RNA遗传算法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为求解复杂优化问题的有效方法,遗传算法从问世之日就受到了人们的关注。遗传算法是模拟达尔文的生物进化理论而产生的一类随机优化算法,具有较强的全局寻优能力和较好的通用性。但是,传统的遗传算法也存在着一些缺点和不足,例如算法局部搜索能力差、容易陷入局部极值等。受生物RNA分子的编码和操作启发,把RNA分子编码和操作方式与遗传算法相结合,本文对RNA遗传算法展开深入研究,并将所提出的RNA遗传算法用于化工过程的建模问题。本文的主要研究成果如下:
     (1)针对传统遗传算法的个体随进化不断趋同,易导致早熟收敛的现象,受生物界相似个体竞争排挤现象的启发,提出了一种基于相似剔除策略的RNA遗传算法。该算法采用了基于碱基的四进制编码方式,并用RNA置换操作和RNA颈环操作代替传统的交叉操作。在选择操作中,通过增加相似剔除规则来剔除相似个体,以达到提高种群多样性,避免早熟收敛的目的。通过5个典型无约束测试函数的寻优实验,验证了该算法在避免早熟收敛上的有效性。将该算法用于三个动态系统建模的参数估计问题,结果表明所建模型能较好地反映实际系统的动态特性。
     (2)受生物遗传信息表达过程的启发,提出了一种基于蛋白质特性RNA遗传算法。.模拟生物遗传信息表达过程中DNA分子先转录成RNA分子再翻译成蛋白质分子的过程,设计了RNA再编码操作和蛋白质折叠操作。通过对典型测试函数的计算结果表明,所设计的新的交叉操作使RNA遗传算法在搜索精度和稳定性方面都有较大的提高。将该算法用在重油加氢裂解建模的参数估计中,仿真结果验证了该算法的有效性。
     (3)针对传统遗传算法的变异概率取值的盲目性,提出了一种基于信息熵动态变异概率RNA遗传算法。该算法中每一代个体的每一位的变异概率是根据当前种群中个体该位碱基的分布情况来设定,可克服传统变异概率的设定与当前种群个体特性无关的弊端。通过对4个典型测试函数寻优验证了该算法的有效性。用该算法求解短期汽油调合优化调度问题,仿真结果表明,该算法能获得更大的调合利润。
     (4)受生物膜结构的启发,提出了一种基于膜结构的分层RNA遗传算法。该算法将RNA遗传算法嵌入膜系统中,2个膜子系统的RNA遗传算法的计算结果作为外部表层膜系统的RNA遗传算法的部分初始种群。针对具有约束的非线性测试函数的寻优结果表明,该算法具有满意的寻优精度。将该算法用于求解短期汽油调合优化调度问题,仿真结果表明,该算法得到的调合利润高于其它2种优化算法得到的结果。
     (5)提出了一种变搜索空间的RNA遗传算法。该算法根据进化过程中种群个体的分布情况,对搜索空间做出适当的调整以减小对无效空间的搜索。通过5个典型测试函数寻优实验验证了该算法的有效性。将该算法用于CSTR神经网络建模问题,仿真实验结果表明,用该算法优化得到的神经网络具有较高的拟合精度和较小的网络复杂度,较好的反映了实际系统特性。
As an effective method to solve complex optimization problems, genetic algorithm (GA) has being attracted people's attention since it proposed. Being global search techniques, GAs simulate the processes of natural evolution and own some remarkable advantages, such as excellent global exploration ability and good applicability. However, traditional genetic algorithms have some drawbacks, such as poor local searching ability and premature convergence etc. Inspired by RNA molecular coding and operations, RNA genetic algorithms and their applications are studied in this dissertation. The main contents are as follows:
     (1) These individuals in population are becoming more and more similar with evolution, which makes GA be prone to premature convergence. In order to overcome this drawback, the RNA genetic algorithm with similar individuals rejected (srRNA-GA) is proposed. The algorithm adopts encoding of the nucleotide bases and RNA permutation operation and RNA stem-loop operation are designed for the proposed genetic algorithm. In selecting operation, the strategy of rejecting similar individuals is applied to improve population diversity and avoid premature convergence. The performances of the proposed RNA-GA are validated by five benchmark functions. The efficiency and accuracy of this proposed algorithm are demonstrated in the three practical parameter estimation problems.
