活性半焦的制备及其净化甲苯废气的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,广东省有为数众多的企业在生产过程中排出大量含苯系有机废气,其采用的废气处理方法大多是活性炭吸附法,由于活性炭在使用中受到吸附容量、再生、成本、操作等诸多因素的制约,使企业迫切需要新型的废气处理工艺及方法。而在我国山西、陕西、内蒙、贵州等这些贫油富煤的省份蕴藏着大量的弱粘结性煤,其居民煤气工程多采用直立炉造气,副产大量半焦,这些半焦堆积如山,严重污染环境。因此,从环境与洁净煤技术利用角度考虑,亟待开发利用这些半焦的新思路和新产品。
     本课题在综述国内外文献的基础上,以我国工业半焦为原料来制备有机废气吸附剂,着眼于改进活性半焦的制备工艺,提高其对有机废气的吸附性能。实验所选原料半焦分别来自于陕西神木和山西大同,采用不同浓度的HNO_3、H_2O_2在不同温度下对原料半焦进行活化,以及负载表面活性剂进行深度活化和改性,共制备出30余种活性半焦。利用固定床反应器进行活性评价,研究了改性温度、空速对有机废气吸附性能的影响;借助物性参数测定与结构表征,研究影响活性半焦吸附有机废气的内在因素;考察了活性半焦制备过程中不同酸洗浓度以及活化工艺参数对所得活性半焦吸附有机废气性能的影响结果。
     固定床活性评价结果表明:原料半焦是吸附剂吸附性能的决定因素,比表面积和孔容较大、挥发份含量较低的半焦适宜制备有机废气吸附剂。10~20目的大同半焦用30%的硝酸浸泡,在20℃的恒温振荡器中振荡24h,水洗干燥后制备的活性半焦对甲苯的吸附性能较原料半焦有显著的提高。且在空速为2000h~(-1)时对甲苯的吸附性能最佳。
     实验结果进一步表明:
     高温浸泡改性的半焦对甲苯的吸附活性改善较好,故对半焦进行高温处理是提高其对甲苯吸附活性必不可少的步骤之一。
     制备改性半焦吸附剂的最佳实验条件是将10~20目的大同半焦用45%的硝酸在80℃的恒温水浴锅中浸泡24h,再用蒸馏水洗至清洗液的pH值与蒸馏水的pH值基本一致。洗涤完后放入110℃烘箱中干燥至恒重。该条件下制备的半焦吸附剂对甲苯的吸附容量达到50.29g甲苯/100gC。
At present, there are a large number of enterprises discharging great amount of benzene organic exhaust gas in the course of production in Guangdong province. These enterprises usually use activated carbon adsorption to treat organic exhaust gas. But now they are crying for some new-style treatments and technology, because a good many matters restrict activated carbon, such as adsorption capacity, regeneration, cost, manipulation, etc. And that many provinces hold great amount of feebleness felt coal in store in our country, though they have not too much oil. People there generally adopt erective kilns to produce coal gas, at the same time produce a great deal of semi-coke. Mass semi-coke piled up look as if mountains, which is serious pollution for environment. Therefore, thinking over environment and clean coal technology, we must seek ask for some new method and production to make use of semi-coke.
     On the basis of national and international literature summarization, this thesis focus on the preparation methods of activated semi-coke in order to increase adsorption capacity for toluene organic exhaust gas. In this experiment, two kinds of raw semi-coke are selected, that is ShenMu semi-coke from ShanXi province and DaTong semi-coke from ShanXi province. After pre-activation they are modified with HNO_3 and H_2O_2 at the condition of differently concentration and temperature, as well as loaded surface active agent. And about thirty samples of activated semi-cokes are prepared. The fixed-bed reactor is used to test adsorption property and study the influence of temperature and space velocity on toluene adsorption effect. By means of the measurements of physical property and structure, the effect factor of activated semi-coke adsorption is investigated. Furthermore the effects of different acid washing concentration as well as the factors of activation process on the adsorption properties of obtained activated semi-coke were studied.
