地基地震液化问题的无网格相关方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砂土液化现象作为地震灾害的一种主要形式,常常会引起建筑物基础的不均匀沉降及土工构造物的破坏,给人类带来巨大的灾难。液化引起的大变形是强震中饱和砂土地基破坏的主要形式,定量地预测实际边值问题中液化引起的变形具有重要的工程价值。近年来,有限元方法已经广泛地应用于岩土工程问题,但是有限元方法的模拟结果依赖于网格质量,并且往往由于液化过程空间分布的不均匀性而引起局部单元严重扭曲,使得有限元计算无法正常运行。无网格法是通过一组离散的点来构造逼近函数,不需要节点间的连接信息,因而能够克服因网格扭曲而造成的计算中断,适合于易发生大变形的液化问题的数值模拟,本文的研究内容主要围绕无网格法在液化分析方面的应用,共分为三个方面:
     1.将无网格法应用于液化问题的数值模拟,通过算例验证了无网格法能够克服有限元方法在液化模拟中由于大变形造成网格扭曲而引起的计算中断。同时,作为一种数值近似计算方法,无网格法的计算误差是不可避免的,因此引入自适应方法。本研究的自适应方法采用TB应力平滑技术和Z-Z误差估计,利用平滑应力和无网格法所得应力解差值的能量范数来估算误差,如果局部相对误差超过了允许误差,则在高误差域插入新的离散点进行加密。材料参数由加密点直接传递给新增节点,应力、应变等变量以插值的方式传递,下一步计算以新的节点布局为基础。通过对一上表面承受均布荷载作用的饱和土块进行数值模拟,验证了自适应程序能够有效的改善计算精度。选取了建筑在饱和砂土地基上的填筑坝作为算例进行地震反应分析,该算例也可采用有限元方法完成,以此来验证无网格法应用的有效性。通过将采用自适应方法分析的结果与疏松和精细节点布置方案的无网格法分析结果对比,既验证了自适应过程的有效性,又获得了填筑坝的地震响应规律。
     2.无网格法在大变形模拟方面存在着诸多的优势,但也有计算时间长的缺点。将有限元与无网格法耦合起来,则可以很好地将这两种离散方法的优点组合在一起,充分发挥各自的优势。即根据经验在容易发生网格扭曲的部位使用无网格法离散,不易发生扭曲的区域使用有限元法离散。在交界区域引入过渡单元,按照Belytschko等人的方法构造过渡单元的位移和孔隙水压力近似函数,把两种方法耦合到一起。通过对可液化边坡模型的数值模拟,验证了该方法比单纯的无网格方法节约计算时间,并能够达到合理的精度。并采用该方法对边坡模型进行了参数分析。
     3.分析可液化砂土地基上结构的动力响应,需要考虑土—结构相互作用。有限元方法在相互作用分析方面已经很成熟,但涉及到无网格法的相互作用分析还很少见。通过编制程序,将易液化产生大变形的饱和砂土地基采用无网格法进行离散,将结构采用有限元法来离散,在地基土与结构接触处采用无厚度的摩擦接触单元过渡,实现了土—结构相互作用的无网格—有限元接触耦合算法。通过桩—土相互作用分析验证了所编制程序的可靠性,而后,又对沉箱模型进行了数值模拟,得到了沉箱的动力响应规律,并进行了影响因素分析。
As a major form of earthquake disaster, liquefaction of sandy soil often causes uneven subsidence of building foundation and destruction of structure, which bring tremendous damage to the humanity. Large deformation caused by liquefaction is a main phenomenon of saturated sandy soil disruption under seismic excitation; it has an important engineering value to predict the deformation quantitatively of the actual boundary problem. In recent years, finite element method (FEM) has been widely used in geotechnical engineering problems. But the results simulated by FEM strongly depend on mesh quality, and it may not be able to complete calculation normally because of serious mesh distortion caused by non-uniformity spatial distribution of liquefaction process. Meshless method constructs the approximation functions by a set of discrete points; it does not require inter-node connection information, thus it can overcome the calculation interruption caused by mesh distortion, and it is suitable for large deformation simulation of liquefaction. This research is focused on the application of meshless method on liquefiable analysis, the main investigations consist of the following three portions:
     1. Meshless method is applied to numerical simulation of liquefaction problem, then the merits that meshless method can overcome calculation interruption caused by mesh distortion when using FEM are verified. Meanwhile, as a numerical approximation method, calculation error of meshless method is inevitable, so the adaptive process is programmed. The adaptive program is calculated by T-B stress recovery scheme and z-z error estimation, the error is estimated by energy norm of difference of recovery stress and meshless stress. If the local relative error exceeds the limit relative error, then new nodes will be generated at the high error area. The material parameters of the refined node are transferred to the newly added nodes, and the variables of the new nodes are interpolated from the values of the old nodes. Next calculation step is based on the new node discretization. By numerical simulation of a saturated soil block that suffering uniformly distributed load on the surface, the verification that the adaptive process can improve accuracy is done. Seismic response analysis of an embankment constructed on saturated sandy foundation is carried out, by comparison the results with those of FEM and Centrifuge test, the effectiveness of EFGM is proved. Then, by comparison the results obtained by adaptive method with those obtained by coarse and fine nodal discretization, the effectiveness of the adaptive process is verified and the response rule of the embankment is shown.