     (2) Inspired by the expression of bio-genetic information, a RNA genetic algorithm based on protein characteristics is proposed. In this algorithm, the RNA recoding operation and protein folding operation are designed to replace conversional crossover operation by simulating the process from DNA molecular to protein ones in biology. Numerical experiments with some benchmark functions and the parameter estimation problem in hydrocracking of heavy oil demonstrate the effectiveness of this proposed algorithm.
     (3) In order to overcome the drawback setting GA's parameter blindly, the RNA genetic algorithm with dynamic mutation probability according to entropy is proposed. In this algorithm, the values of mutation probability are decided by nucleotide bases distribution of the current bits of population. The numerical results on four benchmark functions show the effectiveness of this proposed algorithm. The solution of the short-time gasoline blending scheduling problem shows that the proposed algorithm gain a higher profit.
     (4) The membrane structure based hierarchical RNA genetic algorithm is proposed. In this algorithm, the RNA genetic algorithms are imbedded into the membrane system and the final results of the RNA-GAs in the two membrane sub-systems are used to determine a part of initial population of the RNA-GA in the skin membrane system. Numerical results on six benchmark functions demonstrate excellent search performance of this proposed algorithm. The algorithm is applied to solve short-time gasoline blending scheduling problem. The experimental results show that this proposed algorithm can obtain a higher profit.
     (5) The RNA genetic algorithm with a changeable problem search space is presented for constrained nonlinear optimization problems. Along with running, the changeable problem search space is re-built for promoting the search efficiency. The performances of this proposed algorithm are validated by five benchmark functions. It is also used to model the CSTR process by a neural network. The simulation results show that higher precision and lower complexity are reached.
引文
[1]丁永生.计算智能—理论、技术与应用[M].北京:科学出版社,2004.
    [2]王正志,薄涛.进化计算[M].长沙:国防科技大学出版社,2000.
    [3]Holland J.H., Adaptation in natural and artificial systems[M]. Ann Arbor: University of Michigan Press, MI,1975.
    [4]De Jong K.A., An analysis of the behavior of a class of Genetic adaptive systems[D]. Ann Arbor:University of Michigan,1975.
    [5]Goldberg D.E., Genetic algorithms in Search, Optimization and Machine Learning[M]. Boston:Addison Wesley Longman Publishing Co.,1989.
    [6]Tao J.L., Wang N., DNA double helix based hybrid genetic algorithm for the gasoline blending recipe optimization problem[J]. Chemical Engineering & Technology,2008,31(3):440-451.
    [7]Davis L., Handbook of Genetic Algorithms[M]. New York:Van Nostrand Reinhold,1991:1-6.
    [8]黄友锐.智能优化算法及其应用[M].北京:国防工业出版社,2008.
    [9]Goldberg D.E., Real-coded genetic algorithms, virtual alphabets, and blocking[J], Complex Systems,1991,5(2), pp:139-168.
    [10]Srikanth T., Kamala V., A real coded genetic algorithm for optimization of cutting parameters in Turning[J]. International Journal of Computer Science and Network Security,2008,8(6):189-193.
    [11]Deep K., Thakur M., A new crossover operator for real coded genetic algorithms[J]. Applied Mathematics and Computation,2007,188(11):895-911.
    [12]Vlachogiannis J.G., stergaard J., Reactive power and voltage control based on general quantum genetic algorithms[J]. Expert Systems with Applications,2009, 36(3):6118-6126.
    [13]Lee C.H., Lin W.H., Liao G.C., Quantum genetic algorithm for dynamic economic dispatch with valve-point effects and including wind power system[J]. International Journal of Electrical Power & Energy Systems,2011,33(2): 189-197.