     Through evaluation of toluene adsorption properties, it is concluded that: the raw material is the decisive factor of toluene adsorption property. The semi-coke which has larger specific surface area, pore and lower volatility is propitious to be modified as toluene sorbent. The DaTong raw semi-coke samples need to be crushed into 10~20 mesh and then, they are activated by soaking 30% nitric acid and vibration at normal temperature for 24 hours, after washing and drying the sample is a super activated semi-coke with high toluene adsorption capacity and long breakthrough time. Besides the optimal space velocity is 2000h~(-1).
     Results of our experiments show:
     Through soaking at higher temperature, activated semi-coke gain high performance toluene adsorption, so which is considered to be the absolutely necessary step to improve toluene adsorption.
     The optimum conditions for preparation of activated semi-coke are: 10-20 mesh DaTong semi-coke soaked by 45% nitric acid , temperature 80℃, 24 hours and then washed and drying. The toluene capacity of the adsorbent is 50.29g toluene/100gC.
引文
[1] 大气污染物综合排放标准(GB16297-1996)[S].
    [2] 国家城市环境污染控制工程技术研究中心.北京市环境保护科学研究院.三废处理工程技术手册(废气卷)[M].北京:化学工业出版社.2000,158-160.
    [3] 谢玉亮.空气中的有害物质手册[M].机械工业出版社,1993:97-98.
    [4] 王延吉主编.化工产品手册(第四版)——有机化工原料[M].北京:化学工业出版社.2004,388-389.
    [5] 童志权,陈焕钦.工业废气污染控制与利用[M].北京:化学工业出版社.2001.
    [6] Sherwood B.J. The future of U.S. VOC regulations[J]. Metal finishing.2005, 103(7-8):44-45.
    [7] Yang Miao, Zhang J.S, Li H, Dong T.Q, Gao X.F. Determination of building materials' transport properties for modeling VOC emissions[A]. ASHRARE Transactions. 2005, 111(1):88-100.
    [8] Lu Yan-Li, Li Chun-Yan, Wang Xin-Jie, Yong Feng. Study on VOC emissions from general E1 panels[J]. J. Harbin Inst. Technol[J]. 2007,14:237-240.
    [9] Showalter John, Hunt Timothy, Price Eddie. New directions in VOC/HAP destruction[J]. Solutions. 2005,88(3):37-39.
    [10] 林小丹.活性炭纤维制备及其对几种有机蒸汽的吸附研究[D].广州:中山大学.2005.
    [11] 白洪亮.活性炭吸附法脱除低浓度苯系物的研究[D].大连:大连理工大学.2006.
    [12] 蔡健.改性活性炭纤维对甲醛吸附性能的研究[D].武汉:武汉大学.2003.
    [13] 王长林.颗粒活性炭表面改性技术净化多组分挥发性有机废气的研究[D].天津:天津大学,2004.
    [14] Ki-Joong Kim, Chan-soon Kang, Young-Jae You, Min-Chul Chung, Myung-Wu Woo, Woon-Jo Jeong, Nam-Cook Park, Ho-Geun Ahn. Adsorption-desorption characteristics of VOCs over impregnated activated carbons[J]. Catalysis Today, 2006, 111: 223-228.
    [15] 何滢滢,潘涌璋.吸附浓缩—催化燃烧法处理有机废气[J].环境工 程.1997,15(4):34-36.
    [16] 欧海峰,林金画.活性炭纤维吸附—催化燃烧装置处理有机废气[J].环境污染与防治.2002,24(2):85-87.
    [17] 李守信,金平,张文智,王英杰,彭通乐,王雪.采用活性炭纤维吸附装置回收VOC的优点分析[J].化工环保.2004,24:274-276.
    [18] Subrenat Albert S, Le Cloriec, Pierre A. Volatile organic compound(VOC)removal by adsorption onto activated carbon fiber cloth and electrothermal desorption: An industrial application[J]. Chemical Engineering Communications. 2006,193(4):478-486.
