江苏沿海滩涂地区典型剖面土壤性质演化及其高光谱响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤性质的演化关系到土壤可持续利用和区域可持续发展,理解其演化速率、机制和效应及其与环境条件变化的相互关系是土壤资源可持续管理的基础。沿海滩涂位于海陆交互过渡带,能量交换、物质迁移转化频繁,对人类活动响应剧烈,其土壤在自然和人为综合作用下演化相对快速,特别是其处于动态环境中的时间序列,能够追踪到土壤性质的演化过程和相关中间产物,是研究土壤性质演化的理想类型。江苏沿海滩涂面积不断淤涨,随着沿海发展上升为国家战略,其土壤性质的演化过程势必要受到更多的人为影响。土壤高光谱反射率作为土壤性质的综合反映,具有指示土壤性质演化的作用,特别是生态高值农业的发展需要在高新农业技术方面进行创新,其中就包括全球卫星定位支持的精准农业技术。
     基于以上背景,本研究以Ti/Zr比值判定剖面土壤具有成土母质连续性后,通过建立江苏沿海滩涂地区土壤时间序列,并与沿海、内陆考古遗址盐碱土进行对比,分析土壤性质的时空变化规律;讨论成土母质和人类活动对土壤性质变化的影响,定量分离不同成土母质来源的贡献;结合反射高光谱快速、无损的检测优势,对时间序列滩涂土壤、及其与考古遗址土壤性质演化的差异进行表征,应用偏PLSR法,研究原始光谱(REF)、一阶微分光谱(FDR)、光谱倒数之对数(1g(1/R))和波段深度(BD)4类光谱指标对时间序列土壤性质的反演能力,应用相关分析和多元变量统计方法,构建考古遗址土壤性质的高光谱反演模型。通过研究得到以下结论:
     (1)江苏沿海滩涂土壤属性在水平和垂直方向上具有多种变化特征
     水平方向上,以粉砂为主的时间序列土壤粒度组成与成陆时间之间、土壤微量元素(除Cd)、常量元素(除Mg)与成陆时间之间均具有线性回归或先增(减)后减(增)的Shah指数函数关系;随成陆时间增加,土壤肥力不断提高;土壤基本理化性质与成陆时间之间存在一阶对数函数和线性回归的关系。
     垂直方向上,土壤粒度组成在时间序列剖面中呈线性变化;土壤肥力在沿海东台(DT)和掠港(JG)剖面随深度呈一阶指数函数变化,在安丰(AF)剖面呈Shah指数变化,而在考古遗址剖面总体.上表现为现代耕层高于古文化层;基本理化性质在DT剖面中呈Shah指数函数变化,在考古遗址剖面表层出现不同程度的酸化特征。十壤微量元素含量在时间序列和梁王城(LWC)考古遗址剖面呈线性回归和Shah指数变化。
     JG剖面Zn元素外源组份含量自1910年以来以0.39mg(kg.a)-'的速率减小,相对变化率达0.6%a-1;DT剖面和LWC考古遗址剖面土壤微量元素外源组份含量随时间分别呈指数递减和递增变化;藤花落(THL)遗址L-1剖面As元素外源组份含量从底部至表层似乎逐渐减小,而Pb和Zn则似乎不断增加,而L-2剖面微量元素外源组份含量在各层位相对稳定。
     (2)成土母质奠定了江苏沿海滩涂土壤属性的总体状况,人类活动对其产生深刻影响
     1910年以来,JG剖面长江入海携带泥沙成土母质贡献率从剖面底部的3%上升至表层的21%,黄河入海携带泥沙成土母质贡献率从97%降至79%;AF剖面底部具有较高的海相堆积成土母质,至剖面上部,河流搬运泥沙母质占主导;DT剖面河流沉积母质变化于23%至46%之间,湖泊沉积母质的贡献率介于54%至77%之间;THL遗址的生活区(L-1)剖而土壤残积母质从表层的94%下降至底层的32%,坡积母质则呈相反变化;生产区(L-2)剖面土壤残积和坡积母质的含量相对稳定;LWC遗址剖而表层土壤坡积母质占97%,河流沉积母质仅占3%,以下下各层位坡积母质变化于44%至76%之间,剖面局部层位可能存在下蜀黄土成土母质。
     时间序列土壤Cr、Cu、Ni和Pb含量主要受成土母质控制,而zn含量主要受人类活动影响,Cd元素受上述两类因素综合作用。河流沉积母质对Cd、Cr和Ni的贡献率分别为47%、29%和48%,海洋沉积物的贡献率分别为53%、58%和40%,下蜀黄土贡献了另外13%的Cr和Ni含量。Zn元素含量自然来源占35%,低于人为强干扰组份65%的比重,说明人类活动已成为研究区Zn元素的主要来源。THL遗址剖面土壤微量元素具有2个来源,残积母质分别贡献了Cd、Cr、Cu和Zn含量的67%、58%和72%和33%,坡积母质则分别贡献了33%、42%、28%和66%;对Pb元素而言,自然组份和人为组份均贡献了50%。
     (3)高光谱反射率能够有效表征江苏沿海滩涂地区土壤性质演化的差异
     时间序列剖面土壤光谱反射率要低于考古遗址剖而土壤,且在可见光波段随着波长的增加,光谱反射率增长较快,曲线斜率较大。时间序列剖面上壤在Fe2+和Fe3+特征吸收波段的吸收深度要明显深于考古遗址剖面土壤,而在1400、1900和2200nm附近的光谱特征吸收波段的吸收深度则小浅十考古遗址剖面土壤。
     时间序列土壤性质的PLSR预测方程的收敛速度和反演精度具有成陆白年样本>成陆千年样本>总体样本的特征,所选主成分的个数则相反,模型R2分别大于0.9876、0.9805和0.71。光谱微分变换有助于提取考古土壤属性信息,基于多元线性逐步回归的反演模型要优于比率模型和弓曲差模型,R2均大于0.71,最大值为0.97,RMSE均小于6.18,最小值仅为0.004,表明模型较高的稳定性和预测性。
The evolution of soil properties is relevant to the sustainable soil resources utilization and region development. Understanding the rate, mechanism and effect of soil properties evolution and its relationship with changing environment is the basis for sustainable management of soil resources. Coastal tidal region located at the interaction zone of ocean and continent, has the characteristics of frequent energy exchange and material migration, and thus, its response to human activities is violent. Soil in coastal tidal region is the ideal type of study the evolution of soil property due to its relatively fast evolution rate to the combined natural and artificial effect, and its chronosequence has beening in a dynamic environment, and thus has the opportunity for us to trace the process and intermediate during the evolution process. With the development of Jiangsu coastal ascend as national strategy, the coastal tidal of Jiangsu province, has accreting gradually, is bound to face a higher strength of the human role in the evolution of soil properties. Soil hyperspectral reflectance as a comprehensive reflection of soil properties, has the function of label the difference of soil properties evolution, especially the development of eco-high-value agriculture need the innovation in high-tech agricultural technology, which including GPS supportted precisive agriculture technology.
