州大学出版社.2001
    [49]全国土地资源调查办公室.中国土壤分类系统(第二次土壤普查分类系统)(修订稿)[M].北京:中国农业出版社.1984
    [50]李建东,郑慧莹.松嫩平原盐碱化草地治理及其生物生态机理[M].北京:科学出版社.1997
    [51]陈思风.有机质改良盐碱土的作用[J].土壤通报,1987,18(13):42-45
    [52]郑兴丰,李正银.微量元素临界营养状况的评价[J].广东微量元素科学,2002,(9):19-22
    [53]苏年华,张金彪等.福建省土壤重金属污染及其评价[J].福建农业大学学报,1994,23(4):434-439
    [54]张巨东.区域土地资源可持续利用评价及调控措施研究[M].北京:中国农业大学.2004
    [55]蔡运龙,傅泽强.土地可持续利用的系统特征与评价[J].北京大学学报,2002,(2):33-35
    [56]张树人,赵协哲,宋刚等.生命科学中的微量元素分析与数据手册[M].北京:中国计量出版社.1998
    [57]张才俊,尚海忠,郑喜邦.青海省环湖地区牧草和土壤微量元素测定[J].青海畜牧兽医杂志,1997,(7):43-44
    [58]夏广清,杨丽娟,宋金枝.植物微量营养元素及配合施用效应[J].通化师范学院学报,2002,(23):10-15
    [59]邓英,谢振翅.农作物微量元素应用研究进展[J].湖北农业科学,1999,(2):28-31
    [60]刘琴,张新,赵言文.土壤植物营养与农产品品质及人畜健康的关系[J].应用生态学报,2001,(12):111-115
    [61]兰州市地方志编纂委员会.兰州市志(第二十七卷)[M].兰州:兰州大学出版社.1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700