池核沸腾传热与CaCO_3垢生成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对池核沸腾时的传热及加热面上CaCO_3垢的生成等复杂过程进行了实验研究与理论分析。主要工作如下:
     采用极限扩散电流技术(LDCT)与直接传热测定同时进行的方法研究池核沸腾时的界面汽化热阱效应以及沸腾滞后和由自然对流向核沸腾转变过程中加热面上沸腾泡核的发展状况。结果表明,界面汽化热阱效应和对流是核沸腾传热的两个主要途径,界面汽化热阱效应对传热的贡献随着热通量的增大而增大,随着系统压力提高也增大。并从沸腾中所包含的各个子过程间相互作用,相互竞争的观点分析沸腾传热的机理。研究发现不同的加热方式对沸腾滞后影响明显:当热通量逐渐增加时,出现滞后现象,而此后逐渐降低热通量,会产生TD滞后(Temperature Deviation)。研究还发现在传热脱离自然对流至充分发展的沸腾阶段内界面汽化热阱效应是逐渐增强的,说明了在沸腾起始阶段,加热面上沸腾泡核的形成是一个渐进过程。另外,依据泡核激活机制的转变并结合界面汽化热阱效应对沸腾滞后进行机理分析。
     针对池核沸腾时水平加热表面上CaCO_3的结垢过程,首先采用动态热阻法对结垢规律进行了系统的实验研究,考察了热通量、垢质浓度和溶液主体温度对结垢行为的影响。此外,分别在疏水的氟硅烷修饰紫铜基表面以及亲水的紫铜表面上进行了CaCO_3结垢实验,实验结果及理论分析均表明该疏水表面具有较好的抗垢性能。本文还对过冷池核沸腾条件下的结垢过程进行了实验研究,发现过冷沸腾时传热系数的变化趋势和饱和池核沸腾时相同,但传热系数及结垢速率均较饱和沸腾时的低。并分析了沸腾初期出现的负污垢热阻现象。根据沸腾传热的特点,分析界面汽化热阱效应以及对流传热效应各自作用下的结垢机理。此外还分析了传热面上污垢的形成和汽化核心之间的相互作用,进而解释污垢的生成对沸腾传热的影响机理,结果表明污垢的生成对沸腾传热的影响主要源于对可生成沸腾泡核的活化空穴数目和结构上的改变。
Heat transfer and scale formation characteristics during nucleate pool boiling has been experimentally investigated and theoretically analyzed in this paper. The main work is as follows:
    The method of applying limiting diffusion current technology (LDCT) with heat transfer measuring simultaneously has been used to study the interfacial vaporization heat sink effect and hysteresis during nucleate pool boiling, and the spreading process of boiling nuclei on the heat transfer surface in boiling incipience. The results reveal that heat transfer during nucleate boiling is mostly contributed by the interfacial vaporization heat sink effect and convection, the contribution of interfacial vaporization heat sink effect to heat transfer increases with increasing heat flux or system pressure. The heat transfer mechanism has been analyzed by the interaction of fundamental processes contained in nucleate pool boiling. The heating methods have evident effects on hysteresis. Hysteresis occurs under the condition of increasing the heat flux with constant pressure, while TD hysteresis (Temperature Deviation) occurs when decreasing the heat flux. The results also revel that the interfacial vaporization heat sink effect enhances during boiling incipience, when the formation of boiling nuclei is a gradual process. The boiling hysteresis mechanism has been analyzed on the base of the interfacial vaporization heat sink effect and the change in activation way of boiling nuclei.
