油溶性纳米TiO_2防锈机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术、表面分析技术的飞速发展,许多学者期望把纳米粒子作为研制新型润滑油添加剂的突破口,从而实现润滑油性能质的飞跃。由于纳米粒子的小尺寸效应、表面效应,使纳米TiO2表面存在大量的羟基,具有较大的比表面积和较高的表面能,因而极易团聚,在润滑油中难以均匀分散,并且稳定性极差。为了有效控制纳米TiO2粒子的粒径,提高在润滑油的分散稳定性,必须对纳米粒子表面进行有机修饰。
     本文以油酸和十二烷基三甲氧基硅烷(DTMS)为表面修饰剂,研究或改进纳米TiO2粒子的制备和表面修饰工艺,制备在润滑油中具有良好分散稳定性的油溶性纳米TiO2粒子;系统研究纳米TiO2粒子对润滑油腐蚀与防护性能的影响,及其在润滑油中的腐蚀与防护作用机理;在此基础上对纳米粒子作为润滑油添加剂的可行性进行分析,并应用于新型军械油料产品的设计和开发。
     采用微乳液原位合成法,制备了油酸修饰的油溶性纳米TiO2粒子,所得油酸修饰纳米TiO2粒子粒径分布均匀,平均粒径44nm,并且修饰剂油酸和纳米粒子之间不是简单的物理吸附,而是形成稳定的双齿螯合共价键结构。由于表面修饰剂层的存在,阻止了纳米粒子在基础油中的团聚和沉淀。油酸修饰纳米TiO2粒子有助于增加基础油对金属的防锈性能,油酸:钛酸丁酯为3:4,添加量为5%(质量百分比)时,基础油的防锈效果最好,盐水浸渍试验时间为9h;湿热试验时间为463h,缓蚀效率达到88.21%。
     采用液相沉淀法制备了十二烷基三甲氧基硅烷(DTMS)修饰的油溶性纳米TiO2粒子,修饰温度40℃、修饰时间12h、修饰剂与Ti为2:1(摩尔比)时,所得粒子具有最佳亲油化度和分散稳定性。在基础油中粒径基本呈正态分布,平均粒径60nm左右。纳米TiO2粒子表面的DTMS修饰膜,有效控制了粒径的过度增长,避免粒子间的团聚,增强了纳米TiO2在基础油中的分散稳定性。基础油中加入5%(质量百分比)纳米TiO2粒子,可有效提高油膜对金属表面的防锈性能。
     采用电化学阻抗技术,研究了添加纳米TiO2的基础油对金属表面防锈机理,金属腐蚀过程可分为四个阶段:点蚀诱导期、点蚀发展期、腐蚀中期和全面腐蚀期。油溶性纳米TiO2粒子防锈作用主要体现在延长金属表面的点蚀诱导期和点蚀发展期。
     根据纳米粒子在润滑油品中防锈机理,以及军械油品的特殊要求,对纳米TiO2粒子进行了应用研究,采用油溶性纳米TiO2作为防锈添加剂,成功研制了液气悬挂装置工作液。性能评价表明:该纳米粒子与其它油品添加剂相容性好,对油品高低温性能无负面影响,可显著提高防锈性能和润滑性能。
With the rapid development of nano and surface modification technology, manyscholars expected a breakthrough in the application of nanoparticles as new lubricantadditives,and significant achievement in the qualitative leap of lubricant performance.Because of small size effect and surface effect, there are a large number of hydroxylgroups on nano-TiO2surface,so the nanoparticles were vulnerable to agglomeration.Itwas difficult for nanoparticles to dispersing in oil. In order to effectively controllingsize of nano-TiO2particles,and improveing the dispersion stability in the lubricatingoil, organic surface modification was employed.
     In this paper, the process of preparation and surface modification of nano-TiO2particles using oleic acid and DTMS as modifier was studied. Oil-soluble TiO2nanoparticles which had excellent suspension stability and dispersion stability inlubricating oil were prepared. Influence of TiO2on anticorrosive properties oflubricating oil and anticorrosive mechanism was researched. The feasibility of TiO2asanticorrosive additives was explored, and the obtained TiO2was successfully appliedin new ordnance oil.
