γ-Al_2O_3载体的扩孔、表面改性及催化应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用炭黑扩孔的方法制备出孔径较大且孔分布集中的γ-Al_2O_3载体,利用ZSM-5和β分子筛纳米簇对其进行表面改性,并以其为载体制备加氢脱硫催化剂。载体扩孔方面,主要考察了炭黑类型、炭黑用量及炭黑分散性(如分散剂的化学结构、用量等)对γ-Al_2O_3孔径分布的影响;分子筛纳米簇的合成方面,在无碱金属离子存在的条件下,分别合成出含有ZSM-5和β沸石次级结构单元(或分子筛纳米簇)的溶液,主要考察了晶化温度、晶化时间、硅铝比等制备条件对分子筛纳米簇性质的影响;载体改性方面,重点考察了改性前后载体的酸性、孔结构等表面性质的变化。
     论文采用XRD、IR、Py-IR、BET和NH3-TPD等手段进行了表征。结果表明,采用分散剂分散法可在较低炭黑用量下取得良好的扩孔效果,使γ-Al_2O_3载体的孔径分布更集中于10~20nm或大于20nm的范围;在最佳制备条件下合成的纳米簇溶液澄清透明,无微孔分子筛微晶的生成,且其粒径较小,适合用于对γ-Al_2O_3载体的改性,其中ZSM-5纳米簇的最可几粒径明显小于β纳米簇;经分子筛纳米簇改性后载体的酸性明显增强并出现一定B酸位,且孔结构无明显变化,其中ZSM-5纳米簇改性样品较β纳米簇具有更强的酸性位和更均匀的分布。
     论文以分子筛纳米簇改性前后的γ-Al_2O_3为载体,制备负载型Ni-Mo加氢精制催化剂,并以DBT为模型化合物考察其加氢脱硫性能。结果表明,与传统γ-Al_2O_3载体制备的催化剂相比,经分子筛纳米簇改性后,催化剂的酸性大大提高,活性组分的堆垛层数及片层长度明显增加,DBT在分子筛纳米簇改性催化剂上的转化率和脱硫率都大幅提高,反应途径虽然仍以氢解路径为主,但加氢路径所占比例明显增大,其中扩孔后载体对应的催化剂较扩孔前具有更高的加氢脱硫活性。
In this paper, theγ-Al_2O_3 carrier with large pore diameter and appropriate pore size distribution was firstly prepared by using carbon black as enlarge agent, followed by the modification with ZSM-5 andβzeolite nanoclusters respectively, and used as the support of the hydrodesulfurization catalysts.
     For the pore enlargement ofγ-Al_2O_3 carrier, the effects of carbon black types, content and dispersion in theγ-Al_2O_3 power, such as the chemical properties and content of surfactant dispersant, on the pore distribution ofγ-Al_2O_3 were studied. The zeolite nanoclusters solution containing ZSM-5 andβzeolite secondary building units was synthesized in the absence of alkali metal ions respectively. The influences of crystallization temperature, crystallization time and the ratio of Si/Al were also examined. In the surface modification ofγ-Al_2O_3, the changes of the acidity and pore structure property before and after modification with zeolite nanoclusters were investigated.
     The samples were characterized by XRD, Py-IR, BET, NH3-TPD and EDS analytical techniques. The XRD and FT-IR results showed that no zeolite crystalline particle was detected in the clear solution (or zeolite nanoclusters) synthesized under the optimum synthesis conditions, and the nanoclusters particle size was suitable for the modification ofγ-Al_2O_3 carrier. In addition, the most probable particle size of ZSM-5 nanoclusters was smaller than ofβnanoclusters. The pore-enlargedγ-Al_2O_3 support with a large specific surface area, appropriate pore size distribution and sufficient mechanical strength was prepared by the Surfactant Dispersion Method (SDM). The acidity ofγ-Al_2O_3 support modified with zeolite nanoclusters was greatly improved, however, the changes of pore structure were unconspicuous. The EDS results revealed that the zeolite nanoclusters uniformly distributed in the modifiedγ-Al_2O_3 support, and the carrier modified with ZSM-5 nanoclusters had stronger acid strengthen and more uniform distribution than ofβnanoclusters.