     Based on the above background, the spatial and temporal variation of soil properties was analysised through constructing soil chronosequence in the tidal region of Jiangsu province and compared to archaeological sites soil, the influence of parent material and human activities on the evolution of soil properties was diccussed, and contribution of different parent materials was partitioed quantitively, the difference in spectral reflectance between chronosequential soil profiles and archeological profiles was presented through take advantage of rapid and non-destructive testing of hyperspectral reflectance. Apply PLSR method to study the capability of REF, FDR, 1g (1/R) and BD in predicting the soil properties evolution and correlation analysis and multivariate statistical methods to construct hyperspectral models for retrieving archaeological soil properties. The results summried as follows:
     (1) Soil properties in the coastal tidal region of Jiangsu province have multiple variation lendnecy
     In horizontal direction, chronosequential soil size composition, which dominated by silt, and trace elements (except Cd) and major elements (except Mg) has linear regression or Shah Exponential function (SEF) relationship with pedogenic time. The longer of pedogenic time, the higher of soil fertility, and vice verse. The basic physical and chemical properties of chronosequentrial soil varied in accordance with First Order Logarithm function (FOLF) and Linear Regression equation (LRE).
     In vertical direction, grain size parameters of chronosequential soil show linear variation. Soil fertility indexes vary with First Order Exponential function (FOEF) in profile of Dongtai (DT) and Jianggang (JG), and with SEF in profile of Anfeng (AF), and surface soil of archaeological profile of Tenghualuo (THL) has higher fertility. The basic physical and chemical properties of in profile (DT) varied in accordance with SEF. Trace elements content in chronosequential soil and LWC relic varying followed LRE and SEF in vertical direction.
     The anthropogenic component of Zn content decreased at rate of 0.39mg (kg.a)-1 since 1910, and at the relative variaitoin rate of 0.6%a-1. The anthropogenic component of trace elements in profile of DT and LWC present variation of confirm to expotential law. The anthropogenic component of As in profile of L-1 dereased gradually from bottom to surface layer, and increased for Pb and Zn.
     (2) Parent material laid the general situation of soil properties in the coastal tidal region of Jiangsu province and human activities have a significant influence on its evolution.
     Since 1910, the parent material of sediments carried by Changjiang River increased from 3% to 21% from bottom to top of JG profile, by contrast, the sediments carried by Huanghe River decreased from 97% to 79%. Marine and fluvial deposits occupy higher ratio in lower and higher part of AF profile respectively. The parent material of fluvial sediments account for 23% to 46% in DT profile and the contribution of lake sediments ranged from 54% to 77%. The component of residual parent material accounted for 94% in surface layer and descends to 32% in bottom layer of profilre L-1 of THL relic, in contrast, the component of slope sediments shows an opposite trend. The contribution of residual parent material and slope sediments plays a same role in L-2 profile of THL relic. Slope sediments account for 97% parent material in arable layer of LWC relic, ranged from 44% to 76% in other layers, and Xiashu loess parent material may exist in part layers.
     As far as chronosequential soil concerned, the content of Cr, Cu, Ni and Pb under the control of parent material, the content of Zn mainly derived from anthropogenic activities, however, the content of Cd is influced by the two factors of above-mentioned. Fluvial sediment accounted for 47%,29% and 48% in the content of Cd, Cr and Ni respectively, the contribution of marine sediment is 53%,58% and 40% respectively, Xiashu loess cobtributed another 13% content Cr and Ni. Natural componen accounted for 35% in the content of Zn, lower than the contribution of 65% of the strong huma(?) disturbance component, which indicate the signifivant effect of human activities on the content of Zn i(?) the study area directly. Frequency distribution function fitting indicate that residual parent materia accounted for 67%,58%,72% and 33% in the content of Cd, Cr, Cu and Zn and slope sedimei contributed 33%,42%,28% and 66% respectively in THL relic. Natural and anthropogenic compone have same contribution in the content of Pb.
     (3) Hyperspectral reflectance is a powerful tool for represent difference of soil proper evolution effectively
     Soil hyperspectral reflectance in the chronosequential profiles is lower than soil in archaeological profile. With the increase of wavelength in visible light, the soil hyperspectral reflectance and the slope of reflectance curve ascends rapidly. Absorption depth of chronosequential soil in the characteristic asorption band of Fe2+and Fe3+is deeper than the archaeological soil, in the contrast, in the 1400,1900,2200nm is shallower than the archaeological soil.
     Convergence rate and predicigting accuracy of partial least square regression (PLSR) equation for predicting chronosequential soil properties has the characteristics of samples in centural scale> samples in millennium scale> overall samples, The R2 is 0.9876,0.9805 and 0.71 respectively. More information of archeological soil was extracted after the original spectra derivate transformed. The stepwise linear regression model is superior to the ratio model and bow-curvature model, with a minimum R2 of 0.71 and maximum rmse of 6.18, which reflect its higher stability and more accurate predictability.
引文
1. Acosta J A, Martinez-Martinez S, Faz a A, et al. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials[J]. Geoderma,2011,161,30-42.
    2. Adriano D C. Trace elements in terrestrial environments:biogeochemistry, bioavailability and risks of metals[M]. 2nd ed. Springer, New York,2001,867 pp.
    3. Agarkova M G, Tselishcheva K L, Stroganova M N. Morphologic and genetic characteristics and systematics of urban soils[J]. Moscow Univ. Soil Sci. Soc. Bull.1991,46 (2),12-16.
    4. Ahn, P. West African Soils[M]. Oxford University press,1970.
    5. Amit R, Gerson R, Yaalon D H. Stages and rate of the gravel shattering process by salts in desert reg soils[J]. Geoderma,993,57,295-324.
    6. Amelung W, Zech W, Zhang X., et al. Carbon, nitrogen, and sulfur pools in particle-size fractions and influenced by climate[J]. Soil Sci. Soc. Am. J.,1998,62,17-181.
    7. Anda M. Chittleborough D J, Fitzpatrick RW. Assessing parent material uniformity of a red and black soil complex in the landscapes[J]. Catena,2009,78,142-153
    8. Ansari A A. Singh I B, Tobschall H J. Importance of geomorphology and sedimentation processes for metal dispersion in sediments and soil of the Ganga plain:identification of geochemical domains[J]. Chemical Geology, 2000,16:245-266.
    9. Ashley G M. Interpretation of polymoal sediments[J]. Journal of geology,1978:86,411-421.
    10. Awiti A O, Walsh M G, Shepherd KD, et al. Soil condition classification using infrared spectroscopy:A proposition for assessment of soil condition along a tropical forest-cropland chronosequence[J]. Geoderma,2008, 143,73-84.
    11. Bagnold R A, et al. The pattern of nature size distribution[J]. Sedimentology,1980:27:199-207
    12. Bao K S, Jia L, Lu X G, et al,. Grain-size characteristics of sediment in Daniugou peatland in Changbai mountains, northeast China:implications for atmospheric dust deposition[J]. Chin. Geogra. Sci.,2010.20(6) 498—505.
    13. Bartenfelder, D. C., Karathanasis, A.D. Quartz thermal activation energy as a tool in locating lithlogical discontinuities in Kentucky soils (U.S.A.)[J]. Geoderma,1991,48(1-2):17-30.
    14. Baumgardner M F, Silva L F, Biehl L L, et al. Reflectance properties of soils[J]. Adv. Agron.,1985,38,1-44.
    15. Beckwiflx PR, Ellis L B, Revitt DM, et al. Heavy metal and magnetic relationships for urban source sendiments[J]. Physics of the Earth and planetary interior,1996,42:65-75.
    16. Ben-Dor E. Quantitative remote sensing of soil properties[J]. Adv. Agron.,2002.75,173-243.
    17. Ben-Dor E, Bannin A. Near infrared analysis (NIRA) as a rapid method to simultaneously evaluate several soil properties[J]. Soil Science Society of America Journal,1995,59,364-372.