    [14]Andre J., Siarry P., Dognon T., An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization [J]. Advances in Engineering Software,2000,32(1):49-60.
    [15]Yogeswaran M., Ponnambalam S. G., Tiwari M. K., An efficient hybrid evolutionary heuristic using genetic algorithm and simulated annealing algorithm to solve machine loading problem in FMS, International Journal of Production Research[J].2009,47(19):5421-5448.
    [16]Chen P.H., Shahandashti S.M., Hybrid of genetic algorithm and simulated annealing for multiple project scheduling with multiple resource constraints[J]. Automation in Construction,2009,18(4):434-443.
    [17]He D.K., Wang F.L., Mao Z.Z., Hybrid genetic algorithm for economic dispatch with valve-point effect[J]. Electric Power Systems Research,2008,78(4): 626-633.
    [18]Mansoornejad B., Mostoufi N., Jalali-Farahani F., A hybrid GA-SQP optimization technique for determination of kinetic parameters of hydrogenation reaction[J]. Computers & Chemical Engineering,2008,32(7):1447-1455.
    [19]Coello C. A. C., Theoretical and numerical constraint-handling.techniques used with evolutionary algorithms:a survey of the state of the art[J]. Computer Methods in Applied Mechanics and Engineering,2002,191(11-12):1245-1287.
    [20]Courant R., Variational methods for the solution of problems of equilibrium and vibrations[J]. Bulletin of the American Mathematical Society,1943,49:1-23.
    [21]Carroll C. W., The created response surface technique for optiming nonlinear restrained systems[J]. Operation Research,1961,9:169-184.
    [22]Fiacco A. V., McCormick G. P., Extensions of SUMT for nonlinear programming: equality constraints and extrapolation[J]. Management Science,1968,12(11): 816-828.
    [23]Chootinan P., Chen A., Constraint handling in genetic algorithms using a gradient-based repair method[J]. Computers & Operations Research,2006,33(8): 2263-2281.
    [24]Wang Y., Cai Z., Guo G., Zhou Y., Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems[J]. IEEE Transaction on Systems, Man, and Cybernetics-Part B:Cybernetics,2007,37(3): 560-575.
    [25]郑金华.多目标进化算法及其应用[M].北京,科学出版社,2007.
    [26]催逊学.多目标进化算法及其应用[M].北京,国防工业出版社,2006.
    [27]Schaffer J.D., Multiple objective optimization with vector evaluated genetic algorithms[C].//Proceedings of an International Conference on Genetic Algorithms and Their Applications. Hillsdale:L. Erlbaum Associates, Inc.,1985: 93-100.
    [28]Katsigiannis Y.A., Georgilakis P.S., Karapidakis E.S., Multiobjective genetic algorithm solution to the optimum econimic and environmental performance problem of small autonomous hybrid power systems with renewables[J]. IET Renewable Power Generation,2010,4(5):404-419.
    [29]Battiti R., Passerini A., Brain-computer evolutionary multiobjective optimization: a genetic algorithm adapting to the decision maker[J]. IEEE Transactions on Evolutionary Computation,2010,14(5):671-687.
    [30]Chang L.C., Ho C.C., Chen Y.W., Applying multiobjective genetic algorithm to analyze the conflict among different water use sectors during drought period[J]. Journal of Water Resources Planning and Management-ASCE,2010,6(9): 3943-3959.
    [31]雷蒙德,托马斯,约翰.RNA世界[M].北京:科学出版社2007.
    [32]Watson J.D, Crick F.H.C., A structure for deoxyribose nucleic acid[J]. Nature, 1953,171(3):737-738.
    [33]Valleriani A., Zhang G., Nagar A., Length-dependent translation of messenger RNA by ribosomes[J].2011,83(4):042903.
    [34]Rabani M. Levin J.Z. Fan L., Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells[J]. Nature Biotechnology,2011,29(5):436-U237.