    [19] 陈秋燕,袁文辉,关建郁.影响活性炭吸附苯系物条件的研究[J].华南理工大学学报(自然科学版).2000,28(10):117-120.
    [20] 李湘凌,林岗,周元祥,王资荣.复方液吸收法处理低浓度苯类废气[J].合肥工业大学学报.2002,25(5):794-796.
    [21] 黄小林,金毓荃,刘婕,李明,李华.用水—柴油吸收剂处理含苯废气[J].北京工业大学学报.1999,20(1):32-34.
    [22] 罗教生.用水—洗油吸收剂处理含苯类废气的研究[J].环境与开发.1999,14(3):19-20.
    [23] 程丛兰,黄小林,郎爽,耿红.苯系物新型吸收剂的研究[J].北京工业大学学报.2000,26(1):107-111.
    [24] 郝吉明,马广大主编.大气污染控制工程(第二版)[M].北京:高等教育出版社.2002.
    [25] 谢兰英,罗灵爱,李忠.热电冷凝VOCs[J].广东化工.2005,6:11-14.
    [26] 王宝庆,马广大,陈剑宁.挥发性有机废气净化技术研究进展[J].环境污染治理技术与设备.2003,4(5):47-51.
    [27] S. Majumdar, D. Bhaumik, K. K. Sirdar, G. Simes. A pilotscale demonstration of a membrane-based absorption-stripping process for removal and recovery of volatile organic compounds [J]. Environmental Progress.2001,20(1):27-35.
    [28] B. Xia, S. Majumdar and K. K. Sirdar. Regenerative oil scrubbing of volatile organic compounds from a gas stream in hollow fiber membrane devices[J]. Ind. Eng. Chem. Res. 1999,38:3462-3472.
    [29] T. K. Poddar, S. Majumdar and K. K. Sirdar. Membrane based absorption of VOCs from a gas stream[J]. AIChEJ. 1996,42(11):3267-3282.
    [30] 牛学坤,陈标华,周集义.清楚废气中VOC的流向变换催化燃烧技术进展[J].环境污染治理技术与设备.2000,1(2):87-95.
    [31] 苑宏英,郭静.VOCs恶臭污染物质的污染状况和一般处理方法[J].四川环境.2004,23(6):45-49.
    [32] R Changrani, G B Raupp. Performance Evaluation of a Titania-coaled Reticulaed From Photocatalytic Oxidation Reactor [J]. J. Adv. Oxid. Tech. 1998,3(3):277-284.
    [33] Gonzalez-Martin, A S Jeecarajan, O J Murphy. Photodegradation of Organic Compounds in the Vapor Phase Using TiO_2-Coated Optical Fibers [J]. J. Adv. Oxid. Tech. 1998,3(3):253-260.
    [34] 田森林,宁平.有机废气治理技术及其新进展[J].环境科学动态.2000,1:23-28.
    [35] 梁亚红,张鹏,马广大.气体放电光催化去除VOCs的实验研究[J].环境工程.2004,22(2):46-49.
    [36] Wessling R, Andersen C.P, Hoqsett W.E, Plocher M. Ozone Decreases Spring Root Growth and Root Carbohydrate Content in Ponderosa Pine the Year Following Exposure[J]. Erzmetall. 1991,44(4): 196-200.
    [37] B M Penetrante, J N Bardsley, M C Hsiao. Kinetic analysis of non-thermal plasma used for pollution contral[J].Jpn. J. Appl. Phys.,1997,36:5007~5017.
    [38] J S Chang, T Yamamoto, H Kohno, etal. Removal of xylene, trichloroethylene and their mixtures from air stream by a pulsed corona discharged induced plasma reactor[J]. J. Adv. Oxidation Technol.,1997,2(2):346-352.