    The characteristics of CaCO_3 scale formation on a horizontal round heat transfer surface has been investigated systematically through dynamic thermal resistance experiments which reveal the effects of heat flux, solution concentration and solution bulk temperature on fouling resistance. The experiments of CaCO_3 scale formation were also carried out on a hydrophobic Cu-F_(8261) surface and a hydrophilic Cu surface. The experiments results and theoretical analysis both reveal the antifouling characteristic of Cu-F_(8261) surface. Study of CaCO_3 scale formation during subcooled nucleate pool boiling shows that the change trend of heat transfer coefficient is the same with which during saturated nucleate pool boiling, while the values of heat transfer coefficient and fouling rate are less than that of saturated nucleate pool boiling. The negative fouling resistance phenomenon has been found in boiling incipience and the mechanism is analyzed. Two different scale formation mechanism during nucleate boiling is further analyzed. The effect mechanism of scale formation on nucleate boiling heat transfer has been further analyzed on the base of the interaction between scale formation and bubble
引文
[1] J G Collier. Convective Boiling and Condensation. New York, McGraw-Hill International Book Co, 1981.
    [2] Hsing-Sheng Liang, Wen-Jei Yang. Nucleate pool boiling heat transfer in a highly wetting liquid on micro-graphite-fiber composite surfaces. Int. J. Heat Mass Transfer, 1998, 41(13): 1993-2001.
    [3] M Maracy, R H S Winterton. Hysteresis and contact angle effects in transitiort pool boiling of water. Int. J. Heat Mass Transfer, 1988, 31(7): 1443-1449.
    [4] S J Reed, I Mudawar. Elimination of boiling incipience temperature drop in highly wetting fluids using spherical contact with a flat surface. Int. J. Heat Mass Transfer, 1999, 42(13): 2439-2454.
    [5] Steinhagen R, Muller-Steinhagen H, K Maani. Problems and Costs due to Heat Exchanger Fouling in New Zealand Industries. Heat Transfer Engineering, 1993, 14(1): 19-30.
    [6] S H Najibi, H Muller-Steinhagen, M Jamialahmad. Calcium sulphate scale formation during subcooled flow boiling. Chem. Eng. Sci, 1997, 52(3): 1265-1285.
    [7] 徐济銎.沸腾传热和气液两相流.北京:原子能出版社,1993.
    [8] J G Leidenfrost. De Aqua Communis Nonnullis Qualitabus Tractatus. Int. J. Heat Mass Transfer, 1966, 9: 1153-1166.
    [9] S Nukiyama. Maximum and Minimum Values of Heat Transmitted from a Metal to Boiling Water under Atmospheric Pressure. Japanese Society of Mechanical Engineers, 1934, 37(206): 367-394.
    [10] W M Rohsenow. A method of correlating heat transfer data for surface boiling liquids. Trans. ASME, 1952, 74: 969-976.
    [11] C L Tien. A Hydrodynamic model for nucleate pool boiling. Int. J. Heat Mass Transfer, 1962, 5: 533-540.
    [12] N Zuber. Nucleate boiling: the region of isolated bubbles and similarity with natural convection, Int. J. Heat Mass Transfer, 1963, 6: 53-78.
    [13] D E Forster, R Grief. Heat transfer to a boiling liquid-mechanism and correlation. J. Heat Transfer, 1959, 81: 43-53.
    [14] C Y Han. P Griffith. The mechanism of heat transfer in nucleate pool boiling-Part Ⅰ, Bubble initiation, growth and departure. Int. J. Heat Mass Transfer, 1965, 8: 887-904.
    [15] W Kast. Significance of nucleating and non-stationary heat transfer in the heat exchanger during bubble vaporization and droplet condensation. Chem. Eng. Tech., 1964, 36: 933.
    [16] F D Moore, R B Mesler. The measurement of rapid surface temperature fluctuation during nucleate boiling of water. AIChE J, 1961, 7: 620-624.
    [17] M Shoji. Boiling chaos and modeling. Proceeding of International Heat Transfer Conference-11th. Korea: Taylor and Francis, 1998, 1: 3-21.
    [18] 柴立和,彭晓峰,王补宣.沸腾传热基础理论的拓展.工程热物理学报,2000,21(5):605-609.
    [19] 沈自求.沸腾传热研究.大连理工大学学报,2001,41(3):253-259.