     The hydrotreating catalysts were prepared by impregnating active components Ni-Mo onto the traditionalγ-Al_2O_3 and modifiedγ-Al_2O_3 respectively. The activity and selectivity of the catalysts in the HDS of DBT were also evaluated in a fixed-bed high pressure micro-reactor. Compared to the traditional catalyst, the catalyst modified with zeolite nanoclusters had stronger acidity, higher stacking number of active phase and improved HDS activity. It was found that although the DBT removal on the both catalysts occurred mainly through the hydrogenolysis route, the HDS proportion through the hydrogenation route was increased greatly on the modified catalyst, associated to the increased feed stock conversion and desulfurization rate. The catalyst using pore-enlargedγ-Al_2O_3 as carrier had higher HDS activity than that of traditional carrier.
引文
[1]刘海燕,于建宁,鲍晓军.世界石油炼制技术现状及未来发展趋势[J].过程工程学报,2007,7(1):176-185
    [2] Higgins T. Ultra-low-sulfur Standards Will Change Refining [J]. World Refining, 2003, 13(4): 45
    [3]苗毅,杨哲,张伟清,等.从2003年NPRA年会看清洁燃料及其清洁生产技术的发展[J].石油炼制与化工,2003,34(11):12-16
    [4]刘志红,王豪,鲍晓军.提高柴油加氢精制催化剂活性的方法[J].化工进展,2008,27(2):173-179
    [5] Pérot G. Hydrotreating catalysts containing zeolites and related materials: mechanistic aspects related to depdesulfurization [J]. Catalysis Today, 2003, 86: 111-128
    [6] Taguchi A., Schuth E. Ordered mesoporous materials in catalysis [J]. Microporous and Mesoporous Materials, 2005, 77: l-45
    [7]杨宇川,辉永庆,何小波,等.微孔-介孔复合分子筛研究进展与应用前景[J].硅酸盐通报,2006,(2):86-90
    [8]潘宝明,沈今川,侯书恩.分子筛材料的研究现状和趋势[J].地质科技情报,1998,17(1):73-78
    [9]孙杨,弓爱君,宋永会,等.沸石改性方法研究进展[J].无机盐工业,2008,40(5):1-4
    [10]刘秀伍,李静雯,周理,等.介孔分子筛的合成与应用研究进展[J].材料导报,2006,20(2):86-90
    [11]宋春敏,阎子峰.微孔-介孔复合结构分子筛的研究新进展[J].分子催化,2008,22(3):280-287
    [12] Davis M.E. Ordered Porous Materials for Emerging Applications [J]. Nature, 2002, 417: 81-82
    [13] Kloetstra K.R., Zandbergen H.W., Jansen J.C., et al. Overgrowth of Mesoprous MCM-41 on Faujasite [J]. Microporous Materials, 1996, (6): 287-293
    [14]李玉平,潘瑞丽,李晓峰,等.微孔-介孔复合分子筛的合成研究进展[J].石油化工,2005,34(2):188-194
    [15] Van B.H., Flanigen E.M., Jacobs P.A., et al. Introduction to Zeolite Science and Practice [J]. Stud Surf Sci Catal, 2001, 137: 69
    [16]李工,阚秋斌,吴通好,等.含有沸石结构单元体介孔材料的合成及催化性能[J].化学学报,2002,60(5):759-763
    [17] Lin S., Wang L., Han Y., et al. Tailor and control of acidic strength in ordered mesoporous aluminosilicates by using preformed zeolite precursors [J]. Chiese Journal of Chemistry, 2004, 22: 9-13
    [18] Liu Y., Zhang W.Z., Pinnavaia T.J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds [J]. Journal of the American Chemical Society, 2000, 122(36): 8791-8792