     2. There are many advantages of meshless method in simulating large deformation, but there are also shortcomings in calculation time. FEM is coupled with meshless method, then, the coupled method can combine the advantages of the two methods and give full play to their advantages. It means that in the position prone to mesh distortion meshless method is used, in other regions FEM is used. In the interface region, transition elements are conducted, by constructing approximation functions of displacement and pore water pressure, the two methods are coupled together. By numerical modeling of liquefiable slope, it is validated that the coupled method can save computing time than the simple meshless method, and be able to achieve a reasonable accuracy. Then, parameter analysis is made to the slope model using the coupled method.
     3. Analyzing the dynamic response of the structure constructed on liquefiable sand foundation, it is needed to consider soil-structure interaction. It is already very mature for FEM to analyzing interaction analysis, but it is still rare for meshless method when involving interaction analysis. Through programming Fortran procedure, saturated sand foundation which is easy to have a large deformation when liquefaction is discretized by meshless method; structure is discretized by FEM, then, the contact region between foundation and structure is modeled by non-thickness frictional contact elements, the meshless-finite element coupled contact algorithm for soil-structure interaction is implemented. The reliability of programming is verified through pile-soil interaction analysis, and then, the caisson model is simulated by the method obtaining the law of dynamic response, influence factors analysis is also made.
引文
[1]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [2]《工程地质手册》编委会.工程地质手册(第四版)[M].北京:中国建筑工业出版社,1990.
    [3]庄之敬.可液化土的地震液化试验及数值模拟研究[D].上海:同济大学硕士学位论文,2008.
    [4]Seed H B,Leek L.Liquefaction of saturation during cyclic loading[J].Journal of the Soil Mechanics and Foundation Division,ASCE,1966,92(SM6):105-134.
    [5]谢定义.饱和砂土体液化的若干问题[J].岩土工程学报,1992,14(3):90-98.
    [6]Seed H B,Idriss I M,Arango I.Evaluation of liquefaction potential using field performance data[J].Journal of the Geotechnical Engineering Division,ASCE,1983,109(GT3):458-482.
    [7]天津大学土力学课件
    [8]黄文熙.水工建设中的结构力学与岩土力学问题[M].北京:水利电力出版社,1984,252-256.
    [9]汪闻韶.饱和砂土振动孔隙水压力试验研究[J].水利学报,1962,2:36-47.
    [10]谢定义,巫志辉.不规则动荷脉冲波对砂土液化特性的影响[J].岩土工程学报,1987,9(4):1-12.
    [11]王锺琦.地震液化的宏观研究[J].岩土工程学报,1995,4(3):1-10.
    [12]张克绪,谢君裴.土动力学[M].北京:地震出版社,1989.
    [13]徐志英,沈珠江.土坝地震孔隙水压力产生、扩散和消散的有限单元法动力分析[J].华东水利学院学报,1981,9(4):1-16.
    [14]吴世明,徐攸在.土动力学现状与发展[J].岩土工程学报,1998,20(3):125-131.
    [15]汪闻韶.土的动力强度和液化特性[M].北京:中国水利电力出版社,1997.
    [16]沈珠江.理论土力学[M].北京:中国水利电力出版社,1999,9-80.
    [17]鲁晓兵,谈庆明,王淑云,等.饱和砂土液化研究新进展[J].力学进展,2004,34(1):87-96.
    [18]Seed H B,Idriss I M.A simplified procedure for evaluation soil liquefaction potential[J].Journal of the Geotechnical Engineering Division,ASCE,1971,97(2):201-255.
    [19]Finn W D L,Lee K W,Martin G R.An effective stress model for liquefaction[J].Journal of the Geotechnical Engineering Division,ASCE,1977,103(6):517-533.
