基于高分辨率遥感影像的渭河水质遥感监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着遥感技术的发展和遥感影像尺度的精细化,利用遥感技术进行水环境质量监测的研究越来越多,对水质遥感监测的要求也从定性监测向更为精确的定量监测转变。由于海洋和湖泊等大面积水体中主要物质的光学模型比较成熟,针对这些物质的光学特性研究较多,所以目前遥感水质定量监测的研究对象多集中在海洋、内陆湖泊或水体面积较大的江河,而采用SPOT遥感数据对渭河水质进行定量遥感研究目前还没有。渭河流经陕西中部关中地区,沿途流经西安、宝鸡、咸阳、渭南等大中城市,该地区工业集中、人口密集、农业发达,是陕西省政治、经济、文化、金融及信息中心,而渭河是该地区主要河流和地表水源,因此对渭河进行水质遥感监测意义重大。
     基于此,本文以渭河陕西段水域为研究对象,采用法国SPOT-5遥感影像对该水域水质进行定量遥感研究。在文章结构上,本文在系统介绍了水质定量遥感监测的研究情况及方法流程的基础上,针对流程中各个步骤选择合适的方法进行实验并对各实验结果进行了较为详细的分析;在研究方法上,本文重点研究了遥感影像的大气辐射校正方法和基于参数优化的支持向量回归(Support Vector Regression,以下简称SVR)在渭河水质定量遥感中的应用。对于遥感影像的大气辐射校正方法,本文分析了目前遥感影像的大气辐射校正方法,结合自身的遥感影像及实验条件选择了合适的校正方法对SPOT-5遥感影像进行大气辐射校正;对于基于参数优化的SVR在渭河水质定量遥感中的应用,本文在分析了传统多元回归的缺点后引入了统计学习理论(Statistical Learning Theory,以下简称SLT)下的支持向量机(Support VectorMachine,以下简称SVM)及其在回归领域的推广SVR,并将SVR应用于渭河水质遥感反演。由于SVR模型及模型参数(惩罚系数C、核函数参数σ~2和不敏感损失函数宽度ε)的选择对模型的精度存在较大的影响,且参数优选目前缺乏理论上的指导。因此本文通过实验分析选择径向基函数作为SVR核函数,利用交叉验证(Cross Validation,以下简称CV)估计模型推广误差并使用遗传算法(Genetic Algorithm,以下简称GA)优选SVR模型参数,最后使用构建好的SVR模型对部分渭河陕西段水质变量进行反演。本论文从以下几个方面进行了研究和探讨:
     (1)分析和筛选渭河陕西段水质实地监测数据,得到符合条件且具有代表性的四类水质变量高锰酸盐指数(CODmn)、氨氮(NH_3-N)、溶解氧(DO)、和化学需氧量(COD)。对SPOT-5遥感影像的预处理了重点分析,特别是针对大气辐射校正,在分析目前大气辐射校正研究现状的基础上,综合使用七种大气校正方法对本文遥感影像进行大气辐射校正。遥感影像的几何校正使用ERDAS软件实现。
     (2)阐明相关性分析在水质遥感监测中的作用和意义。针对本文的具体情况,分别对各水质变量之间、遥感数据各波段之间、水质变量与遥感数据单波段、水质变量与遥感数据波段组合进行相关性分析,在此基础上使用传统统计多元回归方法构建各水质变量多元回归模型,并对模型了检验和分析。
     (3)介绍了SLT下的SVR理论,分析了SVR的特征,包括核函数的构造和模型参数的优选方法。结合本文数据自身的小样本特点以及模型参数优选的复杂性,采用CV估计模型推广误差并使用GA优选SVR模型参数。将基于GA优选参数的SVR回归模型用于渭河陕西段水域水质变量的遥感水质反演,最终构建各水质变量的遥感反演模型。通过与传统统计多元回归得到的结果分析比较,使用基于GA优选参数的SVR能够在较高的精度上对各水质变量进行预测。
With the development of remote sensing technology and the fine-scale of remote sensing images,remote sensing technology is used more and more in water quality research.And the requirement of remote sensing of water quality monitoring is changed from qualitative to quantitative monitoring with more exactitude.Because the optical models of the main material in large-scale water,such as oceans,lakes etc.,are relatively mature,and the research of these materal is wide,currently the studies of the quantitative remote sensing of water quality mostly make in the area of oceans,inland lakes and large rivers.But few people do quantitative remote sensing research about water quality of Weihe River based on SPOT data.Weihe River flows across the cental of Guanzhong in Shaanxi Province,including Xi'an,Baoji,Xianyang,where are the cental of political, economic,cultural,financial and information in Shaanxi Province,because of its industrial concentration,population density,agricultural development.Besides those,Weihe River is the Main River and surface water in the area.Thus it is significant to make remote sensing monitoring of water quality of Weihe River.