    18. Birkeland P W. Holocene soil chronofunctions, Southern Alps. New Zealand[J]. Geoderma,1984,34,115-134.
    19. Birkeland P W. Soil-geomorphic research—a selective overview[J]. Geomorphology.1990,3,207-224.
    20. Blaha U. Appel E A. Stanjek H. Determination of anthropogenic boundary depth in industrially polluted soil and semi-quantification of heavy metal loads using magnetic susceptibility [J]. Environmental Pollution,2008,156: 278-289
    21. Bockheim J G. Solution and use of chronofunctions in studying soil development[J]. Geoderma.1980,24,71-85.
    22. Borders B E. Willa R E. Markewitza D. et al. Effect of complete competition control and annual fertilization on stem growth and canopy relations for a chronosequence of loblolly pine plantations in the lower coastal plain of Georgia[J]. Forest ecology and management,2004,192,21-37.
    23. Botha G, Porat N. Soil chronosequence development in dunes on the southeast African coastal plain, Maputaland, South Africa[J]. Quaternary International,2007,162-163:111-132.
    24. Boutton T W, Tiezen, L L, Imbamba S K. Biomass dynamics of grassland vegetation in Kenya, East Africa[J]. African Journal of Ecology,1988,26:89-101.
    25. Brallier S, Harrison RB, Henry CL, et al. Liming effects on availability of Cd, Cu, Ni and Zn in a soil amended with sewage sludge 16 years previously[J]. Water Air Soil Pollut,1996,86:195-206.
    26. Brooks S M, Richards K S. Establishing the role of pedogenesis in changing soil hydraulic properties[J]. Earth Surf. Processes Landforms,1993,18,573-578.
    27. Brown D, Shepherd K D, Walsh M G, et al. Global soil characterization with VNIR diffuse reflectance spectroscopy[J]. Geoderma,2006,132,273-290.
    28. Bryant R B, Galbraith J M. Incorporating anthropogenic processes in soil classification.2003. In:Eswaran, et al. (Ed.), Soil Classification. A Global Desk Reference. CRC Press, Boca Raton, FL-USA, pp.57-66.
    29. Buondonno C, Ermice A, Buondonno A, et al. Human-influenced soils from an iron and steel works in Naples, Italy[J]. Soil Sci. Soc. Am. J.,1998,62,694-700.
    30. Burghardt W. Characteristics, classification and quality of urban and industrial soils of the Ruhr area, Germany. Proc. World Congress of Soil Science,15th Acapulco, Mexico.10-16 July 1994. ISSS and the Mexican Society of Soil Science,1994a, vol.6b, pp.277-278.
    31. Burghardt W. Soil in urban and industrial environment[J]. Z. Pflanzenernaehr. Bodenkd.1994b,157,205-214.
    32. Busacca A J. Pedogenesis of a chronosequence in the Sacramento Valley, California, U.S.A., I. Application of a soil development index[J]. Geoderma,1987,41,123-148.
    33. Cecillon L, Cassagne N, Czarnes S, et al. Predicting soil quality indices with near infrared analysis in a wildfire chronosequence[J]. Science of the Total Environment, 2009,407,1200-1205.
    34. Chittleborough D J, Oades J M, Walker PH. Textural differentiation in chronosequences from eastern Australia. III. Evidence from elemental chemistry[J], Geoderma,1984,32,227-248.
    35. Chang C W, Laird D A. Near-infrared reflectance spectroscopic analysis of soil C and N[J]. Soil Science,2002, 167:110-116.
    36. Chapman S L, Horn M E. Parent material uniformity and origin of silty soils in northwest Arkansas based on zircinium contents[J]. Soil science society. Am. J,1968,32:265-271.
    37. Chen H.M, Zheng C R, Tu C et al. Heavy metal pollution in soils in China:status and counter measures[J]. Ambio, 1999,28:130-134.
    38. Cheng Y Q, Yang L Z, Cao Z H, et al. Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils[J]. Geoderma,2009,151,31-41
    39. Clark R N. Spectroscopy of rocks and minerals, and principles of spectroscopy. In:Rencz, N. (Ed.), Remote Sensing for the Earth Sciences:Manual of Remote Sensing[M]. John Wiley & Sons, New York,1999, pp.3-52.
    40. Clark R N, Roush T L. Reflectance spectroscopy-quantitative analysis techniques for remote-sensing application[J]. J. Geophys. Res.,1984,89 (NB7),6329-6340.
    41. Clemens G, Fiedler S, Cong N D. et al. Soil fertility affected by land use history, relief position, and parent material under a tropical climate in NW-Vietnam[J]. Catena,2010,81,87-96.
    42. Cloquet C, Carignan J, Libourel G. Isotopic composition of Zn and Pb Atmospheric Depositions in an Urban/Periurban Area of Northeastern France[J]. Environ. Sci. Technol,2006.40,6594-6600.
    43. Ciolkosz E J, Cronce R C, Cunningham R L, et al. Characteristics, genesis and classification of Pennsylvania minesoils[J]. Soil Sci..1985.139,232-238.
    44. Crews T E. Kitayama K. Fownes J H, et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii[J]. Ecology,1995,76.1407-1424.
    45. CSTC. (Cooperative Research Group on Chinese Soil Taxonomy). Chinese Soil Taxonomy. Science Press,2001, Beijing, New York.
    46. Dazzi C, Monteleone S. Consequences of human activities on pedodiversity of soils:a case study in a vineyard area in south-east Sicily (Italy),1999. Proceedings of the ESSC International Conference on "Soil Conservation in Large-Scale Land Use" Bratislava. May 1999, pp.99-108.
    47. Dazzi C. Monteleone S, Scalenghe R. Anthropogenic soils originated by severe disturbances due to large scale farming.2004. In:Kertesz, A. (Ed.), ESSC 4th Inter. Congress— Proceedings Volume, pp.153-156. Budapest.
    48. Dembicki and Meinschein. Possible ecological and environmental significane of the predominance of even-carbon number C20-C30 n-alkanes[J]. Geochim Cosmochin Acta,1976,40:203-208.
    49. Didyk B M, Simoneit B R T, Brassell S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature,1978,272:216-222.
    50. Del Valls T A, Forja J M, Gomez-Parra A. Integrative assessment of sediment quality in two littoral ecosystems from the gulf of Cadiz, Spain[J]. Environmental toxicology and chemistry,1998,17(6):1073-1084.
    51. Dematte J A M, Campos R C, Alves M C, et al. Visible-NIR reflectance:a new approach on soil evaluation[J]. Geoderma,2004,121,95-112
    52. Drees L R, Wilding LP. Smeck N E, et al. Silicon in soils:quartz, and disordered silica polymorpHs, in:Dixon, J.B., Weed. S.B.(eds), Minerals in soil environments, second ed[M]..Madison:soil science society of amaerica, 1989.471-552.
    53. Dudal R, Nachtergaele F O, Purnell M F. The human factor of soil formation. Paper Presented at 2002 IUSS Meeting, Symposium n°18, paper n°93.2002, Bangkok, Thailand.
    54. Dultz S. Effects of parent material and weathering on feldspar content in different particle size fractions from forest soils in NW Germany Geoderma,2002,2002.63-81.
    55. Dunn B W, Beecher H G, Batten G D, et al. The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern[J]. Australia. Aust. J. Exp. Agric.2002,42(5):607-614.
    56. Egli M, Fitze P, Mirabella A. Weathering and evolution of soils formed on granitic, glacial deposits:results from chronosequences of Swiss alpine environments[J]. Catena,2001.45,19-47.