    [20]Dealba P,Seed H B,Chan C K.Sand liquefaction in large-scale simple shear tests [J].Journal of the Geotechnical Engineering Division,ASCE,1976,102(9):909-928.
    [21]Ishihara K,Iwamoto S等.各向不等压固结砂的液化[C].砂土振动液化译文集,华东水利学院,1977,82-86.
    [22]Seed H B.Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes[J].Journal of the Geotechnical Engineering Division,ASCE,1979,105(2):201-255.
    [23]Finn W D L.Liquefaction potential:developments since 1976[C].Proc International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics,St Louis,Missouri 1981,655-681.
    [24]Iwasaki T.Soil liquefaction studies in Japan:tate-of-the-art[J].Soil Dynamics and Earthquake Engineering,1986,5(1):2-68.
    [25]Sekiguchi H,Phillips R.Generation of water waves in a drum centrifuge[R].In:Ko,ed.Centrifuge 91.Balkema,Rotterdam,1991,343-350.
    [26]Scott R S,Richard H L,Mary E H.The influence of high confining stress on the cyclic behavior of saturated sand[J].Soil Dynamics and Liquefaction,ASCE,2000,35-58.
    [27]Zeghal M,Elgamal A W,Xiangwu Z et al.Mechanism of liquefaction response in sand-silt dynamic centrifuge tests[J].Soil Dynamics and Earthquake Engineering,1999,18(1):71-85.
    [28]Wilson D W.Observed seismic lateral resistance of liquefying sand[J].Journal of Geotechnical and Geo-environmental Engineering,2000,126(10):898-906.
    [29]Liu L,Dobry R.Effect of liquefaction on lateral response of piles by centrifuge model tests[J].National Center for Earthquake Engineering Research,Bulletin,2000,9(1):7-11.
    [30]汪明武,Susumu I,Testuo T.液化场地堤坝地震响应动态土工离心试验及模拟[J].水利学报,2008,39(12):1346-1352.
    [31]苏栋,李相菘.可液化土中单桩地震响应的离心机试验研究[J].岩土工程学报,2006,28(4):423-427.
    [32]Kagawa T,Minowa C,Mizuno H et al.Shaking table tests on piles in liquefying sand[C],Proc.5 U.S.Natl.Conf.Earthquake Eng,Chicago,4:107-116.
    [33]Towhata I,Vargas-Monge W,Orense R P et al.Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil[J].Soil Dynamics and Earthquake Engineering,1999,18:347-361.
    [34]陈文化.有建筑物存在的饱和砂土地基液化振动台模拟试验研究[J].地震工程与工程振动,1998,18(4):54-60.
    [35]陈跃庆,吕西林,侯建国,等.有建筑物存在的软土地基液化模拟地震振动台试验研究[J].武汉大学学报(工学版):2003,36(1):59-64.
    [36]凌贤长,郭明珠,王东升,等.液化场地桩基桥梁震害响应大型振动台模型试验研究[J].岩土力学,2006,27(1):7-11.
    [37]孟上九,刘汉龙,袁晓铭,等.可液化地基上建筑物不均匀震陷机制的振动台试验研究[J].岩石力学与工程学报,2005,24(11):1978-1985.
    [38]冯士伦,王建华,郭金童.液化土层中桩基抗震性能振动台试验研究[J].土木工程学报,2005,38(7):92-95.
    [39]黄春霞,张鸿儒,隋志龙,等.饱和砂土地基液化特性振动台试验研究[J].岩土工程学报,2006,28(12):2098-2103.
    [40]李培振,任红梅,吕西林,等.液化地基自由场振动台模型试验研究[J].地震工程与工程振动,2008,28(2):171-178.
    [41]景立平,姚运生,郑志华.饱和粉土液化特性的大型振动台模型试验研究[J].地震工程与工程振动,2007,27(6):160-165.
    [42]刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性试验研究[J].岩土工程学报,2002,24(2):142-146.
    [43]杨振茂,赵成刚,王兰民.饱和黄土液化的试验研究[J].岩石力学与工程学报,2005,24(5):864-871.
    [44]Finn W D L,Byrne P M,Martin G R.Seismic response and liquefaction of sands[J].Journal of the Geotechnical Engineering Division,ASCE,1976,102(8):841-857.
    [45]沈珠江.砂土动力液化变形的有效应力分析方法[J].水利水运科学研究,1982,4:22-32.
    [46]Liou C P,Streeter V.The numerical model of liquefaction[J].Journal of the Geotechnical Engineering Division,ASCE,1977,103(4):589-606.
    [47]Prevost J H.Wave propagation in fluid-saturated porous media:an efficient finite element procedure[J].Soil Dynamics and Earthquake Engineering,1985,4(4):183-197.