    [39] Y Miyagawa, Y Ehara, H Kishida, etal. Effect of oxygen on decomposition of volatile organic compounds by silent discharge[A].in:Proceedings of the Asia-Pacic Workshop on AOT[C]. 1998:83-86.
    [40] A Ogata, N Shintani. Decomposition of benzene using a nonthermal plasma reactor packed with ferroelectric pellets[J]. IEEE Trans. Ind. Appl., 1999,35(4):753-759.
    [41] A Ogata, K Yamanouchi. Decomposition of benzene using alumina-hybrid and catalyst-hybrid plasma reactor[J]. IEEE Trans. Ind. Appl., 1999,35(6): 1289-1295.
    [42] H Kohno, A A Berezin, J S Chang, etal. Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor[J]. IEEE Trans. Ind. Appl., 1998, 34: 953-966.
    [43] T Oda, etal. Non-thermal plasma processing for environmental protection: decomposition of dilute VOCs in air[J]. J. Electrostatics. 2003, 57: 293-311.
    [44] M Nifuku, M Horvath, J Bodnar. A study on the decomposition of volatile organic compounds by pulse corona[J]. J. electrostatics. 1997, 40(41): 687-692.
    [45] A Ogata, D Ito. Removal of dilute benzene using a zeolite-hybrid plasma reactor[J]. IEEE Trans. Ind. Appl. Vol., 2001, 37(4): 959-964.
    [46] Duan Li, Yakushiji, etal. Decomposition of toluene by streamer corona discharge with catalyst[J]. J. Electrostatics. 2002, 55: 311-319.
    [47] 周勇平,高翔,吴祖良,骆仲泱,魏恩宗,倪明江,岑可法.直流电晕自由基簇射治理甲苯的试验研究[J].环境科学.2003,24(4):136-139.
    [48] Jorge C Atoche, William M Moe. Treatment of M E K and Toluene Mixtures in Biofilers: Effect of Operating Strategy on Performance During Transient Loading[EB/OL]. www.interscience.wiley.com. 2004-03-26. 468-481.
    [49] Aaron B Neal, Raymond C Loehr. Use of biofllters and suspended growth reactors to treat VOCs[J]. Waste Management.2000, 20: 59-68.
    [50] William M Moe, Robert L Irvine. Effect of nitrogen limitation on performance of toluene degrading biofilters[J]. Wat. Res., 2001, 35(6): 1407-1414.
    [51] Rubio B. Izquierdo M T, Mustral A M. Influence of low-rank coal char properties on their SO_2 removal capacity from flue gases: 1. Non-activated chars [J]. Carbon. 1997, 35: 1005-1011.
    [52] Rubio B. Izquierdo M T, Mustral A M. Influence of low-rank coal char properties on their SO_2 removal capacity from flue gases:2. Activated chars[J]. Carbon. 1998, 36: 263-268.
    [53] 李彦旭,李春虎,上官炬,樊惠玲,沈芳.改性半焦脱除烟气中二氧化硫的研究.环境污染与防治(网络版),2004,10.
    [54] 郑仙荣,李春虎,上官炬,房靖华,张振荣.活性半焦脱除烟道气中SO_2的研究[J].太原理工大学学报.2003,34(3):276-281.
    [55] 上官炬,李转丽,杨直,樊惠玲,沈芳,苗茂谦.高温热处理对活性半焦烟气脱硫的影响[J].太原理工大学学报.2005,36(2):134-136.
    [56] 张香兰,张磊,张蕾.吸附催化条件对活性半焦(炭)脱硫性能的影响[J].煤炭学 报.2004,29:105-107.
    [57] 刘清雅.活性半焦脱除烟气中的SO_2研究[D].太原:太原理工大学.2001.
    [58] 李春虎.化学和能源等工业中的气体脱硫净化[J].化肥设计.2005,43(1):27-32.
    [59] 乔海星.半焦烟气脱硫及其工业化问题研究[D].太原:太原理工大学.2003.
    [60] 汤海.活性半焦脱除烟气二氧化硫的研究[D].北京:北京化工大学.2005.