    [19] Liu Y., Zhang W.Z., Pinnavaia T.J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds [J]. Angewandte Chemie, International Edition, 2001, 40(7): 1258-1262
    [20] Zhang Zongtao, Han Yu, Xiao Fengshou, et al. Mesoporous Aluminosilicates with Ordered Hexagonal Structure, Strong Acidity, and Extraordinary Hydrothermal Stability at High Temperatures [J]. Journal of the American Chemical Society, 2001, 123(21): 5014-5021
    [21]韩宇,肖丰收.由沸石纳米粒子自组装制备具有高催化活性中心和水热稳定的新型介孔分子筛材料[J].催化学报,2003,24(2):149-158
    [22] Do Trong On, Kaliaguine S. Ultrastable and Highly Acidic, Zeolite-Coated Mesoporous Aluminosilicates [J]. Angewandte Chemie, International Edition, 2002, 41(6):1036-1040
    [23] Do Trong On, Andrei Nossov, Marie-Anne Springuel-Huet, et al. Zeolite Nanoclusters Coated onto the Mesopore Walls of SBA-15 [J]. Journal of the American Chemical Society, 2004, 126: 14324-14325
    [24]林森,殷成阳,王利丰,等.Beta沸石分子筛前驱体修饰的SBA-15介孔分子筛及其催化性质[J].山东大学学报(理学版),2005,40(3):101-104
    [25]林森,殷成阳,王利丰,等.MFI分子筛前驱体对Y型沸石分子筛表面的修饰及其催化性质[J].高等学校化学学报,2005,26(1):152-154
    [26]万国赋,段爱军,赵震,等.柴油超深度脱硫技术进展[J].黑龙江大学自然科学学报,2006,23(5):658-667
    [27] Wang Danhong, Li Wei, Zhang Minghui, et al. Promoting effect of fluorine on titania-supported cobalt–molybdenum hydrodesulfurization Catalysts [J]. Applied Catalysis A:General, 2007, 317: 105-112
    [28]巫辉,赵萱,钱菁,等.石油加氢脱硫催化剂载体的研究[J].武汉理工大学学报,2006,28(3):113-116
    [29] Youssef Saih, Kohichi Segawa. Tailoring of alumina surfaces as supports for NiMo sulfide catalysts in the ultra deep hydrodesulfurization of gas oil: case study of TiO2-coated alumina prepared by chemical vapor deposition technique [J]. Catalysis Today, 2003, 86: 61–72
    [30] Torres-Mancera P., Ramirez J., Cuevas R., et al. Hydrodesulfurization of 4,6-DMDBT on NiMo and CoMo Catalysts Supported on B2O3-Al2O3 [J]. Catalysis Today, 2005, (107-108): 551-558
    [31]朱雪梅,纪晓飞,丁保宏,等.加氢脱硫催化剂载体的研究进展[J].广东化工,2009,36(9):84-85
    [32]王瑶,王安杰,陈永英,等.以MCM-41为载体担载Ni-Mo硫化物制备柴油深度加氢脱硫催化剂[J].石油学报(石油加工),2003,19(5):36-41
    [33]温钦武,沈健,韩英,等.柴油加氢脱硫催化剂的研究进展[J].炼油技术与工程,2007,37(3):48-51
    [34] Pawelec B., Mariscal R., Fierro J.L.G., et al. Carbon-supported tungsten and nickel catalysts for hydrodesulfurization and hydrogenation reactions [J]. Apply Catalysis, 2001, 206(2): 295-307
    [35]董昆明,武小满,林国栋,等.碳纳米管负载/促进的Mo-Co加氢脱硫催化剂[J].催化学报, 2005,26(7):550-556
    [36] Lauritsten J.V., Helveg S., Laegsgaard E., et al. Atomic-Scale Structure of Co-Mo-S Nanoclusters in Hydrotreating Catalysts [J]. Journal of Catalysis, 2001, 197: 1-5