    [48]Troncoso J H.Critical state of tailing silty sands for earthquake loadings[J].Soil Dynamics and Earthquake Engineering,1986,5(3):248-252.
    [49]Yiagos A N,Preovost J H.Two-phase elasto-plastic seismic response of earth dams:applications[J].Soil Dynamics and Earthquake Engineering,1991,10(7):371-381.
    [50]徐志英,沈珠江.高尾矿坝地震液化与稳定分析[J].岩土工程学报,1981,3(4):22-32.
    [51]孙锐,袁晓铭,石兆吉.地震液化的有效应力二维有限元分析方法[J].世界地震工程,1998,14(1):21-27.
    [52]陈国兴,谢君斐,韩炜,等.土体地震反应分析的简化有效应力法[J].地震工程与工程振动,1995,15(2):52-61.
    [53]王嫒,姜朴,朱俊高,等.松粉砂地基地震后堤坝稳定性分析[J].水利学报,2000,11:60-69.
    [54]邵生俊,小崎启介,福井卓雄.砂土堤基的动力反应计算与模型试验[J].水利学报,2002,4:28-32.
    [55]刘华北,宋二祥.可液化土中地铁结构的地震响应[J].岩土力学,2005,26(3):381-386.
    [56]Zienkiewicz O C,Chang C T.Effective stress dynamic modeling for soil structures including drainage and liquefaction[R].International Symposium on Soils Under Cyclic and Transient Loading,1980,551-554.
    [57]Zienkiewicz O C,Taylor R L.Coupled problems-a simple time-stepping procedure [J].Communications in Applied Numerical Methods,1985,1:233-239.
    [58]Oka F,Adachi T.Two-dimensional effective stress liquefaction analysis of layered sand deposits[C].Proc.8th WCEE,1984,3111-118.
    [59]Oka F,Yashima A,Kato M,et al.A constitutive model for sand based on non-linear kinematic hardening rule and its application[C],Proc.10~(th) World Conference on Earthquake Engineering,1992,5:2529-2534.
    [60]黄雨,八嶋厚,张锋.液化场地桩一土一结构动力相互作用的有限元分析[J].岩土工程学报,2005,27(6):646-651.
    [61]李亮,杜修力,赵成刚,等.基于显示有限元方法的两相多孔介质地震反应研究[J].应用力学学报,2007,24(4):550-553.
    [62]沈珠江.复杂荷载下砂土液化变形的结构性模型[C].第五届全国土动力学学术会议论文集,大连理工大学出版社,1998,1-10.
    [63]沈珠江.砂土液化分析的散粒体模型[J].岩土工程学报,1999,21(6):742-748.
    [64]史宏彦.无粘性土的应力矢量本构模型[D].西安:西安理工大学,2000.
    [65]刘汉龙,丰土根,高玉峰,等.砂土多机构边界面模型及其试验验证[J].岩土力学,2003,24(5):696-700.
    [66]张建民,罗刚.考虑可逆与不可逆剪胀的粗粒土动本构模型[J].岩土工程学报,2005,27(2):178-184.
    [67]张建民,王刚.砂土液化后大变形的机理[J].岩土工程学报,2006,28(7):835-840.
    [68]王刚,张建民.砂土液化大变形的弹塑性循环本构模型[J].岩土工程学报,2007,29(1):51-59.
    [69]王刚,张建民.砂土液化变形的数值模拟[J].岩土工程学报,2007,29(3):403-409.
    [70]赵成刚,杜修力,崔杰.固体、流体多相孔隙介质中的波动理论及其数值模拟的进展[J].力学进展,1998,28(1):83-92.
    [71]陈少林,廖振鹏.两相介质动力学问题的研究进展[J].地震工程与工程振动,2002,22(2):1-8.
    [72]Lucy L B.A numerical approach to the testing of the fission hypothesis[J].The Astron.J.,1977,8(12):1013-1024.
    [73]Gingold R A,Monaghan J J.Smoothed particle hydrodynamics:theory and application to non-spherical stars[J].Mon.Not.Roy.Astrou.Soc.,1977,18:375-389.
    [74]Swegle J W,Hicks D L,Attaway S W.Smoothed particle hydrodynamics stability analysis[J].J.Comput.Phys.,1995,116:123-134.
    [75] Dyka CT. Addressing tension instability in SPH methods [R]. Technical Report NRL/MR/6384, 1994.
    [76] Chen J K, Beraun J E, Jih C J. An improvement for tensile instability in smoothed particle hydrodynamics [J]. Comput. Mech., 1999,23:279-287.