     According to the reasons above,quantitative remote sensing study of the water quality using the French SPOT-5 remote sensing image is done,based on the Weihe River in Shaanxi Province.As to the structure of this paper,we firstly systematically introduce the relative researches and methods of remote sensing monitoring of water quality.Secondly,we find perfect methods in various processes and analyze these experimental results in detail.In the paper,we focus on atmospheric radiation correction methods of remote sensing image and the applications of Support Vector Regression (SVR) in the Weihe River water quality in quantitative remote sensing based on parameter optimization.For the method of correction of atmospheric radiation,the current methods are analyzed firstly,and then we choose an appropriate method to finish SPOT-5 remote sensing atmospheric radiation image correction based on its own remote-sensing images and the experimental conditions.For the application of Support Vector Regression based on parameter optimization in the Weihe River water quality in quantitative remote sensing,after analyzing the shortcomings of the Traditional Multiple Regression,we introduce the Support Vector Machine (SVM) and its promotion,which called SVR,in the field of regression based on Statistical Learning Theory(SLT).Finally the SVR is applied to the inversion of Weihe River water quality remote sensing.The selection of SVM model and its parameters(such as penalty coefficient C,kernel function and the parameter of the kernel functionσ~2,and the parameter of insensitive loss functionε) can greatly affect the accuracy of the model and there is absence of the guidance in theory.Thus we choose the Radial Basis Function as kernel function of SVR according to experimental analysis,use Cross-Validation(CV) to estimate the promote error and use Genetic Algorithm(GA) to optimize the parameters of SVR model.In the end,the SVR model we have built is used to inverse some water quality variables of Wei River in Shaanxi Province.The main works in this thesis are as follows:
     (1) The water quality field data of Weihe River in Shaanxi Province is analyzed and chose to get the eligible and representative water quality variables,including Permanganate Index(CODmn), ammonia(NH_3-N),Dissolved Oxygen(DO),and Chemical Oxygen Demand(COD).Besides that, we concentrate on analyzing the preprocessing of SPOT-5 remote sensing images,especially the correction of atmospheric radiation.Based on analyzing current research of it,we comprehensively use seven methods to finish the correction of atmospheric radiation in remote sensing images of this paper.And ERDAS software is used to realize the Geometric Correction of remote sensing images.
     (2) The role and significance of correlation analysis in water quality monitoring is clarified.We respectively analyze the relevance among the various water quality variables,among the wave bands of remote sensing data,between water quality variables and single-band remote sensing data, between the water quality variables and the wave bands combination of remote sensing data,based on which the multiple regression models of various water quality variables are built by using the method of traditional statistical multivariate regression.And finally the model is checked and analyzed.
     (3) The SVR theory which is based on the SLT is introduced and its chatecters are analyzed, including the construction of kernel function and the optimization method of model parameters.We use CV to estimate the promote error and use GA to optimize the parameters of SVR model.The SVR regression model which is based on GA optimization parameters is used to do the remote sensing of water quality retrieval of Weihe River in Shaanxi Province and then various remote sensing retrieval models of water quality variables are built.Compared with the Traditional Multiple Regression,SVR model which is based on GA optimization parameters can predict various water quality variables in higher accuracy.
引文
[1]徐涵秋.环厦门海域水色变化的多光谱多时相遥感分析[J].环境科学学报,2006,26(7):1209-1217.
    [2]孙程.渭河陕西段水环境污染和水环境容量的计算模拟[D].西安:西安建筑科技大学硕士学位论文,2004.
    [3]吕恒,江南,李新.内陆湖泊的水质遥感监测研究[J].地球科学进展,2005,20(2):185-192.
    [4]谢欢.基于遥感的水质监测与时空分析[D].上海:同济大学硕士学位论文,2006.
    [5]胡举波.黄浦江上游水域水质遥感监测模型的研究[D].上海:同济大学工学硕士学位论文,2006.
    [6]刘宇光,金明,冯钟葵等.SPOT数据反演地物辐射亮度和反射率的基础研究[J].地球信息科学,2005,7(2):111-115.
    [7]施明伦,游保杉,万腾州等.大气校正对SPOT卫星遥测水质的影响[J].遥感学报,2006,10(4):548-558.
    [8]谭衢林,邵芸.遥感技术在环境污染监测中的应用[J].遥感技术与应用.2000,15(4):246-250.