     TiO2nanoparticles modified by oleic acid were prepared by the in-situ synthesismethod. The particles were relatively uniform with average particle size of44nm. Theinteraction between carboxyl and nanoparticles was not physical adsorption, but viathe formation of bidentate chelate. The modified layer on the surface of TiO2nanoparticles prohibited effectively the agglomeration of particles while improved theanticorrosion properties of lubricating oil. The highest anticorrosive properties of TiO2nanoparticles in lubricating oil were found under the conditions of modifyingagent:TiO2=3:4(mol) by adding5%(mass)TiO2.
     TiO2nanoparticles modified by DTMS were prepared by the liquid phasedeposition method. The highest lipophilic degree and suspension stability of TiO2nanoparticles in lubricating oil were showed with the modifying agent:TiO2=2:1(mol)and modified time of12h at40℃. The particle size distribution in lubricating oil wasalmost gaussian distribution with the average particle diameter of60nm.According tothe results of FT-IR and TEM, the modified layer on the surface of TiO2nanoparticlescontrolled effectively the excessive growth of particles, prevent the agglomeration ofparticles, and enhanced the suspension stability and dispersion stability ofnanoparticles in lubricating oil. According to the results of electrochemical experiment and humidity cabinet test, the anticorrosive properties of oil film wasimproved evidently by adding5%(mass)TiO2to lubricating oil.
     Anticorrosive Mechanism of oil-soluble TiO2nanoparticles in0.5%neutral NaClsolutions were studied by electrochemical impedance spectroscopy.The wholecorrosion processes could be separated into several periods:(l) induction period ofpitting corrosion;(2) development period of pitting corrosion;(3) general corrosionregion;(4) accelerated corrosion region. The anticorrosive ability of oil-soluble TiO2was mainly reflected in increasing induction period of pitting corrosion anddevelopment period of pitting corrosion.
     On the basis of the above research and special demand of the ordnance oil, theapplication research of oil-soluble TiO2nanoparticles modified by DTMS werecarried out. Thereafter the working fluid for oil-gas suspension was preparedsuccessfully using TiO2as anticorrosive additives. The studies indicated that TiO2nanoparticles had compatibility to other oil additives. No negative effect was found onhigh and low temperature performance of the working fluid. Because of the TiO2nanoparticles, the anticorrosive properties and lubricating performance of the workingfluid were significantly increased.
引文
[1]袁学军,防锈油现状及发展趋势,润滑油,2007,22(6):61-64
    [2]刘建国,李言涛,侯保荣.防锈油脂概述.腐蚀科学与防护技术.2008,20(5):372-376
    [3]邓象贤,张志东,黄劲松.一种溶剂稀释型软膜防锈油的研制.石油商技.2012,8(4):32-37
    [4]王全想,钱晋,李剑波,等.轴承软膜防锈油的研制.润滑油.2011,26(3):10-13
    [5]武玉玲.防锈油脂发展现状.石油商技.2001,19(6):1-5