    [20] 杨宁生,沈自求.气体冲击液相中加热面的汽化热阱模型.化工学报,1990,41(5):618-622。
    [21] 沈自求.界面汽化热阱增强传热的原理及其应用.长春:吉林大学出版社,2000.
    [22] N S Yang, W D Wang, Z Q Shen. Convective heat transfer characteristics of gas impingement on small heated device in liquid coolant bath. J. Chem. Ind. Eng., 1991, 6(1): 1-11.
    [23] Z Q Shen. Principle of heat transfer augmentation by interracial vaporization heat sink. Progress in Natural Science, 1999, 9(10): 730-739.
    [24] N B Hospeti, R B Mesler. Deposits formed beneath bubbles during nucleate boiling of radioactive calcium sulfate solutions. AIChE J., 1965, 11: 662-665.
    [25] C Corty, A S foust. Surface variables in nucleate boiling. Chem. Eng. Prog. Syum. Ser, 1955, 51(16): 1-12.
    [26] A E Bergles, M C Chyu. Characteristics of Nucleate Pool Boiling from Porous Metallic Coatings. J. Heat Transfer, 1982, 104(2): 279-285.
    [27] S Oktay. Departure from natural convection (DNC) in low-temperature boiling heat transfer encountered in cooling micro-electronic LSI devices. Proceedings of the 7th International Heat Transfer Conference, Hemisphere Publishing Corp., 1982, 4: 113-118.
    [28] Bar-Cohen A, Simon T W. Wall superheat excursions in the boiling incipience of dielectric fluids. Heat Transfer Eng., 1988, 9 (3): 19-30
    [29] 孙长贵,于志家,丁洁,徐维勤,沈自求.两相流载气蒸发研究和传热数据关联.化工学报,1988,39(6):659—665.
    [30] D E Hall, F P Incropera, R Viskanta. Jet impingement boiling from a circular free-surface jet during quenching: part 2-two-phase jet. J. Heat Transfer, 2001, 123: 911-917.
    [31] Wang Jun, Miao Jun, Liu Yun, Shen Ziqiu. Boiling heat transfer enhancement in a vertical annulus by introduction of air in liquid flow. Chinese journal of chemical engineering, 2004, 12(5): 633-638.
    [32] H S Liang, W J Yang. Nucleate pool boiling heat transfer in a highly wetting liquid on micro-graphite-fiber composite surfaces. Int. J. Heat Mass Transfer, 1998, 41 (15): 1993-2001.
    [33] S J Reed, I. Mudawar. Elimination of boiling incipience temperature drop in highly wetting fluids using spherical contact with a flat surface. Int. J. Heat Mass Transfer, 1999, 42(13): 2439-2454.
    [34] P Cooper. EHD enhancement of nucleate boiling. Trans ASME J Heat Transfer, 1990, 112: 458-464.
    [35] R Steinhagen, Muller-Steinhagen H, Maani K. Problems and Costs due to Heat Exchanger Fouling in New Zealand Industries. Heat Transfer Engineering (US), 1993, 14(1): 19-30.
    [36] Muller steinhagen H. Fouling of heat exchanger surfaces. Chemistry & Industry, 1995, 6: 171-175.
    [37] Seider E N. Application of fouling factors in design of beat exchanger. Heat Transfer ASME, New York, 1935.
    [38] Epstien N. Fouling in heat exchangers. Proceed 6th Int. Heat Transfer Conf., Heat Transfer, 1978, 6: 235-253.
    [39] S H Najibi, H Muller-Steinhagen, M. Jamialahmad. Calcium sulphate scale formation during subcooled flow boiling. CES, 1997, 52(3): 1265-1285.
    [40] Hasson D, Avriel M, Resnick W. Rozenman T and Windreich S. Mechanism of calcium carbonate scale deposition on heat-transfer surface. I & EC Fundamentals, 1968, 7(1): 59-65.