    [9]杨一鹏,王桥,王文杰,高士平.水质遥感监测技术研究进展[J].地理与地理信息科学.2004,20(6):6-12.
    [10]李素菊,王学军.内陆水体水质指标光谱特征与定量遥感[J].地理学与国土研究,2002,18(2):26-30.
    [11]Patiiaraichi C Lavery P,Wyllie A,etal.Estimates of water quality in coastal waters using multi-date Landsat Thematic Mapper data[J].Int J Remote Sensing,1994,15(8):1571-1584.
    [12]Ekstrand S.Landsat TM based quantification of chlorophyll a during algae blooms in coastal waters[1].Int J Remote Sensing,1992 13(10):1913-1926.
    [13]Serwan M J Baban.Detecting water quality parameters in the Norfolk Broads,UK,using Landsat imagery[J].Int J Remote Sensing,1993,14(7):1247-1267.
    [14]Tassan S.An improved in water algorithm for the determination of chlorophyll and suspended sediment concentration from thematic mapper data in coastal waters[J].Int J Remote Sensing,1993,14(6):1221-1229.
    [15]陈楚群,施平.应用水色卫星遥感技术估算珠江口海域溶解有机碳浓度[J].环境科学学报,2001,21(6):715-719.
    [16]王云鹏,阂育顺,傅家漠,盛国英.水体污染的遥感方法及在珠江广州河段水污染监测中的应用[J].遥感学报,2001,5(6):460-464.
    [17]胡雯,杨世植,翟武全等.NOAH卫星监测巢湖蓝藻水华的试验分析[J].环境科学与技术,2002,25(1):16-18.
    [18]王小钦,王钦敏,刘高焕.水污染遥感监测[J].遥感技术与应用,2002,17(3):74-78.
    [19]Hoogenboom H J,Dekker A G,Althuis J A.Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inlandwaters[J].Remote Sensing environ,1998,65:333-340.
    [20]Moore G K.Satellite remote sensing of water turbidity[J].Hydrol.Sci,1980,25:415-421.
    [21]Dekker A G,Vos R J,Peters SWM.Comparison of remote sensing data,model results and in situ data for total suspended matter(TSM) in the southern Frisian lakes[J].The Science of the Total Environment,2001,268:197-214.
    [22]马文涛.支持向量机回归方法在地表水水质评价中的应用[J]数学的实践与认识,2007,37(9):45-50.
    [23]王建平,程声通,贾海峰,王志石,邓宁华.用TM像进行湖泊水色反演研究的人工神经网络模型[J].环境科学,2003,24(2):73-76.
    [24]管军,徐立中,石爱业.基于支持向量机的水质监测数据处理及状况识别与评价方法[J].计算机应用研究,2006,9:36-38.
    [25]Mahtab A L,Runquist D C,Han L H,etal.Estimation of suspended sediment concentration in water using intergrated surface flectance[J].Geocarto International,1998,13(2):11-15.
    [26]Dekker A Getal.The effect of spectral bandwidth and positioning on the spectral signature analysis of Inland Water[J].Remote Sensing of Environment.1992,41:211-255.
    [27]刘建东,卢广平等.抚顺市水体污染卫星遥感监测初探[J].辽宁城乡环境科技,2003,23(3):55-56.
    [28]陈楚群,施平,毛庆文.应用TM数据估算沿岸海水表层叶绿素浓度模型研究[J].环境遥感,1996,11(3):168-175.
    [29]马跃良,王云鹏,贾桂梅.珠江广州河段水体污染的遥感监测应用研究[J].重庆环境科学,2003,25(3):13-16.
    [30]雷坤,郑丙辉,王桥.基于中巴地球资源1号卫星的太湖表层水体水质遥感[J].环境科学学报.2004,24(3):376-380.
    [31]Thienmann S,Kaufmann H.Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS-I satellite data in the Mecklenburg Lake Distract,Germany[J].Remote Sens Environ,2000,73:227-235.
    [32]Ekstrand S.Landsat TM based quantification of chlorophyll a during algae blooms in coastal waters[1].Int J Remote Sensing,1992 13(10):1913-1926.
    [33]Fraser R N.Hyperspectral remote sensing of turbidity and chlorophyll-a among Nebraska Sand Hills lakes[J].International Journal of Remote Sensing,1998,19(8):1579-1589.
    [34]Allee R J,Johnson J E.Use of satellite imageryto estimate surface chlorophyll-a and secchidisc depth of Bull reservoir,Arkanass,USA[J].International Journal of Remote Sensing,1999,20(6):1057-1072.