    [6]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术.北京:化学工业出版社,2006
    [7]龚敏.金属腐蚀理论及腐蚀控制.北京:化学工业出版社,2009
    [8]曹楚南.腐蚀电化学原理.北京:化学工业出版社,2008
    [9]曹楚南,张鉴清,电化学阻抗谱导论.北京:科学出版社,2002
    [10] J. F. Chen, W. F. Bogaerts, Electrochemical emission spectroscopy for monitoring uniformand localized corrosion. Corrosion.1996,52(10):753-759
    [11] B. Reddy, J. M. Sykes, Degradation of organic coatings in a corrosive environment: studyby scanning kelvin probe and scanning acoustic microscope. Progress in Organic Coatings.2005,52:280-287
    [12] A. P. Nazarov, D. Thierry, Scanning kelvin probe study of metal/polymer interfaces.Electrochimica Acta.2004,49:2955-2964
    [13] I. M. Zin, S. B. Lyon, A. Hussain, Under-film corrosion of epoxy-coated galvanized steel:An EIS and SVET study of the effect of inhibition at defects. Progress in Organic Coatings,2005,52:126-135
    [14] A. C. Bastos, M. G. S. Ferreira, A. M. Sim es. Comparative electroehemical studies of zincchromate and zinc phosphate as corrosion inhibitors for zinc. Progress in Organic Coatings,2005,52:339-350
    [15]高启,刘鹤鸣.电化学阻抗谱在缓蚀剂研究中的应用进展.石油化工腐蚀与防护.2008,25(1):6-9
    [16]史洪微,刘福春,韩恩厚.纳米SiO2含量对环氧清漆耐腐蚀性影响研究.腐蚀科学与防护技术.2009,21(2):215-217
    [17]张雷,国大鹏,路民旭.Cl-1含量对钢腐蚀行为的影响.中国腐蚀与防护学报.2009,29(1):64-68
    [18]褚道葆,张金花,冯德香.纳米TiO2膜电极的电化学阻抗谱.应用化学.2006,23(3):251-255
    [19]尹荔松,向成承,闻立时,等.TiO2薄膜的光电催化性能及电化学阻抗谱研究.世界科技研究与发展.2007,29(3):1-5
    [20]马景灵,文九巴,卢现稳,等.铝合金阳极腐蚀过程的电化学阻抗谱研究.腐蚀与防护.2009,30(6):373-376
    [21] M.L. Zheludkevich, K.A. Yasakau, A.C. Bastos, et al. On the application ofelectrochemical impedance spectroscopy to study the self-healing properties of protective coatings.Electrochemistry Communications.2007,9:2622–2628
    [22] M. Lebrini,G. Fontaine,L. Gengembre,et al. Corrosion protection of galvanized steel andelectroplating steel by decanoic acid in aqueous solution: Electrochemical impedancespectroscopy, XPS and ATR-FTIR. Corrosion Science.2009,51:1201–1206
    [23] Mustafa Anik,Gizem Celikten. Analysis of the electrochemical reaction behavior of alloyAZ91by EIS technique in H3PO4/KOH buffered K2SO4solutions. Corrosion Science.2007,49:1878–1894
    [24] U.C. Nwaogu, C. Blawert,N. Scharnagl,et al. Effects of organic acid pickling on thecorrosion resistance of magnesium alloy AZ31sheet. Corrosion Science.2010,52:2143–2154
    [25] J.J. Suay,E. Gim_enez,T. Rodriguez,et al. Characterization of anodized and sealedaluminium by EIS. Corrosion Science.2003,45:611-624
    [26]刘晶晶,张逢星.无机纳米氧化物的表面修饰与改性.聊城大学学报(自然科学版).2007,20(3):40-44
    [27]崔小明.纳米二氧化钛的表面改性技术进展.化工文摘.2009,(6):25-28
    [28]周柳江,陈永.纳米二氧化钛表面改性的研究现状与展望.纳米科技.2008,2(4):71-75
    [29]徐惠,孙涛.硅烷偶联剂对纳米TiO2表面改性的研究.涂料工业.2008,38(4):1-3
    [30]姚超,高国生,林西平.硅烷偶联剂对纳米二氧化钦表面改性的研究.无机材料学报.2006,21(2):315-320
    [31] Sara L. Isley, R. Lee Penn.Titanium Dioxide Nanoparticles: Effect of Sol Gel pH on PhaseComposition, Particle Size, and Particle Growth Mechanism. Journal of Physical Chemistry C2008,112,4469-4474