    57. Erel Y, Dayan U, Rabi R, et al. Trans Boundary Transport of Pollutants by Atmospheric Mineral Dust[J]. Environ. Sci. Technol,2006,40,2996-3005.
    58. Fanning D S, Fanning M C. Soil Morphology, Genesis and Classification. Wiley and Son,1989, Chicester, UK.
    59. FAO/ISRIC/ISSS. World Reference Base for Soil Resources. World Soil Resources Rep.,1998, vol.84. FAO, Roma.
    60. Ferran A, Vallejo V R. Litter dynamics in post-fire successional forests of Quercus ilex[M], Vegetation 1992.99-100,239-246.
    61. Fine P. Singer M J. Verosub K L. Use of magnetic-susceptibility measurements in assessing soil uniformity in chronosequence studies[J]. Soil Sci. Soc. Am. J.,1992,56,1195-1199.
    62. Florea N. Munteanu 1. Sistemul Roman de Taxonomie a Solurilor. (Romanian System of Soil Taxonomy) Univ. "Al. I. Cuza" Iasi., 2000,107 pp.
    63. Gabler H E, Suckow A. Chronology of anthropogenic heavymetal fluxes and Pb isotope ratios derived from radiometrically dated lake sediments in Northern Germany[J]. Water Air Soil Pollut,2003.144(1):243-262.
    64. Gallon C. Tessier A. Gobell C. Historical perspective of industrial lead emissions to the atmosphere from a Canadian smelter[J]. Environ. Sci. Technol,2006,40,741-747.
    65. Gao S. Wang Y P. Changes in material fluxes from the Changjiang River and their implications on the adjoining continental shelf ecosystem [J]. Continental Shelf Research,2008,28:1490-1500.
    66. Gerrard A J. Soil Geomorphology:An Integration of Pedology and Geomorphology. Chapman & Hall, London, 1992,260 pp.
    67. Granier, L, Chevreuil, M., Carru, A.M., et al. Urban runoff pollution by organochlorines (polychlorinated biphenyls and Lindane) and heavy metals (lead, zinc and chromium)[J]. Chemosphere,1990,21:1101-1107.
    68. Guzzella L.comparison of test procedures for sediment toxicity evaluation with Vibro fischeri bacteria[J] Chemosphere,37(14-15):2895-2909.
    69. Haering K C, Lee Daniels W, Galbraith J M. Mapping and classification of Southwest Virginia mine soils[J]. Soil Sci. Soc. Am. J.,2005,69,463-472.
    70. Hanesch M, Scholger R. Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurement[J]. Environ. Geol.2002,42,857-870.
    71. Harden J.W. Aquantitative index of soil development from field descriptions:examples from a chronosequence in central California[J]. Geoderma,1982,28,1-28.
    72. Hardy M, Cornu S. Location of natural trace elements in silty soils using particle size fractionation. Geoderma, 2006,133,295-308.
    73. Harradine F, Jenny H. Influence of parent material and climate on texture and nitrogen and carbon contents of soils[J]. Soil Sci.,1985,85,235-243.
    74. Harrison J B J, McFadden L D, Weldon R J. Spatial soil variability in the Cajon Pass chronosequence:implications for the use of soils as a geochronological tool[J]. Geomorphology 1990,3,399-416.
    75. Heller F, Strzyszcz Z, Magiera T, et al. Magnetic record of industrial pollution in forest soils of Upper Silesia, Poland[J]. J. Geophys. Res.1998, B103:17767-17774.
    76. Henderson T L, Baumgardner M F, Franzmeier D P, et al. High dimensional reflectance analysis of soil organic matter[J]. Soil Sci. Soc. Am. J.,1992,56,865-872.
    77. Hewitt A E. Methods and rationale of the "New Zealand Soil Classification. Landcare Research Science Series, vol. 2. Manaaki Whenua Press,1993, Lincoln, New Zealand.
    78. Hong S M, Candelone J-P, Patterson C C, et al. History of ancient smelting pollution during Roman and Medieval times recorded in Greenland ice[J]. Science,1996,272:246-249.
    79. Hong S M, Candelone J-P, Patterson C C, et al. Greenland ice evidence of hemisphere lead pollution two millennia ago by Greek and Roman civilizations[J]. Science,1994,265:1841-1843.
    80. Hudson B.D. The soil survey as paradigm-based science[J]. Soil Sci. Soc. Am. J.,1992,56,836-841.
    81. Huggett R J. Soil chronosequences, soil development, and soil evolution:a critical review[J]. Catena,1998,32, 155-172.
    82. Hummel J W, Sudduth K A.Soil moisture and organic matter prediction of surface and subsurface soil using and NIR soil[J], Computers and Electronics in Agriculture,2001,32(2):149-165.
    83. Hunt G R. Spectral signatures of particulate minerals in visible and near IR[J]. Geophysics,1977,42(3):501-513.
    84. Hunt G R. Spectroscopic properties of rocks and minerals. In:Carmichael, R.S. (Ed.), Handbook of Physical Properties of Rocks[M]. CRC Press, Boca Raton, FL,1982, pp.295-385.
    85. Hunt A, Jones J, Oldfield F, et al. magnetic measurements and heavy metals in atmospheric particulates and anthropogenic origin[J]. The Science of the Total environment,1984,33:129-139.
    86. ICOMANTH. Circular Letter,2003, vol.4. clic.cses.vt.edu/icomanth/circlet4. pdf [verified January 30,2006].
    87. Indorante S J, Grantham D R, Dunker R E. et al.1992.Mapping and classification of minesoils:past, present and future. In:Dunker, R.E., et al. (Ed.), Prime Farmland Reclamation. Proc.1992 Nat. Symp. Prime Farmland Reclamation, St. Louis.MO.10-14 Aug. Dep. Agron., Univ. Illinois, Urbana, IL, pp.233-241.
    88. Isbell R F. The Australian Soil Classification. CSIRO Publishing,1996. Melbourne, Australia.
    89. Islam K, Singh B. McBratney A. Simultaneous estimation of several soil properties by ultra-violet, visible, and nearinfrared reflectance spectroscopy[J]. Aust. J. Soil Res.2003.41(6):1101-1114.
    90. Jacobs P M. Influence of parent material grain size on genesis of the Sangamon geosol in south-central Indiana[J]. Quaternary international, 1998,51/52,172 132
    91. Janik L J, Merry RH, Skjemstad J O. Can mid infrared diffuse reflectance analysis replace soil extractions? Australian[J] Journal of Experimental Agriculture,1998,38,681-696.
    92. Jenny H. Factors of soil formation[M]. McGraw-Hill, New York,1941.
    93. Jenny H. The Soil resource origin and behavior[M]. Springer, New York,1980.
    94. Jerome O. Nriagu. A history of global metal pollution[J].Science,1996,272(5259):223-224.
    95. Jin Z D, Han Y M, Chen L. Past atmospheric Pb deposition in Lake Qinghai, northeastern Tibetan Plateau[J]. J Paleolimnol,2010,43:551-563.
    96. Kabata-Pendias A, Mukherjee A B. Trace elements from soil to human[M]. Springer, Berlin,2007,267-276.
    97. KapiCka A, Jordanova N, Petrovsky E, et al. Effect of different soil conditions on magnetic parameters of power-plant fly ashes[J]. J. Appl. Geophys.2001,48:93-102.