    [35]佘丰宁,李旭文,蔡启铭等.水体叶绿素含量的遥感定量模型[J].湖泊科学,1996,8(3):201-207.
    [36]詹海刚,施平,陈楚群.利用神经网络反演叶绿素浓度[J].科学通报,2000,45(17):1879-1884.
    [37]赵冬至,曲元,张丰收,等.用TM图像估算海表面叶绿素浓度的神经网络模型[J].海洋环境科学,2001,20(1):16-21.
    [38]张亭禄,贺明霞.基于人工神经网络的一类水域叶绿素a浓度反演方法[J].遥感学报,2002,6(1):40-44.
    [39]李素菊,吴倩,王学军等.巢湖浮游植物叶绿素浓度与反射光谱特征的关系[J].湖泊科学,2002,(3):228-234.
    [40]疏小舟,尹球,匡定波.内陆水体藻类叶绿素浓度与反射光谱特征的关系[J].遥感学报,2000,4(1):41-45.
    [41]刘英.千岛湖水体水质参数遥感及其估测模型研究[D].浙江:浙江大学硕士学位论文,2003.
    [42]Klemas Y,Bartlett D,Phllpot W,etal.Coastal and estuarine studies with ERTs-1and Skylab[J].Remote Sens.Environ.1974,3:153-177.
    [43]Holyer R J.Toward universal mufti-spectral suspended sediment algorithms[J].Remote Sens.Environ.1978,7:323-338.
    [44]Munday J C,Alfoldi T T.Landsat test of diffuse reflectance models for aquatic suspended solids measurement[J].Remote Sensing.Environ,1979,8:169-183.
    [45]Chen Z.M,Hanson J.D,Curran P.J.The form of the Correlation between suspended sediment content and spectral reflectance:It's implications for the use of Daedalua 1268 data[J].Int.J.Remote Sens.1991,12(2):215-222.
    [46]Han L,Donald C,Rundquitst,D.C.Comparison of NIR & RED ratio and first Derivative of reflectance in estimating algal-chlorophyll concentration:a case study in a turbid reservoir[J].Remote sensing of Environment,1997,62:253-261.
    [47]Carpenter D J,Carpenter S M.Modeling inland water quality using Landsat data[1].Remote Sens.Environ.1983,13:345-352.
    [48]Lathrop R G,Landsat Thematic Mapper monitoring of turbid inland water quality[J].Photogramm Eng.Remote Sens,1992,58:465-470.
    [49]赵碧云,贺彬,朱云燕等.滇池水体中总悬浮物浓度的遥感定量模型[J],环境与技术.2001,2:16-18.
    [50]汪小钦,汪钦敏,邬群勇,许理.遥感在悬浮物质浓度提取中的应用--以福建闽江口为例.遥感学报,2003,7(1):54-57
    [51]许君,方红亮,傅肃性等,运用SPOT数据进行河流水体悬浮固体浓度的研究--以台湾淡水河为例[J].遥感技术与应用,1999,14(2):18-21.
    [52]李京.水域悬浮固体浓度的遥感定量研究[J].环境科学学报,1986,6(2):166-173.
    [53]Tassan S.Local algorithms using SeaWiFs data for the retrieval of phytoplankton pigments,suspended sediment and yellow substance in coastal waters[J].Applied Optics,1994,33:2389-2378.
    [54]Khorram S,Chheshire H M,Remote sensing of water quality in the ncusc river Estuary,Rorth Carolina[J].Photogramm,Eng.Remote sens,1985,51(1):53-62.
    [55]郭之怀,遥感技术在环境保护领域中的应用现状[J].环境科学,1993,14(4):28-33.
    [56]郭之怀,李乃煌,张家良.海河热污染的遥感研究[C].大津一渤海湾地区环境遥感论文集,北京:科学出版社,1985,137-145.
    [57]李旭文,季耿善,杨静.苏州运河水质的TM分析[J].环境遥感,1993,8:36-44.
    [58]张凤丽,杨锋杰,万余庆,水体污染物与反射波谱的相关性分析[J].中国给水排水,2002,18(8):81-83.
    [59]王学军,马廷.应用遥感技术监测和评价太湖水质状况[J].环境科学,2000,21:65-68.
    [60]乔平林,张继贤,林宗坚.石羊河流域水质环境遥感监测评价研究[J].国土资源遥感,2003,4(4):39-45.
    [61]陆家驹.长江南京江段水质遥感分析[J].国土资源遥感,2002,(3):33-36.