    [32] Ki Do Kim, Dae Woo Choi, Yong-Ho Choa, et al.Optimization of parameters for thesynthesis of zinc oxide nanoparticles by Taguchi robust design method. Colloids and SurfacesA.2007,311:170–173
    [33] Chien-I Wu,Jiann-Wen Huang,Ya-Lan Wen,et al. Preparation of TiO2nanoparticles bysupercritical carbon dioxide. Materials Letters.2008,62:1923–1926
    [34] LIU Changsheng,MA Zhibin,LI Jun.Study on Modification of Nano-Sized AnataseTitanium Dioxide by Nitrogen-Plasma.Plasma Science&Technology.2006,8(3):311-315
    [35]龚海燕,李小红,张治军.油分散性氧化锌纳米微粒的制备及表征.无机化学学报.2006(22)3:426-430
    [36]徐彬,阮北,霍莉,等.硬脂酸表面修饰TiO2的合成及表征.微纳电子技术,2007,4:178-181
    [37]陈爽,刘维民.修饰剂对PbO纳米粒子摩擦学性能的影响.润滑与密封.2006,178(6):24-28
    [38]张晟卯,李健,吴志申,等.羧基功能化离子液体表面修饰TiO2纳米微粒的制备及结构表征.高等学校化学学报.2006,27(19):1615-1617
    [39]陈云华,林安,甘复兴.渗透水解TiCl4制备纳米TiO2.无机材料学报,2007,22(1):53-58
    [40]王彦红,王德松,李雪艳,等.溶胶-凝胶法制备纳米TiO2及其光催化活性的研究.河北科技大学学报.2007,28(3):202-205
    [41]蔡阿满,叶超贤,李红强,等.溶胶-凝胶法制备KH-570改性纳米二氧化钛及其表征.无机盐工业.2010,42(3):34-36
    [42]牛显春.纳米TiO2的制备及其对乙烯废水的光催化性能.工业水处理.2007,27(9):24-26
    [43]周亚民,余贵菊,江洪,等.硅烷偶联剂改性超细TIO2的研究.东莞理工学院学报.2008,15(5):99-104
    [44]刘琪,崔海信,顾微,等.硅烷偶联剂KH-570对纳米二氧化硅的表面改性研究.纳米科技.2009,6(3):15-18
    [45]杨茂,高峻,王钰修,等.纳米TiO2表面有机化改性的研究.化学研究与应用.2009,21(4):477-480
    [46]唐洪波,常文乐,马冰洁.六甲基二硅氮烷改性纳米二氧化钛工艺研究.无机盐工业.2009,41(2):33-35
    [47] Linda de la Garza, Zoran V. Saponjic, Nada M. Dimitrijevic, et al, Surface States ofTitanium Dioxide Nanoparticles Modified with Enediol Ligands. Journal of Physical Chemistry B.2006,110:680-686
    [48] YU He long,XU Yi,SHI Pei jing,et al.Tribological properties and lubricating mechanismsof Cu nanoparticles in lubricant.Transactions of Nonferrous Metals Society ofChina.2008,18:636-641
    [49] Y.Y. Wu, W.C. Tsui, T.C. Liu.Experimental analysis of tribological properties of lubricatingoils with nanoparticle additives. Wear.2007,262:819–825
    [50] Shuang Chen,Weimin Liu.Oleic acid capped PbS nanoparticles: Synthesis,characterizationand tribological properties. Materials Chemistry and Physics.2006,98:183–189
    [51] Hao Jie Song,Zhao Zhu Zhang.Study on the tribological behaviors of the phenoliccomposite coating filled with modified nano-TiO2. Tribology International.2008,41:396–403
    [52] Xiaohong Li,Zhi Cao,Zhijun Zhang,et al. Surface-modification in situ of nano-SiO2andits structure and tribological properties. Applied Surface Science.2006,252:7856–7861
    [53] A. Hernandez Battez,J.E. Fernandez Rico,A. Navas Arias,et al.The tribological behaviourof ZnO nanoparticles as an additive to PAO6. Wear.2006,261:256–263
    [54]卓洪,王文健,刘启跃.不同纳米添加剂下GCr15/45钢自修复性能研究.润滑与密封.2007,32(8):46-48
    [55]贾庆远,张玉娟,吴志申,等.表面溶胶-凝胶法制备TiO2薄膜的微观结构及其摩擦磨损性能研究.摩擦学学报.2007,27(5):432-436
    [56]张立,李久盛,伏喜胜,张龙华.油溶性纳米TiO2提高GL-5车辆齿轮油承载能力的研究.润滑与密封.2007,32(5):123-125