    [41] Watkinson A P, Louis L and Brent R. Scaling of enhanced heat exchanger tubes. The Canadian Journal of Chemical Engineering, 1974, 52(10): 558-562.
    [42] Waborek J, Aoki T, Riter R B. Palen J W and Knuden J G. Fouling: the major unresolved problem in heat transfer. Chem. Eng. Prog., 1972, 68(2): 59-67.
    [43] Bohnet M and Augustin W. Efect of surface structure and pH-value on fouling behaviour of heatexchangers. The 6th International symposium on Transport Phenomena in Thermal Engineering, Seoul, 1993.
    [44] 杨传芳.碳酸钙于换热器表面上结疤的研究:(博士学位论文).大连:大连理工大学,1992.
    [45] Bansal B, Mtlller-Steinhagen H. Crystallization fouling in plate heat exchangers. ASME Journal of Heat Transfer, 1993, 115: 584-591.
    [46] 杨庆峰.换热面上结垢机理与抗垢机理的研究:(博士学位论文).大连:大连理工大学,1999.
    [47] Bramson D, Hasson D, Semiat R. The role of gas bubbling, wall crystallization and particulate deposition in CaSO4 scale formation. Desalination, 1995, 100: 105-113.
    [48] Helalizdeh A, Muller Steinhagen H, Jamialahmadi M. Mixed salt crystallization fouling. Chemical Engineering Processing, 2000, 39: 29-43.
    [49] Andritsos N, Karabelas A J. Scale formation in tubular heat exchangers-research priorities. Int. J. Therm. Sci., 2002, 41: 682—92.
    [50] Kern D Q, Seaton R E. Theoretical analysis of thermal surface fouling. Britain Chemical Engineering, 1959, 4(5): 258-262.
    [51] Bohnet M. Fouling of Heat Transfer Surface. Chem. Eng. Tech., 1987, 10: 113-125.
    [52] Krause S. Fouling of heat-transfer surface by Crystallization and sedimentation. International Chemical Engineering, 33(3): 355-401.
    [53] Partridge E P, White A H. Mechanism of formation of calcium sulphate boiler scale. I&EC Fundam, 1929, 21: 834-838.
    [54] Hospeti N B, Mesler R B. Deposits formed beneath bubbles during nucleate of radioactive calcium sulphate solutions. A. I. Ch. E. J., 1965, 11: 662-665.
    [55] Palethorpe S J, Bridgwater J. The influence of surface finish on calcium sulphate fouling. International Conference on Fouling in Process Plants, Oxford, 1988.
    [56] Palen J W, Westwater W. Heat transfer and fouling rates during pool boiling of calcium sulphate solutions. Chem. Engng Prog. Symp. Ser, 1966, 62: 77-86.
    [57] Gill J S, Nancollas G H. Kinetics of growth of calcium sulphate crystals at heated metal surfaces. Crystal Growth, 1980, 48: 34-40.
    [58] 刘中良,施明恒,戴锅生.结晶垢结垢过程的传质传热模型.化工学报,1997,48(4):401-407.
    [59] M Jamialahmadi, R Blochl, H Muller-Steinhagen. Bubble dynamics and scale formation during boiling of aqueous calcium solutions. Chem. Eng. Process, 1989, 26: 12-56.
    [60] Yang Qingfeng, Liu Yangqiao, Gu Anzhong. Investigation of Calcium Carbonate Scaling Inhibition and Scale Morphology by AFM. Journal of Colloid and Interface Science, 2001, 240(2): 608-621.
    [61] 纪芳田,包义华.循环冷却水处理基础知识.北京:化学工业出版社,1986.
    [62] 凯那兹著.李维音译.水的物理化学处理.北京:清华大学出版社,1982.
    [63] Frederick W J, Grace T M. Analysis of scaling in a black liquor. AICHE Symp. SER., 1979, 75(84): 95-113.