    [37]彭绍忠,王继锋.γ-氧化铝载体合成的研究[J].辽宁化工, 2003,32(6):241-243
    [38]赵琰.氧化铝(拟薄水铝石)的孔结构研究[J].工业催化,2002,10(1):55-63
    [39]方学宾,钱君律,伍艳辉,等.氧化铝载体研究新进展[J].上海化工,2003:26-29
    [40] Boitiaux J.P., Deveo J.M., et al. Catalytic Naphtha Reforming [M]. New York: Marcel Dekker, 1994: 79
    [41]杨清河,朱立,康小红,等.一种大孔氧化铝载体及其制备方法[P].中国专利:1647857,2005-08-03
    [42] Bernard F., Calif M.F. Hydrocarbon hydroconversion catalyst and the method for its preparation [P]. US: 4102822, 1978-07-25
    [43] Masao M., Akira I., Shinji T. Process for the production of hydrogenating catalysts [P]. EP: 0237240 (A2), 1987
    [44]何金海,罗锡辉.一种大孔氧化铝载体的制备方法[P].中国专利:1768947,2006-05-10
    [45] Trimm D.L., Stanislaus A. The Control of Pore Size in alumina catalyst supports: A Review [J]. Applied Catalysis, 1986, 21: 215-238
    [46]汤德铭,卫明,周勇,等.一种重油加氢脱氮催化剂[P].中国专利:1086534,1994-05-11
    [47]胡大为,杨清河,刘滨,等.一种具有双重孔的氧化铝载体及其制备方法[P].中国专利:1689703,2005-11-2
    [48]孙素华,方维平,王永林,等.一种重油加氢处理催化剂载体及其制备方法[P].中国专利:1289825,2001-04-04
    [49]王刚,方维平,王家寰,等.一种催化剂载体及其制备方法[P].中国专利:1179356,1998-04-22
    [50]孙素华,王纲,王永林.不同扩孔方法对氧化铝载体物化性质的影响[J].工业催化,2001,9(1):62-64
    [51] Antony S., Khalida A.D., Mamun A.H. Preparation of a large pore alumina-based HDM catalyst by hydrothermal treatment and studies on pore enlargement mechanism [J]. Journal of Molecular Catalysis A: Chemical, 2002, 181: 33-39
    [52] Zhang J.L., Chen J.G., Ren J., et al. Chemical treatment ofγ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis [J]. Applied Catalysis, A: General, 2003, 243(1): 121-133
    [53]张喆,黄绍东,郭冰之,等.Al2O3载体的合成及孔径调变[J].光谱实验室,2008,25(4):700-704
    [54]张永刚,闫裴.活性氧化铝载体的孔结构[J].工业催化,2000,8(6):14-18
    [55]朱警,戴伟,穆玮,等.选择加氢催化剂载体氧化铝的改性及其工业应用(I) [J].化工进展,2004,23(2):192-194
    [56]卢伟光,龙军,田辉平.镧和铈改性对氧化铝性质的影响[J].催化学报,2003,24(8):574-578
    [57]刘勇,王敬先,杨竹仙,等.钡对氧化铝的高温热稳定作用[J].物理化学学报,2000,16(6):533-537
    [58]龚茂初,章洁,林之恩,等.耐高温高表面氧化铝的制备及性质-添加钡及钡与斓的协同作用对氧化铝热稳定性的影响[J].高等学校化学学报,2002,23(5):947-949
    [59]王辉,谈世韶,郭汉贤.K2O修饰γ-Al2O3的表面性能研究[J].燃料化学学报,1996,24(4):303-308
    [60]唐爱军,潘慧芳,沈志虹.磷改性对γ-Al2O3物化性能的影响[J].石油大学学报(自然科学版),1995,19(6):84-86
    [61]潘惠芳,唐爱军,李丙兰,等.磷改性γ-Al2O3的酸性调变和积炭行为[J].石油学报(石油加工),1996,12(3):1-7
    [62]李伟,李生祥,张明慧,等.磷改性TiO2-Al2O3复合载体在超深度加氢脱硫中的应用[J].催化学报,2005,26(9):755-758
    [63] Cuevas R., Ramirez J., Busca G. Fluoride modification of Mo/Al2O3 catalysts Characterization of the changes induced in support and Mo phases [J]. Journal of Fluorine Chemistry, 2003, 122: 151-158
    [64] Sun M.Y., Nicosia D., Prins R.. The effects of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis [J]. Catalysis Today, 2003, 86(1-4): 173-189