    [57] C.X. Shan, Xianghui Hou, Kwang-Leong Choy, Corrosion resistance of TiO2films grownon stainless steel by atomic layer deposition. Surface and Coatings Technology2008,202(11):2399-2402
    [58] C.X. Shan,Xianghui Hou,Kwang-Leong. Choy.Improvement in corrosion resistance ofCrN coated stainless steel by conformal TiO2deposition.Surface&Coatings Technology.2008,202:2147–2151
    [59] Zheludkevich M. L., D. G. Shchukin, Kiryl A. Yasakau, et al., Anticorrosion coatings withself-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chemistry ofMaterials2007,19(3):402-411
    [60] S. Sathiyanarayanan, S. Syed Azim, G. Venkatachari. A new corrosion protection coatingwith polyaniline-TiO2composite for steel, Electrochimica Acta,2007,52,2068–2074
    [61] L. Bamoulid,M.-T. Maurette, D. De Caro, et al.. An efficient protection of stainless steelagainst corrosion: Combination of a conversion layer and titanium dioxide deposit.Surface&Coatings Technology.2008,202:5020-5026
    [62] G. X. Shen,Y. C. Chen, L. Lin, et al., Study on a hydrophobic nano-TiO2coating and itsproperties for corrosion protection of metals. Electrochimica Acta.2005,50(25-26):5083-5089
    [63] Zubillaga O., F. J. Cano, I.Azkarate, et al., Corrosion performance of anodic filmscontaining polyaniline and TiO2nanoparticles on AA3105aluminium alloy. Surface and CoatingsTechnology.2008,202(24):5936-5942
    [64] Xiuzhi Zhang,Fuhui Wang,Yuanlong Du.Effect of nano-sized titanium powder addition oncorrosion performance of epoxy coatings. Surface&Coatings Technology.2007,201:7241–7245
    [65] Moucheng Li,Suzhen Luo,Pengfei Wu, et al.Photocathodic protection effect of TiO2filmsfor carbon steel in%NaCl solutions. Electrochimica Acta.2005,50:3401–3406
    [66]余祖孝,何清华,刘辉,等.Ni-P-TiO2(锐钛型)纳米化学复合镀及其耐蚀性能.腐蚀与防护.2007,28(6):289-292
    [67]肖正伟,曾振欧,赵国鹏,等.304L不锈钢上纳米TiO2涂层的制备与防腐蚀性能的研究.电镀与腐蚀.2007,26(7):35-38
    [68]肖正伟,曾振欧,赵国鹏,等.纳米TiO2涂层的制备及其在金属腐蚀防护中的应用.腐蚀与防护.2007,28(1):33-36
    [69] N. Padhy,Subhash Kamal, Ramesh Chandra,et al.Corrosion performance of TiO2coatedtype304L stainless steel in nitric acid medium. Surface&Coatings Technology.2010,204:2782–2788
    [70]张大全,廉进卫,高立新.气相防锈纸的电化学评价[J].材料保护.2006,39(9):53-55
    [71]周幸福,褚道葆,林昌健.不锈钢表面纳米TiO2膜的制备及其耐腐蚀性能[J].材料保护.2002,35(7):4-5
    [72]李恒,李澄.纳米TiO2复合涂层的制备及其对LYl2铝合金的防护性能影响.燕山大学学报.2011,35(1):57-61
    [73]胡俊华,关绍康,任晨星,等.镁合金负载TiO2薄膜的耐腐蚀性能研究.腐蚀科学与防护技术.2006,18(3):161-163
    [74] Otakar Frank,Martin Kalbac,Ladislav Kavan,et al.Structural properties and electrochemicalbehavior of CNT-TiO2nanocrystal heterostructures phys. stat. sol. A.2007,244,(11),4040–4045
    [75] Hongwei Shi, Fuchun Liu, Lihong Yang, et al.Characterization of protective performanceof epoxy reinforced with nanometer-sized TiO2and SiO2. Progress in Organic Coatings.2008,62:359–368
    [76] Dmitry G. Shchukin,S. V. Lamaka, K. A. Yasakau, M. L. Zheludkevich,et al. ActiveAnticorrosion Coatings with Halloysite Nanocontainers. Journal of Physical Chemistry C.2008,112,958-964