    98. Karlstrom E T, Osborn G. Genesis of buried paleosols and soils in Holocene and late Pleistocene tills, Bugaboo Glacier area. British Columbia, Canada[J]. Arctic Alpine Res.1992,24,108-123.
    99. Kashiwaya K. Yamannoto A, Fukuyama K. Time variations of erosional force and grain size in Pleistocence lake sediment[J]. Quaternary Research,1985,28:61-68.
    100. Kranck K, et al. Grain-szie characteristics of fine-grained unflocculated sediments Ⅰ:'one round'distributions[J] Sedimntology,1996,43:589-596.
    101. Kranck K. et al. Grain-szie characteristics of fine-grained unflocculated sediments Ⅱ:'multi-round' distribution[J] Sedimntology,1996.43:597-606.
    102. Kroonenberg S B, Hoorn M C, Moura M L, et al. Variability in bulk geochemistry of fluvial terrace sands: consequences for the study of weathering chronosequences[J]. Pedologie 1990,40,19-31.
    103. Kovaleva N. Northern Tian-Shan paleosol sedimentary sequences as a record of major climatic events in the last 30,000 years. Geophysical Research Abstracts 2006,8,4885-4886.
    104. Langley-Turnbaugh S J, Bockheim J G.1998.Mass balance of soil evolution on late Quaternary marine terraces in coastal Oregon[J]. Geoderma,1998,84,265-288.
    105. Langohr R. Pajares G. Thr chronosequence of pedogenic process in Fraglossudalfs of the Belgian loess belt. In soil micromorphology. AB academic Publisher, Berkamsted.,1983. pp503-510.
    106. Lecoanet H, Leveque F, Ambrosi J-P. Combination of magnetic parameters:an efficient way to discriminate soil-contamination sources (south France)[J]. Environ. Pollut.2003.122,229-234.
    107. Li L Q. Peng G X, Zhang P J, et al. Estimating of decadal accumulation rates of heavy metals in surface rice soils in the Taihu Lake region of China[J]. Environ Sci,2002.23(5):118-123.
    108. Li J L, He M, Sun S.Q, et al. Effect of the behavior and availability of heavy metals on the characteristics of the coastal soils developed from alluvial deposits[J]. Environ. Monitor. Assess,2008, DOI 10.1007/s 10661-008-0465-5.
    109. Li S Y, Zhang Q F. Response of dissolved trace metals to land use/land cover and their source apportionment using a receptor model in a subtropic river, China[J]. Journal of hazardous material,2011, doi:10.1016/j.jhazmat.2011.03.026.
    110. Li Y, Demetriades-Shash T H, Kanemasu E T, et al. Use of Second Derivation Canopy Reflectance for Monitoring Prairie Vegetation over different Soil Backgrounds[J]. Remote Sensing of Environment,1993,44:81-87.
    111. Liao Q L. Evans L J. Gu X Y. et al. A regional geochemical survey of soils in Jiangsu Province, China:preliminary assessment of soil fertility and soil contamination[J]. Geoderma,2007,142:18-28.
    112. Lillesand T M. Kiefer R W. Remote Sensing and Image Interpretation[M].4th Edition. John Wiley & Sons:New York, NY.2000.
    113. Liu H J, Zhang Y Z, Zhang B. Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China[J]. Environ Monit Assess,2009,154:147-154.
    114. Liu CQ, Lu J J, Li H P. Landward changes of soil enzyme activities in a tidal flat wetland of the Yangtze River Estuary and correlations with physico-chemical factors[J]. Acta Ecologica Sinica,2007,27(9):3663 3669.
    115. Liu Q.S, Banerjee S K, Jackson M J, et al. Inter-profile correlation of the Chinese loess/paleosol sequences during Marine Oxygen Isotope Stage5 and indications of pedogenesis[J]. Quat. Sci. Rev.2005a,24,195-210.
    116. Liu Q S, Pengxiang Hu P X, Torrent J, et al. Environmental magnetic study of a Xeralf chronosequence in northwestern Spain:Indications for pedogenesis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2010, 293:144-156.
    117. Liu Q S, Torrent J, Maher B A, et al. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis[J]. Journal of Geophysical Research,2005b,110, B11102. doi:10.1029/2005JB003726.
    118. Lothar B, Kristina P, Gunther W, et al. Soil formation in coastal continental Antarctica[J]. Geoderma,2000,95, 283-304.
    119. Magaldi D, Tallini M. A micromorphological index of soil development for the Quaternary geology research[J]. Catena,2000,41,261-276.
    120. Mahaney W C, Kalm V Kapran B, et al. A soil chronosequence in Late Glacial and Neoglacial moraines, Humboldt Glacier, northwestern Venezuelan Andes[J]. Geomorphology,2009,109:236-245
    121. Maher B A.1998. Magnetic properties of modern soils and Quaternary loessic paleosols:paleoclimatic implications[J]. Paleogeogr. Palaeoclimat. Palaeoecol,1998,137,25-54.
    122. Maier G, Scholger R. Demonstration of the connection between pollutant dispersal and atmospheric barrier layers by usage of magnetic susceptibility mapping[J]. Geophys. Res. Abstr.,2003,5,5781.
    123. Maier G, Scholger R. Demonstration of connection between pollutant dispersal and atmospheric boundary layers by use of magnetic susceptibility mapping, St. Jacob (Austria)[J]. Phys. Chem. Earth,2004,29,997-1009.
    124. Malley D, Martin P, Ben-Dor E. Analysis of soils. In:Roberts, C.A., Workman Jr., J., Reeves Ⅲ, J.B. (Eds.), Near-Infrared Spectroscopy in Agriculture[M]. American Society of Agronomy, Madison, Wisconsin, USA,2004, pp.729-784.
    125. Marijia R, Davor R. Heavy metals distribution in agricultural top soils in urban area[J]. Environ Geol,2003,43: 795-805.
    126. Matthews J.A. The ecology of recently-deglaciated terrain:a geoecological approach to glacier forelands and primary succession[M]. Cambridge University Press, Cambridge,1992,386 pp.
    127. McCarroll D. Relative-age dating of inorganic deposits:the need for a more critical approach[J]. Holocene,1991, 11:174-180.
    128. McKenzie N J, Cresswell H.P, Ryan P J, et al. Contemporary land resource survey requires improvements in direct soil measuremen[J]. Commun. Soil Sci. Plant Anal,2000,31(11-14):1553-1569.
    129. Merritts D J, Chadwick O A, Hendricks D M, et al. The mass balance of soil evolution on late Quaternary marine terraces, Northern California[J]. Geol. Soc. Am. Bull.1992,104,1456-1470.
    130. Messer A C An alternative approach to the study of pedogenic chronosequences[J]. Norsk Geografisk Tidsskrift, 1989,43,221-229.
    131. Mico C, Recatala L, Peris M, et al. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis [J]. Chemosphere,2006,65:863-872.
    132. Mitchell R L. Trace element problems in Scottish soils[J]. The Proceedings of the Nutrition Society 1960,19,148-153.
    133. Mohindra R, Parkash B. Clay mineralogy of the Gandak megafan and adjoining Middle Gangetic Plains. India[J]. Bull. Sci. Geol.,1990,43,203-212.
    134. Moran M S, Inoue Y, Barnes E M. Opportunities and limitations for image-based remote sensing in precision crop management[J]. Remote sensing of environment,1997,61:319-346.
    135. Moron, A.,& Cozzolino, D. Exploring the use of near infrared reflectance spectroscopy to study physical properties and microelements in soils[J]. Journal of Near Infrared Spectroscopy,2003,11,145-154.