    [62]童小华,谢欢,仇雁翎,赵建夫.黄浦江上游水域的多光谱遥感水质监测与反演模型[J].武汉大学学报.信息科学版,2006,31(10):851-854.
    [63]张华,曾光明,李忠武,黄国和,谢更新.内陆水环境污染监测的多时相遥感信息模型[J].中国环境监测,2005,21(5):63-68.
    [64]郑明福,张力,杨坤.基于遥感技术的汉江中下游河道变迁研究[J].人民长江,2007,38(10):52-53.
    [65]张玉清.渭河流域水污染成因的探析及防治对策[J].西安联合大学学报(自然科学版),2000,3(2):78-82.
    [66]张艳玲.陕西省渭河流域水资源和水环境的综合治理研究[J].西北水资源与水工程,200l,12(4):44-46
    [67]冯钟葵,厉银喜.SPOT系列卫星及其数据产品的特征[J].遥感信息,1999,3:31-34.
    [68]亓雪勇,田庆久.光学遥感大气校正研究进展[J].国土资源遥感,2005,12(4):1-6.
    [69]Kaufman Y M,Sendra C.Algrithm for Automatic Atmospheric Correction to Visible and Near-Infrared Satellite Imagery[J].In.tJ.Remote Sens,1988,30:231-248.
    [70]Wang Y P,Nia H,Fu J M,etal.Water Quality in Reservoirs of Shenzhen,China:Detection Using LANDSTA/TM Data[J].Science of the Total Environment,2004,195-206.
    [71]Kruse F A.Use of Airborne Imaging Spectrometer Data to Map Minerals Associated with Hydro thermally Altered Rocks in the Northern Grapevine Mountains,Navada and California[J].Remote Sens Environ,1988,24:31-51.
    [72]牛铮.光学遥感大气订正总体思路与最新进展[J].遥感技术与应用,1998,13(1):50-55.
    [73]Slater P N.Remote Sensing Optics and Optical Systems[M].Addison Wesley,Reading,MA,1980,567-575.
    [74]田庆久,郑兰芬,童庆禧.基于遥感影像的大气辐射校正和反射率反演方法[J].应用气象学报,1998,19(4):456-461.
    [75]郑伟,曾志远.遥感图像大气校正的黑暗像元法[J].国土资源遥感,2005,1:8-11.
    [76]周兆永.基于支持向量机的渭河水质定量遥感研究[D].西安:陕西师范大学硕士毕业论文,2008.
    [77]边朝祺,张学工.模式识别[M].清华大学出版社,2000.
    [78]刘靖旭.支持向量回归的模型选择及应用研究[D].北京:国防科学技术大学研究生院博士学位论文,2006.
    [79]Vapnik V.The Nature of Statistical Learning[M].New York Springer.1995.
    [80]Nello Cristianini,John Shawe-Taylor An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].Beijing Publishing House of Electronics Industry,2004.
    [81]M.Anthony,P.Bartlett.Learning in Neural Networks:Theoretical Foundations[M].Cambridge University Press,1999.
    [82]J.Shawe-Taylar,N.Cristianini.Margin Distribution and Soft Margin[M].In A.Smola,P.Bartlett,B.Scholkopf,and D.Schuurmans,editors,Advances in Large Margin Classifiers,MIT Press,Cambridge,MA,2000:349-358.
    [83]J.Weston.Leave-One-Out Support Vector Machines[A].IJCAI[C].1999:727-733.
    [84]张英.基于支持向量机的过程工业数据挖掘技术研究[D].浙江大学博士学位论文,2005:17-20.
    [85]Ge M,Du R,Zhang C C,Xu Y S,Fault diagnosis using support vector machine with an application in sheet metal stamping operations[J].Mechanical Systems and Signal Processing,2004,18:143-159.
    [86]Vapnik V N.统计学习理论的本质[M].北京:清华大学出版社,2000.
    [87]朱永生,张优云.支持向量机分类问题中几个问题的研究[J].计算机工程与应用,2003,39(13):36-38.
    [88]玄光男,程润伟著.于歆杰,周根贵译.遗传算法与工程优化[M].北京.清华大学出版社,2004.
    [89]杨旭,纪玉波等.基于遗传算法的SVM参数选取[J].辽宁石油化工大学学报,2004,24(1):54-58.
    [90]Keerthi S S,Lin C J.Asymptotic behaviors of support vector machines with gaussian kernel[J].Neural computation,2003,15:1667-1689.
    [91]Kwok J T,Tsang IW.L inear dependency between and the input noise in support vector regression[J].IEEE Trans on Neural Networks,2003,14(3):544-553.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700