    [77] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements [J]. Comput. Mech., 1992,10:307-318.
    [78] Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods [J]. Math. Comput., 1981,37:14-158.
    [79] Belytschko T, LuYY, Gu L. Element free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1994,37:229-256.
    [80] Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method [J]. Computer Method in Applied Mechanics and Engineering, 1996,139:49-74.
    [81] Chen J S, Wu C T, Yoon S et al. A stabilized conforming nodal integration for Galerkin mesh-free methods [J]. International Journal for Numerical Methods in Engineering, 2001,50:435-466.
    [82] Chen J S, Yoon S, Wu C T. Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods [J]. International Journal for Numerical Methods in Engineering, 2002,53:2587-2615.
    [83] Smolinski P, Palmer T. Procedures for multi-time step integration of element-free Galerkin method for diffusion problems [J]. Comput. Struct., 2000,77:171-183.
    [84] Chung H J, Belytschko T. An error estimate in the EFG method [J]. Comput. Mech., 1998,21:91-100.
    [85] Gavete L, Falcon S, Ruiz A. An error indicator for the element free Galerkin method [J]. Eur. J. Mech. A/Solids, 2001,20:327-341.
    [86] Gavete L, Gavete M L, Alonso B, et al. A posteriori error approximation in EFG method [J]. International Journal for Numerical Methods in Engineering, 2003, 58(15):2239-2263.
    [87] Krysl P, Belytschko T. Element-free Galerkin method convergence of the continuous and discontinuous shape functions [J]. Computer Methods in Applied Mechanics and Engineering, 1997,148:257-277.
    [88] Lee S H, Boon Y C. An improved crack analysis technique by element-free Galerkin method with auxiliary supports [J]. International Journal for Numerical Methods in Engineering, 2003,56:1291-1314.
    [89] Kanok N W, Barry W, Saran Y K. On elimination of shear locking in the element-free Galerkin method [J]. International Journal for Numerical Methods in Engineering, 2001,52:705-725.
    [90]杨玉英,李晶.无网格galerkin方法中权函数的研究[J].塑性工程学报,2005,12(4):4-9.
    [91]Zhu T,Atluri S N.A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method [J].Comput.Mech.,1998,21:211-222.
    [92]Zhang X,Liu X,Lu M W,et al.Imposition of essential boundary conditions by displacement constraint equations in meshless methods[J].Commun.Numer.Meth.Engng.,2001,17:165-178.
    [93]赵光明,宋顺成.无网格边界条件实现方法的研究进展[J].科技通报,2005,21(6):644-650.
    [94]Han W M,Wagner G J,Liu W K.Convergence analysis of hierarchical enrichment of dirichlet boundary conditions in a mesh-free method[J].Int.J.Numer.Methods Engrg.,2002,53:1323-1336.
    [95]Chert J S,Wang H P.New boundary condition treatments in meshfree computation of contact problems[J].Comput.Methods Appl.Mech.Engrg.,2000,187:441-468.
    [96]Belytschko T,Krongauz Y,Fleming M et al.Smoothing and accelerated computations in the element free Galerkin method[J].Journal of Computational and Applied Mathematics,1996,74:111-126.
    [97]Belytschko T,Fleming M.Smoothing enrichment and contact in the element-free Galerkin method[J].Computers and Structures,1999,71:173-195.
    [98]Liu W K,Jun S,Zhang Y F.Reproducing kernel particle methods[J].International Journal for Numerical Methods in Fluids,1995,20:1081-1106.
    [99]Liu W K,Chen Y,Jun S.Overview and applications of the reproducing kernel particle methods[J].Archives of Computational Methods in Engineering,1996,3(1):3-80.
    [100]Liu W K,Chen Y,Chang CT.Advances in multiple scale kernel particle methods [J].Comput.Mech.,1996,18:73-111.
    [101]Liu W K,Chert Y,Aziz U R.Generalized multiple scale reproducing kernel particle methods[J].Computer Methods in Applied Mechanics and Engineering,1996,139:91-157.
    [102]Sukumar N,Moran B,Belytschko T.The natural elements method in solid mechanics [J].International Journal for Numerical Methods in Engineering,1998,43:839-887.
    [103]Sukumar N,Moran B,Semenov A Y,et al.Natural Neighbor Galerkin methods[J].International Journal for Numerical Methods in Engineering,2001,50:1-27.
    [104]Onate E,Idelsohn S,Zienkiewicz O C.A finite point method in computational mechanics:Applications to convective transport and fluid flow[J].International Journal for Numerical Methods in Engineering,1996,39:3839-3866.