    [77] Heming Wang,Robert Akid.A room temperature cured sol–gel anticorrosion pre-treatmentfor Al2024-T3alloys. Corrosion Science.2007,49:4491–4503
    [78] Kiryl A. Yasakau, Mikhail L. Zheludkevich, Sviatlana V. Lamaka,et al. Ferreira.Mechanism of Corrosion Inhibition of AA2024by Rare-Earth Compounds, Journal of PhysicalChemistry B.2006,110:5515-5528
    [79] M. Heidarian, M.R. Shishesaza, S.M. Kassirihab, et al.Characterization of structure andcorrosion resistivity of polyurethane/organoclay nanocomposite coatings prepared through anultrasonication assisted process. Progress in Organic Coatings.2010,68:180-188
    [80] Mikhail L., Zheludkevich,Dmitry G., et al.Anticorrosion Coatings with Self-Healing EffectBased on Nanocontainers Impregnated with Corrosion Inhibitor. Chemistry of Materials.2007,19,402-411
    [81] N. Padhy,Subhash Kamal,Ramesh Chandra,et al.Corrosion performance of TiO2coatedtype304L stainless steel in nitric acid medium. Surface&Coatings Technology.2010,204:2782–2788
    [82] Tse-Min Wen,Kung-Hsu Hou, Ching-Yuan Bai,et al.Corrosion behaviour andcharacteristics of reforming chromized coatings on SS420steel in the simulated environment ofproton exchange membrane fuel cells. Corrosion Science.2010,52:3599–3608
    [83] T V Venkatesha, M K Pavithra,et al.The fabrication, characterization and electrochemicalcorrosion behavior of Zn-TiO2composite coatings. Physica Scripta.2011,84:1-10
    [84] Xiang Yu, Jun Wang,Milin Zhang,et al. Synthesis, characterization and anticorrosionperformance of molybdate pillared hydrotalcite/in situ created ZnO composite as pigment for Mg–Li alloy protection. Surface&Coatings Technology.2008,203:250–255
    [85]刘鹏鹏,左洪福,闫新星.环境友好型航空润滑油添加剂的研究现状及发展趋势.飞机设计.2012,32(2):68-71
    [86]张佳,杨红刚,陈琛,等.环境友好型含氮硼酸酯的防锈性能研究.武汉理工大学学报.2011,32(12):73-76
    [87]孙怀宇,于立富,李彤彤.纳米TiO2制备的研究进展.当代化工.2012,41(3):295-297
    [88]潘卉,肖莎莎,赵甜,等.纳米二氧化钛的原位有机表面改性及性能.河南大学学报(自然科学版).2012,42(3):267-273
    [89] Severin, K., J. Ledford, S. Ledford. Characterization of titanium and zirconium valeratesol-gel films [J]. Chemistry of Materials.1994,6(7):890-898
    [90] Neil T. McDevitt, William L. Baun, Infrared absorption study of metal oxides in the lowfrequency region (700-240cm1). Spectrochim Acta.1964,20:799
    [91] Perrin, F., V. Nguyen, J. L. Vernet. FT-IR spectroscopy of acid-modified titanium alkoxides:Investigations on the nature of carboxylate coordination and degree of complexation. Journal ofSol-Gel Science and Technology,2003,28(2):205-215
    [92] Doeuff, S., M. Henry, C. sanchez, et al., Hydrolysis of titanium alkoxides: modification ofthe molecular precursor by acetic acid. Journal of Non-crystalline Solids,1987,89(1-2):206-216
    [93] Ling Tang, Franz Redl,Yimei Zhu, et al,An Organometallic Synthesis of TiO2Nanoparticles, Nano Letters,2005,5(3):543-548