    136. Murad E. Yttrium and zirconium as geochemical guide elements in soil and stream sediment sequences[J]. J. Soil Sci,1978,29,219-223.
    137. Mutanga O, Skidmore A K, Prins H H T. Predicting in situ pasture quality in the kruger national park, South Africa, using continuum removed absorption features[J]. Remote Sensing of Environment,2004,89:393-408.
    138. Norton L D, Hall G F. differentiation of lithologically similar soil parent materials[J]. Soil science scioety of American journal,1985,49:409-414.
    139. Ogutu Z A. An investigation of the influence of human disturbance on selected soil nutrients Narok district, Kenya[J], Environmental Monitoring and Assessment,1999,58:39-60.
    140. Onweremadu E U, Onyia V N, Anikwe M A N. Carbon and nitrogen distribution in water-stable aggregates under two tillage techniques in Fluvisols of Owerri area, southeastern Nigeria[J]. Soil Till. Res.,2007,97,195-206.
    141. Palacios-Orueta A, Ustin S L. Remote sensing of soil properties in the Santa Monica Mountains I. Spectral analysis[J]. Remote Sensing of Environment,1998,65:170-183.
    142. Passe T. Grain size distribution expressed as tang-functions[J]. Sedimentology,1997,44:1011-1014.
    143. Pla Sentis I, Ramos M C, Nacci S, et al. Soil and water conservation as affected by changing Mediterranean climate and land management in vineyards of Catalonia (NE Spain).2004. In:Kertesz, A. (Ed.). ESSC 4th Inter. Congress—Proceedings Volume, pp.86-91. Budapest.
    144. Potter K N, Tolbert H A, Jones O R, et al. Distribution and amount of soil organic C in long-term management systems in Texas[J]. Soil Till. Res.,1998,47,309-331.
    145. Prosser I P, Roseby S J. A chronosequence of rapid leaching of mixed Podzol soil materials following sand mining[J]. Geoderma,1995,64,297-308.
    146. Post W M, Izaurralde R.C, Mann. L.K, et al. Monitoring and verifying changes of organic carbon in soil[J]. Clim. Change,2001,51(1):73-99.Qian J, Shan X Q, Wang Z J, et al. Distribution and plant availability of heavy metals in different particle-size fractions of soil[J], The science of the total environment,1996,187:131-141.
    147. Rasmussen C, Torn M S, Southard R J. Mineral assemblage and aggregates control carbon dynamics in a California conifer forest[J]. Soil Sci. Soc. Am. J.,2005,69,1711-1721.
    148. Reeves J B, McCarty G W, Meisinger J J. Near infrared reflectance spectroscopy for the determination of biological activity in agricultural soils[J]. J. Near Infrared Spectrosc,2000,8(3):161-170.
    149. Reeves J B. McCarty G, Reeves V B, et al. Mid-versus near-infrared diffuse reflectance spectroscopy for the quantitative analysis of organic matter in soils and other biological materials[J]. Abstr. Pap.-Am. Chem. Soc, 2002,223, U141-U142.
    150. Retallack G J. Soils of the Past:An Introduction to Paleopedology. Unwin Hyman.1990. Boston.
    151. Retallack G J. Paleozoic paleosols. In:Martini. I.P.. Chesworth. W. Eds... Weathering, Soils and Paleosols. Developments in Earth Surface Processes 2. Elsevier. Amsterdam,1992, pp.543-564.
    152. Rode A A. The soil forming process and soil evolution[M]. Israel Program for Scientific Translations,1961. Jerusalem.
    153. Rossel R A V. McBratney A B. Soil chemical analytical accuracy and costs:implications from precision agriculture[J]. Aust. J. Exp. Agric.1998,38(7):765-775.
    154. Schaetzl R J. Anderson S. genesis and geomorphology[M]. New York:Cambridge University press,2005
    155. Schaetzl R J. Lithologic discontinuities in some soils on drumlins:theoty, detection, and application[J]. Soil Science,1998,163(7):570-590.
    156. Schaetzl R J, Barrett L R., Winkler J A. Choosing models for soil chronofunctions and fitting them to data[J]. European Journal of Soil Science,1994,45,219-232.
    157. Shepherd K D, Walsh M G. Development of reflectance spectral libraries for characterization of soil properties[J]. Soil Sci. Soc. Am. J.,2002,66(3):988-998.
    158. Shishov L L, Tonkongov V D, Lebedeva I I, et al. Russian soil classification system. V V Dokuchaev soil science institute, Moscow.2001,221P
    159. Siebielec G, McCarty G, Stuczynski T I, et al. Near-and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content[J]. Journal of Environmental Quality,2004,33:2056-2069.
    160. Singer M J, Fine P, Verosub K L, et al. Time dependence of magnetic susceptibility of soil chronosequences on the California coast[J]. Quaternary Res.,1992,37,323-332.
    161. Singer M J, Verosub K L, Fine P, et al. A conceptual model for the enhancement of magnetic susceptibility in soils[J]. Quat. Int.1996,34-36,243-248.
    162. Singh K P, Malik A, Sinha S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques-a case study[J]. Anal. Chim. Acta,2005,538:355-374.
    163. Slavkovic L, Skrbic B, Miljevic N, et al. Principal component analysis of trace elements in industrial soils[J]. Environ Chem Lett,2004,2:105-108.
    164. Smeck N E, Torrent J, Barron V. Interactions and weathering losses of iron and phosphorus in Palexeralfs of southern Spain[J], Soil Sci. Soc. Am. J,1994,58,1723-1729.
    165. Sommer S, Hill J, Megier J, et al. The potential of remote sensing for monitoring rural and land use changes and their effedts on soil conditions[J]. Agriculture Ecosystems and environment,1998,67:1161-1165.
    166. Soil Survey Staff. Soil Taxonomy, A basic classification for making and interpreting soil surveys.2nd ed. Agriculture Handbook 436. USDA, Natural resources conservation service, Washington.869P.
    167. Stanimirova Ⅰ, Tsakovski S, Simeonov V. Multivariate statistical analysis of coastal sediment data[J]. Fres J Anal Chem,1999,365:489-493.
    168. Stevens P R, Walker T W. The chronosequence concept and soil formation[J]. Q. Rev. Biol.,1970,45,333-350.
    169. Stoner E R, Baumgardner M F. Characteristic variations in reflectance of surface soils[J]. Soil Science Society of America Journal,1981,45(6):1161-1165.
    170. Stuiver M, Reimer PJ, Reimer R W. Calib5.0 [www.program and documentation].2005.
    171. Stuiver M, Reimer P J, Bard E, et al. Intcal98 radiocarbon age calibration 24,000-0 caIBP[J], Radiocarbon,1998, 40:1041-1083.
    172. Sudom MD, St Arnaud RJ, Use of quartz, zirconium and titanium as indices in pedological studies[J]. Can. J. Soil Sci,1971,51,385-396.
    173. Tahri M, Benyai F, Bounakhla M, et al. Multivariate analysis of heavy metal content in soils, sediments and water in the region of Meknes (central Morocco)[J]. Environ Mon Ass,2005,102:405-417.
    174. Tan Z X, Lal R. Carbon sequestration potential estimates with changes in land use and tillage practice in Ohio, USA[J]. Agriculture Ecosystems and Environment.2005,111:140-152.
    175. Taylor M D. Accumulation of cadmium derived from fertilizers in New Zealand soils[J]. Science Total Environmental,1997,208:123-126.