    [105]Babuska I,Melenk J M.The partition of unity methods[J].International Journal for Numerical Methods in Engineering,1997,40:727-758.
    [106]Duarte C h,Babuska I,Oden J T.Generalized finite element methods for three dimensional structural mechanics problems[J].Comput.Struct.,2000,77:215-232.
    [107]Duarte C h,Oden J T.Hp clouds:A h-p meshless method[J].Numerical Methods for Partial Differential Equations,1996,12:673-705.
    [108]Atluri S N,Zhu T.h new Meshless Local Petrov-Galerkin(MLPG) approach in computational mechanics[J].Comput.Mech.,1998,22:117-127.
    [109]Zhu T,Zhang J,htluri S N.A meshless Local Boundary Integral Equation(LBIE)method for solving nonlinear problems[J].Comput.Mech.,1998,22:174-186.
    [110]Wendland H.Meshless Galerkin method using radial basis functions[J].Math.Comput.,1999,68:1521-1531.
    [111]Zhang X,Song K Z,Lu M W.Mehsless methods based on collocation with radial basis function[J].Comput.Mech.,2000,26:333-343.
    [112]Boner J,Kulasegaram S.Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations[J].International Journal for Numerical Methods in Engineering,2000,47:1189-1214.
    [113]Zhang X,Liu X H,Song K Z.Least-square collocation meshless method[J].International Journal for Numerical Methods in Engineering,2001,51:1089-1100.
    [114]张雄,胡炜,潘小飞.加权最小二乘无网格法[J].力学学报,2003,35:425-431.
    [115]Liu G R,Gu Y T.A point interpolation method for two-dimensional solids[J].International Journal for Numerical Methods in Engineering,2001,50:937-951.
    [116]Idelsohn S R,Onate E,Calvo N,et al.The meshless finite element method[J].International Journal for Numerical Methods in Engineering,2003,58:893-912.
    [117]Liu W K,Ran W M,Lu H S,et al.Reproducing kernel element method.Part ⅰ:Theoretical formulation[J].Computer Methods in Applied Mechanics and Engineering,2004,193:933-951.
    [118]孙海涛,王元汉.基于节点计算的自适应数值积分及其程序实现[J].岩土力学,2007,28(5):995-1000.
    [119]Li S F,Liu W K.Meshfree particle methods[M].Berlin:Springer,2004.
    [120]Griebel M,Marc A.Meshfree methods for partial differential equations ⅱ[M].Berlin:Springer,2005.
    [121]张雄,刘岩.无网格法[M].北京:清华大学出版社,2004.
    [122]刘更,刘天祥,谢琴.无网格法及其应用[M].西安:西北工业大学出版社,2005.
    [123]Zienkiewicz O C,Zhu J Z.A simple error estimator and adaptive procedure for practical engineeringanalysis[J].Int J Numer Methods Engrg,1987,24:337-357.
    [124]Ainsworth M,Zhu J Z,Craig A W,et al.Analysis of the Zienkiewicz-Zhu a posteriori error estimator in the finite element method[J].Int J Numer Methods Engrg,1989,28:2161-2174.
    [125]Oden J T,Duarte C A M,Zienkiewicz O C.A Hp adaptive method using clouds[J].Comput Methods Appl Mech Engrg,1998,153(2):117-126.
    [126]Chung H J,Belytschko T.An error estimate in the EFG method[J].Comp.Mech,1998,21:1-100.
    [127]Rossi R,Alves M K.Recovery based error estimation and adaptivity applied to a modified element-free Galerkin method[J].Comp.Mech,2004,33(3):194-205.
    [128]Gavete L,Falcon S,Ruiz A.An error indicator for the element free Galerkin method [J].Eur.J.Mech,A/Solids,2001,20:327-341.
    [129]刘欣,朱德懋,陆明万,等.平面裂纹问题的h,p,hp型自适应无网格方法的研究[J].力学学报,2000,32(3):308-318.
    [130]刘欣,朱德懋,陆明万,等.基于流形覆盖思想的无网格方法的研究[J].计算力学学报,2001,18(1):21-27.
    [131]冯亭.固体力学中的自适应无网格方法计算[D].杭州:浙江大学,2007.
    [132]张征,刘更,刘天祥.自适应无网格伽辽金方法的研究[J].机械科学与技术,2008,27(8):8400-8404.
    [133]张征,刘更,刘天祥,等.自适应无网格方法在弹塑性接触中的应用[J].西北工业大学学报,2008,26(2):265-270.