    [61] 郑仙荣.改性活性半焦脱硫剂制备方法研究与性能测试[D].太原:太原理工大学.2003.
    [62] Shangguan Ju, Li Chunhu, Li Yanxu, etal. Study on removal of sulfur dioxide in flue gas using activated semicoke[C]. 4th Korea-China Joint Workshop On Clena Energy Technology Proceeding. Korea,2002:192-194.
    [63] 李亚峰,王春敏,陈健.用MnO_2改善褐煤活性焦脱硫性能的研究[J].化工矿物与加工.2003,(5):11-29.
    [64] 冯治宇,王英刚,马锦,程五良.用于烟气脱硫脱氮的活性焦的研制[J].化工环保.2002,22(5):293-296.
    [65] 马建蓉,刘守军,刘振宇,朱珍平.新型Ca/AC脱硫剂的研究[J].煤炭转化.2001,24(4):48-53.
    [66] 熊飞,姚新辉,何毅.褐煤半焦用于烟气脱硫研究[J].洁净煤技术.1998,4(2):40-42.
    [67] 郑仙荣,李春虎,房靖华.改性半焦脱除烟气中SO_2的研究[J].环境污染与防治.2005,27(7):498-500.
    [68] Qingya Liu, Chunhu Li, Yanxu Li. SO_2 removal from flue gas by activated semi-cokes 1.The preparation of catalysts and determination of operating conditions[J]. Carbon.2003,41:2217-2223.
    [69] Qingya Liu, Ju Shang Guan, Jianggang Li, Chunhu Li. SO_2 removal from flue gas by activated semi-cokes 2.Effects of physical structures and chemical properties on SO_2 removal activity[J]. Carbon.2003,41:2225-2230.
    [70] 田芳.改性活性半焦脱除燃煤电厂烟气中的SO_2[D].太原:太原理工大学.2000.
    [71] 赵宗彬,李文,李保庆.氧气对半焦还原NO反应的作用机理研究[J].中国矿业大学学报.2001,30(5):484-491
    [72] 刘守军,刘振宇,朱珍平,牛宏贤.CuO/AC低温脱除烟气中SOx和NOx的研究 [J].燃料化学学报.1999,27:192-199.
    [73] 赵宗彬,管仁贵,李保庆.CO和O_2气氛下煤中矿物质对NO-半焦还原反应的影响[J].燃料化学学报.2001,29(3):232-237.
    [74] 赵宗彬,李保庆.煤中矿物质对NO-半焦还原反应的影响[J].燃料化学学报.2001,29(2):129-134.
    [75] 赵宗彬,李文,李保庆.半焦负载钙和铁催化还原NO的研究[J].环境科学.2001,22(5):17-21
    [76] 赵宗彬,李保庆.煤半焦负载钠催化还原NO的研究[J].环境工程.2001,19(2):29-32.
    [77] 常慧,李保庆.SO_2气氛下半焦负载Na,Ca,Fe对NO-半焦还原反应的影响[J].中国矿业大学学报.2003,32(2):152-156.
    [78] 乔晋红,赵炜,谢克昌.煤半焦吸附性的实验研究[J].太原理工大学学报.2003,34(6):635-637.
    [79] 张华伟,赵炜.张永发.半焦在富含甲烷气体转化制备合成气中的作用[J].煤炭转化.2005,28(1):40-42.
    [80] 张华伟.煤半焦在焦炉煤气转化制备合成气中的作用[D].太原:太原理工大学,2005.
    [81] 白宗庆,陈皓侃,李文等.热重.质谱联用研究焦炭在甲烷气氛下的热行为[J].燃料化学学报.2005,33(4):426-430.
    [82] 李玉洁,王鹏,赵炜,张永发.半焦对富含甲烷气体转化制备合成气的作用(Ⅱ)改性半焦对CO和H_2反应生成CH_4的作用[J].煤炭转化,2007,30(1):34-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700