    176. Thomasson J A, Sui R, Cox M S. et al. Soil reflectance sensing for determining soil properties in precision agriculture[J]. Trans. ASAE,2001.44 (6):1445-1453.
    177. Thompson R, Oldfield F. Environmental magnetism[M]. London:Goerge Allen & Uniwin,1986.
    178. Thurston G, Spengler J. Mass and elemental composition of fine and coarse particles in six US cities[J]. Atm Environ,1985,19:9-25.
    179. Tolonen K, Oldfield F. The record of magnetic-mineral and heavy metal deposition at Regent Street Bog, Fredricton, New Brunswick, Canada[M]. Physicas of Earth and Planetary interiors,1986,42:57-66.
    180. Vincent K R, Bull W B, Chadwick O A. Construction of a soil chronosequence using the thickness of pedogenic carbonate coatings[J], J. Geosci. Educ.1994,42.316-324.
    181. Viscarra Rossel R A, Walvoort D J J, McBratney A B, et al. Visible, near infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties[J]. Geoderma,2006,131,59-75.
    182. Vreeken W J. Principal kinds of chronosequences and their significance in soil history[J]. J. Soil Sci.,1975,26, 378-394.
    183. Wang H, Dong Y H, Li D C, et al. Evolution of soil chemical properties in the past 50 years in the Tai Lake Region, China[J]. Soil & Tillage Research,2008,100:54-59.
    184. Wang X S, Qin Y Accumulation and sources of heavy metals in urban topsoils:a case study from the city of Xuzhou, China[J]. Environ Geol,2005,48:101-107.
    185. Wang X Y, Ke X K. Grain-size characteristics of the extant tidal flat sediments along the Jiangsu coast, China[J]. Sedimentary geology,1997,112:105-122.
    186. Wu S H, Zhou S L, Li X G, et al. Heavy-metal accumulation trends in Yixing, China:an area of rapid economic development[J]. Environmental earth sciences,2009, DOI 10.1007/s 12665-009-0321-0.
    187. Xu Binbin, Dai Changda. Correlation analysis of organic matter content and spectral reflectance properties of the soil in Southern Xinjiang[J]. Chinese Science Bulletin,1980,6:282-284.
    188. Yaalon D H. Soil-forming processes in time and space. In:Yaalon, D.H. Ed.., Paleopedology—Origin. Nature and Dating of Paleosols. International Society of Soil Science and Israel Universities Press, Jerusalem, Israel, pp.,1971, 29-39.
    189. Yaalon D H. Conceptual models in pedogenesis:can soil forming factors be solved?[J]. Geoderma,1975,14:189 — 205.
    190. Yaalon D H. Climate, time and soil development. In:Wilding, L.P., Smeck, N.E.,Hall. G.F._Eds.., Pedogenesis and Soil Taxonomy:Ⅰ. Concepts and Interactions. Elsevier, Amsterdam,1983, pp.223-251.
    191. Zarin D J, Johnson A H. Base saturation, nutrient cation, and organic matter increases during early pedogenesis on landslide scars in the Luquillo Experimental Forest, Puerto RicofJ]. Geoderma,1995,65,317-330.
    192. Zhou L.P. Oldfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature, 1990,346,737-739.
    193. Zhu A X, Hudson B, Burt J, et al. Soil mapping using GIS, expert knowledge, and fuzzy logic[J], Soil Sci. Soc. Am. J.,2001.65,1463-1472.
    194. Zinn Y L, Lal R, Bigham J M, et al. Edaphic controls on soil organic carbon retention in the Brazilian Cerrado: texture and mineralogy[J]. Soil Sci. Soc. Am.J.,2007.71,1204-1214.
    195.陈留美.典型水耕人为土时间序列建立与演变特征研究[D].中国科学研究院南京土壤研究所,2009.
    196.陈述彭,童庆禧,郭华东等.高光谱分辨率遥感信息机理与地物识别[M].北京科学出版社,1998,139-231
    197.郝春明,何绪文.近1000年浙江慈溪地区表层土壤重金属元素演化过程[J].辽宁过程技术大学学,2010,29(3):482-485.
    198.胡恭任,于瑞莲.应用地累积指数法和富集因子法评价324国道塘头段两侧土壤的重金属污染[J].中国矿业,2008,17(4):47-51.
    199.姜月华,殷鸿福,王润华,等.湖州市土壤磁化率与重金属元素分规律及其相关研究[J].吉林大学学报(地球科学版),2005,35(5):653-666.
    200.肯布莱克,戴维L.埃尔德雷奇.以Excel为决策工具的商务与经济统计[M].张久琴,张玉梅,杨琳译.北京:机械工业出版社,1999:381-412.
    201.黄铿,朱诚,马春梅,等.苏北粱王城遗址黄泛层初步研究[J].地层学杂志,2009,33(4):389-406.
    202.黄明丽.苏南典型区土壤——作物系统重金属的时空分布及健康风险评价研究[D].南京大学博十学位论文,南京,2007.
    203.黄启厅,周炼清,史舟,等.FPXRF-—偏最小二乘法定量分析土壤中的铅含量[J].光谱学与光谱分析,2009,29(5):1434-1438.
    204.雷祥义.秦岭黄土的粒度分析及其成因初步探讨[J].地质学报,1998,72(2):178-188.
    205.李兰,朱诚,姜逢清等.连云港腾花落遗址消亡成研究[J].科学通报,2008,53(增刊Ⅰ):139-151.
    206.黎彤.化学元素的地球丰度[J].地球化学,1976,167-174.
    207.李徐生,杨达源,鹿化煜.镇江下蜀黄土粒度特征及其成因初探[J].海洋地质与第四纪地质,2000,21(1):25-31.
    208.李丽辉,王宝禄.云南省土壤As、Cd元素地球化学特征[J]物探与化探,2008,32(5):497-501.
    209.李进玲.上海滨海农业土壤重金属分布特征的解析与评价[D].上海交通大学,2009.
    210.李勇,周永章,窦磊,等.基于多元统计和傅立叶和谱分析的土壤重金属的来源解析及其风险评价[J].地学前缘,2010,17(4):253-261.
    211.李忠佩,李德成,张桃林,等.红壤水稻土肥力性状的演变特征[J].土壤学报,2003,40(6):870-878.
    212.廖富强.苏北沿海滩涂土壤性质和景观格局时空变化研究[D].南京大学博士学位论文,2008.
    213.林承坤.长江口及其邻近海域粘性泥沙的数量与输移[J].地理学报,1992,47(2):108-118.
    214.林留根,张文绪.黄淮地区藤花落、后大堂龙山文化遗址古稻的研究[J].东南文化,2005,1:15-19.
    215.林锡藩,等.江苏、近海1980-1981年表面水运动的基本趋势[J].海洋研究,1982,2:
    216.凌申.地名与历史时期江苏海岸变迁的相关研究[J].海洋科学,2002,26(1):26-29.
    217.刘东生.黄土、第四纪地质、全球变化(第二集)[M].北京:科学出版社,1991
    218.刘恩峰,沈吉,朱育新等.太湖表层沉积物重金属元素的来源分析湖泊科学[J].2004,16(2):113-119
    219.刘选,韩德亮,崔高嵩,等.黄海盆地西部下蜀黄土成因机制的新探索[J].海洋科学,2000,24(5):52-54.
    220.刘志岩,孙林,高蒙河.苏北海岸线变迁的考古地理研究[J].南方文物,2006(4):77-82.