    [94] Cao L., H. Chen, M. Wang, et al, Photoconductivity study of modified carbonnanotube/oxotitanium phthalocyanine composites. J. Phys. Chem. B.,2002,106(35):8971-8975
    [95]邹玲,乌学东,陈海刚,等.表面修饰二氧化钛纳米粒子的结构表征及形成机理.物理化学学报,2001,17(4):305-309
    [96]李露,靳惠明,时军,等.有机杂环化合物对铝合金在3.5%NaCl介质中的缓蚀作用.化工学报.2012,63(11):3632-3637
    [97] Abboud, Y., A. Abourriche, T. Saffaj, et al., The inhibition of mild steel corrosion in acidicmedium by2,2'-bis (benzimidazole). Applied Surface Science,2006,252(23):8178-8184
    [98] Zheludkevich, M. L., I. M. Salvado. Sol–gel coatings for corrosion protection of metals.Journal of Materials Chemistry,2005,15(48):5099
    [99] A. A. Aksut, W. J. Lorenz, F. Mansfeld, The determination of corrosion rates byelectrochemical dc. and ac. methods-II systems with discontinuous steady state polarizationbehavior. Corrosion Science.1982,22:611
    [100]曹楚南,王佳,林海潮.氯离子对钝态金属电极阻抗频谱的影响.中国腐蚀与防护学报,1989,9(4):261-270
    [101] B. Kinsella, Y. J. Tan, S. Bailey, Electrochemical impedance spectroscopy and surfacecharacterization techniques to study carbon dioxide corrosion product scales. Corrosion,1998,54(10):835-841
    [102] Abboud, Y., A. Abourriche, T. Saffaj, et al., The inhibition of mild steel corrosion in acidicmedium by2,2'-bis (benzimidazole). Applied Surface Science,2006,252(23):8178-8184
    [103]翟海涛.环保型缓蚀剂的制备及其在金属防腐中的应用研究,[硕士学位论文].合肥工业大学硕士学位论文.2008:13-15
    [104]王佳,曹楚南,林海潮.孔蚀发展期的电极阻抗频谱特征.中国腐蚀与防护学报,1989,9(4):271-279
    [105]陈刚,刘光明,姚敬,等,有机硅/SiO2杂化涂层电化学阻抗研究.表面技术.2008,37(6):47-50
    [106]朱燕峰,张娟,张义永,等,溶胶-凝胶法制备改性TiO2纳米薄膜及其防腐蚀性能.物理化学学报.2012,28(2),393-398
    [107]薛超瑞.二氧化钛纳米管阵列的制备、超疏水改性及耐腐蚀性能,[硕士学位论文].中国海洋大学.2011:48-51
    [108]薛超瑞,董丽华,刘通,等.TiO2纳米阵列超疏水膜的制备及耐腐蚀性能.腐蚀科学与防护技术.2012,24(1):37-40
    [109]骆鸿,肖葵,董超芳,李晓刚,等.金属腐蚀微区电化学研究进展(2)局部电化学阻抗谱.腐蚀与防护.2009,30(8):511-514
    [110] Q. C. Zhang, J. S. WU, J. J. Wang, et al. Corrosion behavior of weathering steel in marineatmospheres. Materials Chemistry and Physics,2002,77(2):603-608
    [111]邓俊英.聚苯胺微纳米结构的制备及其在防腐蚀技术中的应用研究[硕士学位论文].中国科学院研究生院(海洋研究所).2010
    [112]王凤平,康万利,敬和民,等.腐蚀电化学原理、方法及应用.北京:化学工业出版社,2008:234,238-244,245-246.
    [113] J. J. De Daborenea. A. Conde, Intergranular corrosion of8090AI-Li: interpretation byelectrochemical impedance spectroscopy [J]. British Corrosion Journal,2000,35(1):48-53
    [114]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术.北京:化学工业出版社,2006:478-510
    [115]李先学,沈高扬,杨磊,等.纳米银粉表面包覆硅烷偶联剂改性研究.稀有金属.2011,35(4):613-616
    [116] XU Guilong,PI Pihui,HUANG Ermei,WEN Xiufang,et al. Preparation andCharacterization of Superhydrophobic/Superoleophilic Silica Film. Journal of the ChineseCeramic Society.2011,39(5):854-858
    [117] B. Souvereyns, K. Elen, C. De Dobbelaere,et al,Hydrothermal synthesis of a concentratedand stable dispersion of TiO2nanoparticles. Chemical Engineering Journal.2013,223:135-144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700