    [65] Song Chunshan. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J]. Catalysis Today, 2003, 86: 211–263
    [66]邵长丽,殷长龙,刘晨光,等.深度加氢脱硫催化剂载体效应的研究进展[J].石油化工,2007,36(10):1074-1080
    [67]赵琰.氧化铝、改性氧化铝及硅酸铝的酸性特征[J].工业催化,2002,10(2):54-58
    [68]徐友明,沈本贤,何金海,等.大孔径石蜡加氢精制催化剂的制备[J].石油化工,2005,34(5):422-424
    [69] Li Juncheng, Xiang Lan, Feng Xu, et al. Effect of hydrothermal treatment on the acidity distribution ofγ-Al2O3 support [J]. Applied Surface Science, 2006, 253: 766–770
    [70] Li Juncheng, Xiang Lan, Feng Xu, et al. Influence of hydrothermally modifiedγ-Al2O3on the properties of NiMo/γ-Al2O3 catalyst [J]. Applied Surface Science, 2008, 254: 2077–2080
    [71]孙书红,王宁生,闫伟建.ZSM-5沸石合成与改性技术进展[J].工业催化,2007,15(6):6-10
    [72]祁晓岚,刘希尧.β沸石合成与表征的研究进展[J].分子催化,1999,13(6):471-481
    [73]傅聪忍,张芷,催欣欣,等.引导剂对合成ZSM-5沸石分子筛性能影响的研究[J].燃料化学学报,1993,21(1):8-14
    [74]胡汉祥,施其宏.导向剂的结构与作用[J].南昌大学学报(工科版),1998,20(1):80-83
    [75]韩志波,张庆武,周明宇.柴油加氢精制催化剂载体的研究[J].黑龙江石油化工,2001,12:14-15
    [76]李炳炎,于宝林,刘敏.炭黑技术讲座第1讲-炭黑的分类、命名和制造[J].橡胶工业,2007,54(1):59-63
    [77]王道宏,徐亦飞,张继炎.炭黑的物化性质及表征[J].化学工业与工程,2002,19(1):76-82
    [78]赵军,徐复铭,周伟良,等.炭黑的表面化学改性及其在水介质中的分散性研究[J].南京理工大学学报,2006,30(6):778-782
    [79]李凯荣,谭克勤,杨祖润,等.加氢转化脱硫催化剂载体γ-Al2O3的改进及对催化剂性能的影响[J].无机盐工业,2003,35(2):31-34
    [80]康小红,宋安篱.双重孔氧化铝载体的研制—炭黑粉扩孔剂的应用[J].石油炼制与化工,1997,28(1):44-46
    [81]唐聪明,徐卡秋,胡浩.炭黑在水性体系中的分散[J].天然气化工,2003,28(1):36-41
    [82]于春林,韩志波,郑国涛,等.柴油馏分油加氢精制催化剂载体的探讨[J].化工科技市场,2005,(5):23-25
    [83]王利军,张友兰,刘志华,等.炭黑在水性体系中的分散及分散剂结构的影响[J].天津大学学报,1999,32(5):616-620
    [84]魏彤,张友兰,王利军,等.水性体系pH值对炭黑分散的影响[J].染料工业,2002,39(5):27-32
    [85]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社,2002:238-239
    [86]王娜,李保庆.超声催化反应的研究现状和发展趋势[J].化学通报,1999,(5):26-32
    [87]胡玲,荣亚宁,乌兰娜,等.超声波振荡对超细粒子状态的影响[J].电子显微学报,2001,20(4):310-311
    [88]薛用芳.固体催化剂的研究方法第二章-分析电子显微镜(上)[J].石油化工,2000,29(3):227-235
    [89]刘百军,郑宇印.新型Ni-Mo/Al2O3加氢脱硫催化剂的研究[J].燃料化学学报,2004,32(2):195-198
    [90] Tops?e H. The role of Co–Mo–S type structures in hydrotreating catalysts [J]. Applied Catalysis, A: General, 2007, 322: 3–8
    [91] Zhou Yasong, Fan Xiaohu, Zhang Shaojin, et al. Hydrogenation catalyst supported on composite oxide TiO2-SiO2 [J]. Journal of Fudan University: Natural Science, 2003, 42(3): 387-391
    [92]徐永强,赵瑞玉,商红岩,等.二苯并噻吩和4-甲基二苯并噻吩在Mo和CoMo/γ-Al2O3催化剂上加氢脱硫的反应机理[J].石油学报(石油加工),2003,19(5):14-21
    [93]牛崇业,牛国兴.镍钼系列加氢处理催化剂的还原性、酸性及加氢脱硫性能[J].复旦学报,1995,10(5):112-120
    [94] Besenbacher F., Brorson M., Tops?e H., et al. Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects [J]. Catalysis Today, 2008, 130: 86–96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700