    221.路远发,杨红梅,刷国华,等.杭州市土壤铅污染的铝同位素示踪研究[J].第四纪研究,2005,25(3):355-362.
    222.茅国芳,侯传庆,汪超俊,等.运用粒度分析判别平原地区成土母质类型[J].上海农业学报,1986,2(4)83-92.
    223.毛志刚,王国祥,刘金娥,等.盐城海滨湿地盐沼植被对土壤碳氮分布特征的影响[J].应用生态学报,2009,20(2):293-297.
    224.牟保磊.元素地球化学[M].北京大学出版社,北京,1999.
    225.南京大学地质系.地球化学[M].北京:科学出版社,1979.
    226.潘宏.江苏轻壤质滨海盐土潮土化过程盐渍性状变化[J].土壤通报,1992,23(3):104-107.
    227.潘宏,陈邦本,方明.江苏轻壤质滨海盐土向潮土演化过程中土壤有效养分的变化[J].江苏农业科学,1993,2:41-43.
    228.彭渤,唐晓燕,余昌训,等.湘江入湖河段沉积物重金属污染及其Pb同位素地球化学示踪[J].地质学报,2011,85(2):282-299.
    229.齐雁冰,黄标,顾志权,等.长江三角洲典型区农田土壤碳氮比值的演变趋势及其环境意义[J].矿物岩石地球化学通报,2008.27(1):50-56.
    230.任美锷,许延官,朱季文.江苏省海岸带和海涂资源综合调查(报告)[R].北京:海洋出版社,1986
    231.史威,朱诚,徐伟峰,等.重庆中坝遗址剖面磁化率异常与人类活动的关系[J].地理学报,2007,62(3): 257-267.
    232.孙东怀,安芷生,苏瑞侠,等.古环境中沉积物粒度组份分离的数学方法及其应用[J].自然科学进展,2001,11(3):269-176.
    233.孙东怀,鹿化煜,David Rea,等.中国黄土粒度的双峰分布及其古气候意义[J].沉积学报,2000,18(3):327-335.
    234.唐淑英,祝寿泉,单光希,等.苏北滨海盐渍土的形成与演化[J].土壤学报,1978,25(2):151-164.
    235.滕彦国,庹先国,倪师军,等.攀枝花矿区土壤重金属人为污染的富集因子分析[J].土壤与环境,2002,11(1):13-16.
    236.田庆久.江苏西溪贝丘遗址的高光谱遥感考古研究[J].遥感应用,2007,1:22-25.
    237.童庆禧.我国高光谱遥感的发展[N].中国测绘报,2008,4,13,003.
    238.王爱军,高抒,贾建军,等.江苏王港盐沼的现代沉积速率[J].地理学报,2005,60(1):61-70.
    239.王璐,蔺启忠,贾东,等.基于反射光谱预测土壤重金属元素含量的研究[J].遥感学报,2007,11(6):906-913.
    240.王学松,秦勇.徐州城市表层土壤中重金属环境风险测度与源解析[J].地球化学,2006,35(1):88-94.
    241.吴绍华.经济快速发展背景下土壤重金属累积过程模拟及风险预测[D].南京大学博士学位论文,2009.
    242.吴绍华,周生路,杨得志,等.宜兴市近郊土壤重金属米源与空间分布研究[J].科学通报,2008,53:162-170.
    243.吴玉卫,蔡祖仁.杭嘉湖平原土壤中孢粉和微体古生物反映的母质类型及古地理环境探讨[J].土壤学报,1996,33(2):158-165.
    244.吴昀昭.南京城郊农业土壤重金属污染的遥感地球化学基础研究[D].南京大学博士学位论文,2005.
    245.夏增禄,李森照.李廷芳等.土壤元素背景值及其研究方法.北京:气象版社,1997,314-325.
    246.肖玉仲,刘国贤,杜瑞芝,等.江苏灌河现代沉积速率的研究[J].海洋学报,1997,19(5):91-96.
    247.谢伯承.基于高光谱遥感不同发生层土壤的光谱信息的提取研究[D].西北农林科技大学硕士学位论文,2004.
    248.谢丽,张振克,从宁,等.长江北支口门圆陀角附近潮滩沉积物粒度记录及其对环境变化的响应[J].第四纪研究,2010,30(5):984-993.
    249.解宪丽,孙波,郝红涛.土壤可见光——近红外反射光谱与重金属含量之间的相关性.土壤学报),2007,44(6):982-993.
    250.修连存,郑志忠,俞正奎,等.近红外光谱分析技术在蚀变矿物鉴定中的应用[J].地质学报,2007,81(11):1584-1590.
    251.徐彬彬.土壤剖面的反射光谱研究[J].土壤,2000,32(6):281-287.
    252.许泉,芮雯奕,刘家龙,等.我国农田土壤碳氮耦合特征的区域差异[J].生态与农村环境学报,2006,22(3):57-60.
    253.许清海,李润兰,朱峰,等.华北平原冲积物孢粉沉积相研究[J].古地理学报,2001,3(2):55-63.
    254.杨用钊,李福春,曹志洪,等.昆山绰墩古土壤粒度特征及母质判别[J].土壤通报,2007,38(1):1-5.
    255.杨元根,刘从强,张国平,等.土壤和沉积物中重金属积累其Pb、S同位素示踪[J].地球与环境,2004,32(]):76-81.
    256.于文金,邹欣庆,朱大李.王港潮滩重金属Pb、Zn和Cu的积累特征[J].生态学报,2007,27(8):3162-3171.
    257.赵彦峰,郭恒亮,孙志英,等.基于土壤学知识的主成分分析判断土壤重金属来源[J].地理科学,2008,28(1):45-50.
    258.赵一阳.中国海大陆架沉积物地球化学的若干模式[J].地质学,1983,(4):307-314.
    259.张强,朱诚,姜逢清,等.重庆市巫山张家湾遗址2000年来的环境考古[J].地理学报,2001,56(6):353-360.
    260.张明书,李绍全,刘健.中国海岸带晚更新世风成沉积分区、序列特征及其气候—环境意义[J].第四纪研究, 1996,1.31-41.
    261.张芸,朱诚,丁世永.长江三峡大宁河流域3000年来的环境演变与人类活动[J].地理科学,2001,21(3):267-271.
    262.张芸,朱诚,张强.长江三峡大宁河流域的沉积环境与与古洪水研究[J].中国历史文物,2004,(2):83-88.
    263.赵其国.我国须走生态高值农业之路[N].科学时报,2010-09-06.
    264.郑光辉.江苏局部地区土壤属性高光谱定量估算研究[D].南京大学博十学位论文,南京,2010.
    265.郑晓丹,张东,张鹰,等.基于高光谱的潮间带表层沉积物粒度参数空间分布规律研究[J].海洋学报,2009,31(3):57-66.
    266.周萍.高光谱土壤信息的量化反演.中国地质大学(北京)博士学位论文),2006.
    267.朱诚,程鹏,卢春成,等.长江三角洲及苏北沿海地区7000 年以来海岸线演变规律分析[J].地理科学,1996,16(3):207-213.
    268.朱登胜,吴迪,宋海燕,等.应用近红外光谱法测定土壤的有机质和pH值[J].农业工程学报,2008,24(6):196-199.
    269.朱日祥,李春景,吴汉宁,等.中国黄土磁学性质与古气候意义[J].中国科学(B),1994,24:992-997.
    270.张甘霖,朱永官,傅伯杰.城市土壤质量演变及其生态环境效应[J].生态学报,2003,23(3):539-546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700