    [64] Mori H, Nakamura M, Toyama S. Crystallization fouling of calcium sulfate dehydrate on heat-transfer surfaces. Journal of Chemical Engineering of Japan, 1996, 29(1): 166-173.
    [65] Bansal B, Muller Steinhagen H, Chen X D. Effect of suspended particles on crystallization fouling in plate heat exchangers. Journal of Heat Transfer, 1997, 119: 568-574.
    [66] Muller Steinhagen H, Zhao Q. Investigation of low fouling surface alloys made by ion implantation technology. Chem. Eng. Sci., 1997, 52(19): 3321-3332.
    [67] Ren Xiaoguang, Zhao Q, Muller Steinhagen H. Journal of Chemical Industry and Engineering (China), 1999, 50(3): 404-406.
    [68] 郑少波,杜鹤桂.冷却水光磁协同处理技术.工业水处理,1998,18(1):9-11.
    [69] 齐金生,孟宪级,白丽萍.诱垢载体沉积式除垢技术的研究.工业水处理,1998,8(1):12.
    [70] 陈建生,李修伦,张少峰,林瑞泰.气液固三相循环流化床蒸发器强化传热和防垢研究.化学工业与工程,2000,17(1)15-18.
    [71] Selman J R, Mass-Transfer Measurements by the limiting-current technique. Advances in chemical engineering, 1978, 10(4): 211-318.
    [72] Burdukov A P, Kuvshinov G G. Investigation of the boiling mechanism by the electrodiffusion method. Heat Transfer-Soviet Res, 1981, 13(3): 101-118.
    [73] 化学工程手册.第1篇,北京:化学工业出版社,1980.
    [74] Kenning D, Yang Y. Pool boiling heat transfer on a thin plate: Features revealed by liquid crystal thermography. Int. J. Heat Mass Transfer, 1996, 39(5): 3117-3137.
    [75] Ming-Heng Shi, Ji Ma, Bu-Xuan Wang. Analysis on Hysteresis in nucleate pool boiling heat transfer. Int J Heat Mass Transfer, 1993, 36(18): 4461-4466.
    [76] Chien L H, Webb R L. A nucleate boiling model for structured enhanced surfaces. Int. J. Heat Mass Transfer, 1998, 41(14): 2183-2195.
    [77] H Muller-Steinhagen. Fouling: the ultimate challenge for heat exhanger design. 6th International Symposium on Transport Phenomena in Thermal Engineering, South Korea, 1993.
    [78] D Schondelmaier, S Cramm, R Klingeler, J Morenzin, Ch Zilkens, W Eberhardt. Orientation and self-assembly of hydrophobic fluoroalkylsilanes. Langmuir, 2002, 18(16): 6242-6245.
    [79] 中村胜吾著.张兆祥译.表面物理.北京:学术书刊出版社,1989.
    [80] Melia T R. Crystal nucleation from aqueous solution. J. Appl. Chem., 1965, 15(8):345-357.
    [81] B D Crittenden, N J Alderman. Negative fouling resistances: The effect: of surface roughness. Chemical Engineering Science, 1988, 43(4):829-838.
    [82] Wang J, Shen Z Q. Study of nucleate boiling heat transfer with concept of "interfacial vaporization heat sink" Heat Trans. Sci. and Tech. Heat Transfer Science and Technology 2000, Edited by Bu-Xuan Wang, Higher Education Press. 2000, 433-438.
    [83] Konak A R. A new model for surface reaction-controlled growth of crystals form solution. Chemical Engineering Science, 1974, 29:1537-1543.
    [84] W M Ronsenow. Pool boiling. In Handbook of Multiphase Systems (Edited by G. Hestroni). McGraaw-Hill-Hemisphere, New York, 1982.
    [85] B X Wang, J Ma, M H Shi. Hysteresis characteristics of nucleate pool boiling heat transfer. 3rd National Conference incorporating 1st European Conference on Thermal Science, Birmingham UniversityU. K., 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700