蒎烷—α-蒎烯—长叶烯体系汽液平衡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用液相和汽相冷凝双循环实验方法、单纯型搜索优化模型参数的数据处理方法研究了松节油加氢反应产物—蒎烷—α-蒎烯—长叶烯体系的汽液平衡,建立其相平衡数学模型,为氢化松节油体系的精馏分离过程开发提供理论依据和基础数据。本文工作主要包括以下内容:
     以Raney镍为催化剂,在温度353~433K、压力3.0~7.0MPa的条件下由α-蒎烯催化加氢制备实验原料蒎烷,并用GC—MS法对加氢产物进行定性定量分析,结果表明蒎烷浓度高达99.5%,从而解决了市场上买不到高纯度蒎烷的难题。
     使用BP×5化学结合相熔凝硅石英毛细管柱(30m×0.32m×0.25μm)对氢化松节油进行气相色谱分析,确定其色谱条件为:二阶程序升温338K 363K 423K(5min),载气:氮气,柱前压:0.07MPa,载气流量:45mL·min~(-1),空气流量:300mL·min~(-1),氢气流量:30mL·min~(-1),分流比50:1,尾吹流量:24mL·min~(-1),检测器温度:523K,汽化室温度:523K,进样量:0.2μL。并用气—质联用和标样相结合对其进行定性定量分析,结果表明其主要成分为α-蒎烯、顺式蒎烷、反式蒎烷、长叶烯等。
     采用改进的Ellis平衡釜和毛细管气相色谱分析方法,在59.34~100.58kPa压力条件下分别测定了高浓度蒎烷421.23K~441.06K和高浓度长叶烯体系501.19K~527.55K的汽液平衡数据,根据稀溶液的溶剂
    
    符合 Raou定律的规则,由 Raou定律计算出上述实验温度下猿烷、
    顺振烷和长叶烯的饱和蒸汽压,然后使用 EV EWS数理统计软件分别回
    归出振烷、顺振烷和长叶烯 Auto i ne方程 A、B、C参数:从而建立了振
    烷、顺式菠烷和长叶烯的饱和蒸汽压与温度的关联式,对菠烷有
    .,。_______、__325.7533 n—n onnc.. o.aac .caa i..a’n .n..
    11呷川刀删33卜二99577一一二二二二二二一,代厂)二J口J J J,DI一o二J.川*o,yi一’o DJ人J门;
     T.319.习97一
    =斗lllF三卜丈主,卜b一写.._。_____。_____321.88忍gi_i n., on’ o_on’ orinri
    y’JlllWTh})RinM IdP:/0.000133)=9.271801—AIAi,HZ一口.二IIOUI.DZ一OLI.000d.
     T一319力co
    矿、_OI矿、川tt 口卜早上土*oh1三三哆写,_。_______、_____3.6946o 0_C nlnlo
    V,一一Old.4VV:J’J WHTWM In(P/0.000133k5.97818—AIAi,Ha一口.SIOIO.
     T—533714
    Bs=3.69460,C。二-533.714;其计算饱和蒸汽压的相对误差范围为0.046~
    0.18儿 并与对应态基团贡献法估算的振烷饱和蒸汽压作了比较。
     采用改进的 EI is平衡釜测定了振烷一。-振烯、a-菠烯一长叶烯、
    振烷一长叶烯三个二元体系及振烷一a-菠烯一长叮烯三元体系常压汽液
    平衡数据,并经 Her i ngton规则检验,结果表明符合热力学一致性。分别
    用 W if son和 NRTL模型对三个二元体系汽液平衡数据进行了关联,得到了
    相应的能量参数。对 W if son 方程有:a-振烯(1)-菠烷Q)体系,
    g;。-g;;一2426.112,g。;一g;,一1740.312;Q一蒲烯(1)一长叶 烯(2)体系,
    *;。一g;.一 2397.481,g;,一g;;=一2931 二11;]&烷(1)一W叶烯(2)体系,*;;一*;一 3806.733,
    g;;一g;;一3935.258。对NRTL 方程有:Q一派烯(1)一振烷(2)体系,
    g;。一g;;-2129.999,g;;一g;;一2644.614;Q一振烯(1)一长叶烯(2)体系,
    g;。-g;;一2176.757,g。;-g;;=1630.902;派烷(1)一W叶烯(2)体系,g;。-。;;=一3023.122,
    g;;寸;;158。兆。(J.mol”‘卜并且使用 H元川 l SOn参数对所测的三元数据进
    行了推算,计算结果与实验值的平均偏差为0.0027。
The vapor-liquid equilibrium for products of turpentine hydrogenation i.e. pinane- -pinene-longifolene system was investigated by using experimental method with vapor-liquid alternative circulation and data processing method of simplex-search, and the mathematic model for rectification has been built. Theoretic fundament and basic data for development of rectification and separation of hydrogenated turpentine system were provided in this paper. This paper covers the contents as follows:
    The experimental raw material pinane was prepared by catalytic hydrogenation of a -pinene at temperature 353-433 K, pressure 3.0-7.0 MPa, using Raney-nickel as catalyst and a -pinene as raw material, and qualitative and quantitative analysis for the products of hydrogenation was carried out by GC-MS method, the results shown that concentration of pinane was up to 99.7%.