    [134]Belytschko T,Organ D.A coupled finite element-element free Galerkin method[J].Comput.Mech.,1995,17:186-195.
    [135]nuerta A,Mendez S F.Enrichment and coupling of the finite element and meshless methods[J].International Journal for Numerical Methods in Engineering,2000,48:1615-1636.
    [136]李九红.复变量无网格方法及其应用研究[D].西安:西安理工大学博士论文,2004.
    [137]赵光明,宋顺成.无网格Galerkin法与有限元耦合新算法[J].应用数学和力学,2005,26(8):899-904.
    [138]贾亮,黄其青,殷之平.无网格—有限元直接耦合法[J].西北工业大学学报,2007,25(3):337-341.
    [139]杨海天,刘岩.一种FEM-EFGM耦合技术及其应用[J].计算力学学报,2003,20(5):511-517.
    [140]张延军,肖树芳.无单元法(EFGM)——在岩土工程上有限元法的有力补充[J].计算力学学报,2003,20(2):179-183.
    [141]蔡永昌,朱合华.岩土工程数值计算中的无网格方法及其全自动布点技术[J].岩土力学,2003,24(1):21-24.
    [142]王志亮,徐庆华.无网格法在静载下土体二维固结问题中的应用[J].岩土工程学报,2004,26(1):152-154.
    [143]王东东.边坡大变形损伤破坏的高效无网格模拟[J].岩土力学,2007,28(增):348-353.
    [144]赵明华,汪优,黄靓.水平受荷桩的非线性无网格法分析[J].岩土工程学报,2007,29(6):907-912.
    [145]李树忱,李术才,隋斌,等.岩体渗流分析的无网格方法[J].岩土力学,2008,29(1):256-260.
    [146]李凌,王东东.饱和土体中稳态渗流的高效无网格分析[J].华侨大学学报,2008,29(1):48-s1
    [147]Murakami A,Arimoto S,Setsuyasu T,et al.Mesh-free method for predicting the behavior of saturated soil[J].Geomechanics,2003,664-672.
    [148]MatsumaruT,Sato T.Mesh free analysis of liquefaction and ground flow phenomenon [C].The Third KU-KAIST-NTU Student Seminar on Civil Engineering Research,2004,2:154-161.
    [149]唐小微,佐藤忠信,栾茂田,等.三维无网格数值方法及其在地震液化分析中的应用[C].第七届全国土动力学学术会议论文集,北京:清华大学出版社,2008,487-492.
    [150]刘惠珊,徐风萍,李鹏程.液化引起的地面大位移对工程的影响及研究现状[J].工程抗震,1997,(2):21-26.
    [151]高玉峰,刘汉龙,朱伟.地震液化引起的地面大位移研究进展[J].岩土力学,2000,21(3):294-298.
    [152]Biot M A.Theory of propagation of elastic waves in a fluid saturated porous solid [J].J.Acust.Soc.Am,1956,28(2):168-191.
    [153]Akai K,Tamura T.Numerical analysis of multi-dimensional consolidation accompanied with elaso-plastic constitutive equation[C].Proc Jpn Soc Civ Eng,1978,269:98-104.
    [154]Oka F,Yashima A,Shibata T,et al.FEM-FDM coupled liquefaction analysis of a porous soil using an elasic-plastic model[J].Applied Scientific Research,1994,52:209-245.
    [155]Di Y,Sato T.Liquefaction analysis of saturated soils taking into account wariation in porosity and permeability with large deformation[J].Computers and Geotechnics,2003,30:623-635.
    [156]Di Y,Sato T.A practical numerical method for large strain liquefaction analysis of saturated soil[J].Soil Dynamics and Earthquake engineering,2004,24(3):251-260.
    [157]Oka F,Yashima A,Shibata T,et al.FEM-FDM coupled liquefaction analysis of porous soil using an elasto-plastic model[J].Applied Scientific Research,1994,52: 209-245.
    [158]Oka F,Yashima A,Tateishi A,et al.A cyclic elastic-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus[J].Geotechnique,1999,49:661-80.
    [159]Matsuo O,Shimazu T,Uzuoka R,et al.Numerical analysis of seismic behavior of embankments founded on liquefiable soils[J].Soils Found,2000,40:21-39.
    [160]Xiaowei Tang.Nonlinear numerical methods to analyze ground flow and soil-pile interaction in liquefiable soil[D].Kyoto:Kyoto University,2004.
    [161]Uzuoka R.Analytical Study on the mechanical behavior and prediction of soil liquefaction and flow[D].Kyoto:Kyoto University,2000.