    The hydrogenated turpentine was analyzed by gas chromatograph, using BP 5 boned phase, fused silica capillary column (30m 0.32mm 0.25 m), and the gas Chromatography conditions have been considered, the temperature program was as follows: 338K for o min, then 1K-min-1 to 363K, and finally 20K-min-1 to 423K, holding for 5 min. Nitrogen was used as gas carrier, the pressure before column was 0.07MPa, and the flow rate of carrier gas was 45mL-min-1. The flow rate of air was 300 mL-min-1; the flow rate of hydrogen was 30 mL-min-1; split flow ratio was set at 50:1; the flow rate of tail gas was 24 mL-min-1; The temperature of injector and detector was 523K. sample introdution was 0.2 L. The identity of the components was established by comparison of their GC-MS fragmentation patterns with those authentic samples, the results shown that the main components of hydrogenated turpentine were as follows: -pinene, cis-pinane, trans-pinane and longifolene.
    The vapor-liquid equilibria of high concentration pinane system in the temperature range of 421.23K~441.06K and high concentration longilofene system in the temperature range of 501.19-527.55K were determined respectively at pressure ranged from 59.34 kPa to 100.58
    
    
    
    kPa by using the modified Ellis still and capillary tube gas chromatograph analysis method. Based on the regulation that the solvent in dilute solution according with Raoult's law, the saturated vapor pressures of pinane, c/s-pinane and longifolene at experimental temperatures were calculated by Raoult's law, respectively, and their Antoine parameters(A,B,C) have been attained by regression, so that the correlations between saturated vapor pressure and temperature for pinane, c/s-pinane and longifolene were
    described as follows: pinane(l), In(P1S/0.000133)= 9.299577- , A,=9.299577,
    B1=325.7533, C1=-319.4974 ; cis-pinane(2), In(P2S / 0.000133)= 9.271801 - ,
    A2=9.271801, B2=321.8889, C2=-319.400; longifolene(3),
    ln(P3S/0.000133)= 5.97818- , A3=5.97818, B3=3.69460, C3=-533.714, and the relative
    error was around 0.046~0.18%, and the saturated vapor pressure of pinane calculated was compared with value estimated by corresponding state group contribution method.
    The vapor-liquid equilibrium data for three binary systems of pinane- a -pinene, a -pinene-longifolene and pinane-longifolene and one ternary system of pinane- a -pinene-longifolene were determined at 0.1013MPa by the modified Ellis still. The thermodynamic consistency test indicated that the experimental data of three binary systems were reliable. The data were correlated by Wilson and NRTL equation, and the energy parameters have been obtained as follows: Wilson equation, -pinene(1)-pinane(2) system, g12 -g11 =2426.112 , g21-g11 =-1740.312 ; -pinene(1)-longifolene(2)system, g12 -g11 =2397.481 , g21-g11 =-2931.211 ;pinane(1)-longifolene(2) system,
    g12 -g11 =3806.733 , g21 -g11 =-3935.258 , NRTL equation, -pinene(1)-pinane(2) system, g12 -g11 =-2129.999 , g21 -g11 =2644.614 ; -pinene( 1 )-longif
引文
[1] 程芝.天然树脂生产工艺学[M].北京:中国林业出版社.1996:36~52,352~353
    [2] 赵振东,刘先章.松节油的精细化学利用[J].林产化工通讯,2001,35(1):42.
    [3] 王琳琳,陈小鹏,张淑琼,等.气相色谱法定性定量分析氢化松节油[J].林产化学与工业,2000,20,(2):50~55.
    [4] 黄致喜,王慧辰.萜类香料化学[M].北京:中国轻工业出版社,1999,52,266
    [5] Phillipe Sainte-Cluque, Global overview of crude sulfate turpentine[J]. Forest Chemicals Review. 1999,(1):8~10.
    [6] Pavlin Mark S. Hydrogenation of α -pinene to cis-pinane[P]. U.S.4,310,714(C1.585-275; C07C5/03), 1982
    [7] Canova, Levy A. Selective hydrogenation of α -pinene to cis-pinane[P] U.S.4,018,842(C1.260-675.5; C07C5/14),1977
    [8] Krasuska Anna et.al, Method of manufacture of cis-pinane [P]. Pol, 130, 737 (C1. C07C13/40 ), 1985.
    [9] 陈小鹏,王琳琳,阳承利,等.松脂催化加氢制备氢化松香及高顺反比蒎烷[J].精细化工,2002,19(11):654~657
    [10] 南京林产工业学院.林产化学工业手册[M].北京:中国林业出版社,1980:148~149,162~163
    [11] Ivan Heilbron et al., Dictionary of Organic Compounds[M], (4th ed) 1965: 757.
    [12] 万耀青.最优化计算方法常用程序汇编[M].北京:工人出版社,1993,129~140
    [13] Jones C A, Schoenborn E M, Colbrum A P. Equilibrium still for miscible liquids[J]. Ind Eng Chem, 1943,35:666
    [14] Rogalski M, Malanowski S. Ebulliometers modified for the accurate determination of vapor-liquid equilibrium[J]. Fluid Phase Equilibria, 1980, 5:97~112
    [15] Rogalski M, Rybakieuicz K, Malanowski S. Rapid and accurate method for determination of vapor-liquid equilibrium[J]. Bet Bunsonges Phys Chem., 1997, 82: 1070~1073.
    
    
    [16] Mnlmoowski S. Experimental methods for vapor-liquid equilibria. Part Ⅰ.Circulation methods[J]. Fluid Phase Equilibria. 1982, 8:197~219
    [17] Malanowk I. S. Experimental methods for vapor-liquid equilibria. Part Ⅰ.Circulation methods[J]. Fluid phase equilibria. 1982, 8:197-219
    [18] Hala E., Pick J., Fried V., Vilim O., Vapour-Liquid Equilibrium(2nd)[M]. Eng. Ed., Pergamon Press, London, 1967
    [19] Martinez-Ortz J. A., Manley D. B. Direct solution of the isothermal Gibbs-Duhem equation for mulitcomponent systems[J]. Ind. Eng. Chem. Process Des. Dev. 1978, 17:346-351
    [20] 金彰礼,王望生,刘昆元,等.正丁醇(1)—辛烯醛(2)体系等温汽—液平衡数据的测定及关联[J].化学工程,1983,(3):41~47
    [21] Abbott M. Low-pressure Phase equilibria: Measurement of VLE[J]. Fluid Phase Equilibria. 1986,29:193~207
    [22] Nagata L, Ohto T.Computation of Vapor-Liquid equilibrium data from binary and ternary vapor pressure and boiling point measurements[J]. Ind End Chem Process Des Dev. 1994,113: 304~309.
    [23] Van Ness H C, Byer S M, Gibbs R E. Vapor-liquid equilibrium: part Ⅰ. An appraisal of data reduction methods [J]. AIChEJ, 1973, 19:238~244
    [24] 胡英,英徐根.由溶液蒸汽压或沸点确定平衡汽相组成的直接法[J].化工学报,1980,(1):27~36.
    [25] 蔡志亮,祝一峰.逼近法研究汽液平衡[J].化工学报,1989,40(3):374~378.
    [26] 周星凤,兰贵全,倪良,等.动态法测定等温汽液平衡的装置[J].石油化工,1989,18(4),112~116.
    [27] Mather P J. Smith B D. A new total pressure Vapor-Liquid equilibrium apparatus[J]. J Chem Eng Data. 1979,24:16.
    [28] 周星凤,倪良,李浩然,等.动态法进行等温和等压汽液平衡的测定和控制研究[J].化工学报,1990:(3):335.