    [162]张锋,叶冠林.计算土力学[M].北京:人民交通出版社,2007.
    [163]Chen W F,Mizuno E.Nonlinear analysis in soil mechanics[M].New York:Elsevier Science,1990.
    [164]Tang X,Sato T.Effects of multi-directional input motion to responses of pile in liquefiable soils[C].Proceedings of the 37~(th) National Conference of Japanese Geotechnical Society(CD-ROM),2002.
    [165]Sato T,Matsumaru T.Liquefaction and ground flow analysis using the element free Galerkin method[C].Proceedings of KKCNN Symposium on Civil Engineering,2003.
    [166]Cordes L W,Moran B.Treatment of material discontinuity in the element-free Galerkin method[J].Comput.Methods Appl.Mech.Engrg.,1996,139:75-89.
    [167]李超.无网格-有限元法耦合理论的研究及其应用[D].西安:西安理工大学,2008.
    [168]张琰,王建国,张丙印.径向基点插值无网格法与有限元耦合法[J].清华大学学报,2008,48(6):951-954.
    [169]MatsumaruT,Sato T.Mesh free analysis of liquefaction and ground flow phenomenon Ⅱ[C].The third KU-KAIST-NTU student seminar on civil engineering research,2004,(2):25-28.
    [170]徐艳杰,张楚汉,金峰.非线性拱坝-地基动力相互作用的FE-BE-IBE模型[J].清华大学学报,1998,30(11):99-103.
    [171]邱流潮,刘桦,金峰.二维土-结构地震动力相互作用时域有限元分析[J].工程力学,2006,23(9):114-119.
    [172]姜忻良,杨书燕.结构-基础-土-河流相互作用地震反应分析[J].地震工程与工程振动,2006,26(2):138-142.
    [173]郑刚,高喜峰,任彦华,等.承台(基础)-桩-土不同构造形式下的相互作用研究[J].岩土工程学报,2004,26(3):307-312.
    [174]祝振宇,王元战,李越松,等.高桩码头-岸坡相互作用有限元数值模拟[J].2006,2:1-4.
    [175]Goodman R F,Taylor R L,Brekke T L.A Model for the Mechanics of Jointed Rock [J].Journ soil Mech&Fond Div,ASCE,1968,94(SM3):637-660.
    [176]龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,1999.
    [177]张建民.水平地基液化后大变形对桩基础的影响[J].建筑结构学报,2001,26(5):75-77.
    [178]黄群贤,林建华.液化侧扩地基中桩基的有限元分析[J].华侨大学学报,2004,25(3):328-330.
    [179]胡春林,杨小卫.砂土液化场地桩基地震反应分析[J].振动与冲击,2007,26(2):133-137.
    [180]Dungca J R,Kuwano J,Takahashi A,et al.Shaking table tests on the lateral response of a pile buried in liquefied sand[J].Soil Dynamics and Earthquake Engineering,2006,26:287-295.
    [181]Liyanapathirana D S,Poulos H G.Seismic Lateral Response of Piles in Liquefying Soil[J].Journal of Geotechnical and Geoenvironmental Engineering,2005,12:1466-1479.
    [182]Miwa S,Ikeda T,Sato T.Damage process of pile foundation in liquefied ground during strong ground motion[J].Soil Dynamics and Earthquake Engineering,2006,26:325-336.
    [183]C.W.Lu,Oka F,Zhang F.Analysis of soil-pile-structure interaction in a two-layer ground during earthquakes considering liquefaction[J].International Journal for Numerical and analytical methods in Geomechanics,2007,10:646-676.
    [184]#12
    [185]運輸省港湾技術研究所.1993年釧洛冲地震港湾施設被害报告[R].港湾技研資料,1993.
    [186]刘汉龙,井合进,一井康二.大型沉箱式码头岸壁地震反应分析[J].岩土工程学报,1998,20(2):26-30.
    [187]蔡晓光,袁晓铭,刘汉龙,等.近岸水平场地液化侧向大变形影响因素分析[J].世界地震工程,2007,23(2):20-25.
    [188]周正华,周雍年,卢滔,等.竖向地震动特征研究[J].地震工程与工程振动,2003,23(3):25-29.
    [189]王刚.砂土液化后大变形的物理机制与本构模型研究[D].北京:清华大学,2005.
    [190]赵剑明,汪闻韶,张崇文.土石坝振动孔压影响因素的研究[J].水利学报,2000,(5):54-59.
    [191]松尾修,罔村未对,村田修一.法先固化改良イニすゐ盛土の耐震对策效果的遠心模型實驗報告書.土木研究所資料,2000,(3688).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700