    [29] 梁利民,候虞钧.从纯组分蒸汽压方法计算混合汽液平衡[J].化工学报,1986(3):343
    [30] 小岛和夫,枥木腾已.ASOG and UNIFAC.日本化学工业社,1986,2~10
    
    
    [31] 吴俊生,唐小琪,张鸿喆.用沸点仪测定汽液平衡数据的研究[J].高校化学工程学报,1991,5(1):24~32
    [32] 钱万成,段占庭,雷良恒.用改进的沸点计法测定无限稀释活度系数进行汽液平衡的研究[J].石油化工,1981,10(4):241~246
    [33] 沈树宝,汪绍昆,张菊珍,等.无限稀释活度系数的测定与应用[J].化工学报,1988,(4):501
    [34] 何卓立,傅慧,周星凤,等.新型斜式沸点仪及无限稀释活度系数的测定[J].燃料化学学报,1989,17(4):344~351
    [35] 蔡志亮,周星凤,洪瑞槎.沸点仪研究及斜式沸点仪[J].化工学报,1986,(2):172~181
    [36] 邱祖民,骆赞椿,胡英.新型泵式沸点仪[J].南昌大学学报(工科版) 1996,17(4):6.
    [38] 邱祖民,骆赞椿,胡英.甲醇—水,甲缩醛—甲醇和甲缩醛—水系统的汽液平衡[J].高校化学工程学报,1994,8(2):106
    [39] 周星凤,韩世钧.拟静态循环法测定稀溶液汽液平衡的研究[J].物理化学学报,1987,3:227
    [38] 邱祖民,骆赞椿,胡英.甲醇—水,甲缩醛—甲醇和甲缩醛—水系统的汽液平衡[J].高校化学工程学报,1994,8(2):106
    [39] 周星凤,韩世钧.拟静态循环法测定稀溶液汽液平衡的研究[J].物理化学学报,1987,3:227
    [40] 蔡志亮,周星凤.测定二元互溶系恒沸点的新方法[J].化工学报,1988,(5):624
    [41] 周星凤,段晓斌,韩世钧.置换法测定汽液平衡[J].化工学报,1989,(6):741
    [42] 周星凤,倪良,韩世钧.拟静态法测定汽液平衡的研究[J].化工学报,1990,(1):122
    [43] 朱自强.化工热力学[M].北京:化学工业出版社.1982
    [44] 李浩然,韩世钧.多元汽液平衡中由T、P、x数据推算y模型法与无模型法的比较[J].石油学报,1997,13(1):76~81
    [45] Ljunglin J. J, Van Ness H. C. Calculation of vapor-liquid equilibria from vapor pressure data[J]. Chem Eng Sci, 1962, 17: 531~539
    
    
    [46] Hala E., Pick J. Fried V., Vilim O. Vapour Liquid Equilibrium[M]. Pergamon Press,1965
    [47] 胡英,英徐根.由溶液蒸汽压或沸点确定平衡气相组成的直接法[J].化工学报,1980,(1):27~36
    [48] 胡英.醋酸-水二元系25~75℃恒温汽液平衡的研究[J].化工学报,1980,(4):341~352
    [49] 胡英.近代化工热力学应用研究进展[M].上海:上海科学技术文献出版社,1994
    [50] 刘洪来,英徐根,胡英.在汽液平衡中由T、P、x数据推算y的样条函数法(Ⅰ)二元系[J].化工学报,1991,4:393~399
    [51] 刘洪来,英徐根,胡英.在汽液平衡中由T、P、x数据推算y的样条函数法(Ⅱ)三元系[J].化工学报,1991,4:401~406
    [52] Van Ness H. C., Byer S. M., Gibbs R. E. vapor-liquid equilibrium Ⅰ. Appraisal of data reduction methods[J]. A. I. Ch. E. J. 1973, 19:238-244
    [53] 朱自强,姚善泾,金彰礼.流体相平衡原理及其应用[M].杭州:浙江大学出版社,1990,393~396
    [54] 胡英,英徐根,唐小琪.统计学理论在汽液平衡中的应用 Ⅰ.热力学一致性检验(J).华东化工学院学报,1984,(2):205-213
    [55] 梁志勤,姜紫荣.松脂中主要化学组成的毛细管气相色谱分析[J].林产化学与工业,1982,(3):14~21
    [56] Loeblich V M, Law rence R V. Chromatographic Investgation[M]. New York: Academic Press, 1956:320~321
    [57] 彭兴盛.毛细管气相色谱法对大麻中主要成分的定性定量分析[J].色谱,1998,(16):170~173
    [58] 宋湛谦,陈振隆,J.P.佩里.气相色谱法分析松脂[J].林产化学与工业,1988,(2):10~17
    [59] 南开大学化学系编.仪器分析[M].北京:高等教育出版社,1978
    [60] 邓双,王琳琳,陈小鹏,等.毛细管气相色谱法对氢化松节油中主要成分的分析[J].广西大学学报(自科版),2000,(1):74~77
    [61] Mark S.P, Lawrencevilie N.J. Hydrogenation of α-pinene to cis-pinane.[P]. US: 4
    
    310 714,1982-12-10
    [62] 余小兵,谈燮峰,冯爱群,改性Pd/C催化氢化蒎烷的研究[J],广州化学,1999,(2):23~27
    [63] 李方华,吴企华,甘光岳.高分子负载钯催化剂的α-蒎烯催化加氢[J],天然气化工,1998,(2):26~29
    [64] 林耀红,谈燮峰,萧树德,蒎烷在常压下热构化反应的研究[J].广州化学,1998,(1):12~16
    [65] 陈小鹏,王琳琳,阳承利,等.α-蒎烯催化加氢反应的研究[J].天然气化工,2002,27(6):55~58
    [66] 黄仲涛,林维明.工业催化剂设计与开发[M].华南理工大学出版社,1991:312~315
    [67] 张进平,雷振天,应浩.钯-炭催化剂制备与回收工艺及设备设计[J],林产化工通讯,1996,(5):12~16
    [68] 张冬云,陈小鹏,黎波.高压加氢实验的微机控制系统[J].广西大学学报(自然科学版),2000,25(1):71~73
    [69] 段文贵,陈小鹏,王琳琳.GC—MS法分析松节油及其氢化产物的化学成分[J].林产化工通讯,2000,34(4):7~11
    [70] M.M.Lopes de Figueire do, P.H. Calderbank, The Scale-up of Aerated Mixing Vessels for Specified Oxygen Dissolution Rates[J]. Chem. Eng. Sci., 1979, 34(11): 1333~1338
    [71] 陈小鹏,王琳琳,邓双,等.Raney镍上α-蒎烯催化加氢本征动力学[J].化学反应工程与工艺,2002,18(3):20~26
    [72] Smith J.M. Chemical Engineering Kinetics[M]. New York, McGraw-Hill Book CO.,3rd ed., 1981,246~250
    [73] 冯长根.连续搅拌槽林反应器(CSTR)定态非绝热操作的热稳定性[J].化工学报,1987(1):108~112
    [74] 刘昆元,汪文川.Peng-Robinson状态方程计算含氢系统汽液平衡----超临界气体的参数处理[J].化工学报,1989(1):73~81
    
    
    [75] John A. Dean. Lange's Handbook of Chemistry(eleventh)[M]. New York: McGraw-Hill, Inc. 1973,10~31
    [76] Prausnitz J. M. Molecular Thermodynamics of Fluid-Phase Equilibria(3rh)[M]. Prentice-Hall Inc,222~223
    [77] 衣守志,孙畅,马沛生.对应态基团贡献法(CSGC)估算有机物蒸汽压)[J].高校化学工程学报,2002,16(5):473-478
    [78] 祝远姣,王琳琳,陈小鹏,等.长叶烯饱和蒸汽压的估算[J].广西大学学报(自然科学版),2003,28(1):77~80
    [79] Prausnitz J.M. Computer Calculation for Multi-component VLE and LLE.[M].NJ: Prentice Hall, 1980:67~103
    [80] 张吉瑞.化工数值方法[M].北京:中国石化出版社.1995:123~124
    [81] Stanley M. Walas. Phase Equilibrium in Chemical Engineering[M]. Butterworth Publishers. 1985:192~201.
    [82] 陈小鹏,祝远姣,王琳琳,等.蒎烷—α-蒎烯—长叶烯体系常压汽液平衡[J].广西大学学报(自然科学版),2003,(2):1~4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700