    [35]赵亚华.分子生物学教程[M].北京:科学出版社,2004.
    [36]朱玉贤,李毅,郑晓.现代分子生物学[M].北京:高等教育出版社,2007:66-67.
    [37]Adleman L., Molecular computation of solution to combinatorial problems[J]. Science,1994,266(11):1021-1024.
    [38]Tao J.L., Wang N., DNA computing based RNA genetic algorithm with applications in parameter estimation of chemical engineering processes[J]. Computers & Chemical Engineering,2007,31 (12):1602-1618.
    [39]陶吉利.基于DNA计算的遗传算法及应用研究[D].杭州:浙江大学博士论文,2007.
    [40]Chen X., Wang N., A DNA based genetic algorithm for parameter estimation in the hydrogenation reaction, Chemical Engineering Journal[J].2009,150(2-3): 527-535.
    [41]Chen X., Wang N., Modeling a delayed coking process with GRNN and double-chain based DNA genetic algorithm[J]. International Journal of Chemical Reactor Engineering,2010, v8, A75.
    [42]Chen X., Wang N., Optimization of short-time gasoline blending scheduling problem with a DNA based hybrid genetic algorithm[J]. Chemical Engineering and Processing,2010,49(10):1076-1083.
    [43]任立红,丁永生,邵世煌.采用DNA遗传算法优化设计的TS模糊控制系统[J].控制与决策,2001,16(1):16-24.
    [44]Hwang S.F., He R.S., A hybrid real-parameter genetic algorithm for function optimization[J]. Advanced Engineering Informatics,2006,20:7-21.
    [45]Kao Y.T., Zahara E., A hybrid genetic algorithm and particle swarm optimization for multimodal functions[J]. Applied Soft Computing,2008,8:849-857.
    [46]Li J.P., Balazs M.E., Parks G.T., A species conserving genetic algorithm for multimodal function optimization[J].2002,10(3):207-234.
    [47]Zhang J., Chung H. S., Lo W.L., Clustering-based adaptive crossover and mutation probabilities for genetic algorithms[J]. IEEE Trans on Evolutionary Computation,2007,11(3):326-335.
    [48]Benjamin H., Kevin W., Synapsing variable-length crossover:Meaningful crossover for variable-length genomes [J]. IEEETrans on Evolutionary Computation,2007,11 (1):118-131.
    [49]刘洪杰,王秀峰.多峰搜索的自适应遗传算法[J].控制理论与应用,2004,21(2):302-304.
    [50]Balland L.,Estel L., Cosmao J.M.,Mouhab N., A genetic algorithm with decimal coding for the estimation of kinetic and energetic parameters[J]. Computers & Chemical Engineering,2000,50(1):121-135.
    [51]Ramkumar B.,Schoen M.P.,Lin F.,Hybrid enhanced continuous tabu search and genetic algorithm for parameter estimation in colored noise environments[J]. Expert Systems with Applications,2011,38(4):3909-3917.
    [52]Hibbert D.B., a hybrid genetic algorithm for the estimation of kinetic parameters[J]. Chemometrics and Intelligent Laboratory Systems,1993,19(3): 319-329.
    [53]Juang J., Huang M., Liu W., PID Control using presearched genetic algorithms for a MIMO system[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2008,38(5):716-727.
    [54]Ho W., Tsai J., Chou J., Robust quadratic-optimal control of TS fuzzy model based dynamic systems with both elemental parametric uncertainties and norm-bounded approximation error[J]. IEEE Transactions on Fuzzy Systems, 2009,17(3):518-531.
    [55]Altinten A., Ketevanlioglu F., Erdogan S., Hapoglu H., Alpbaz M., Self-tuning PID control of jacketed batch polystyrene reactor using genetic algorithm[J]. Chemical Engineering Journal,2008,138(1-3):490-497.
    [56]田莹,苑玮琦,遗传算法在图像处理中的应用[J].2007,12(3):389-396.
    [57]章毓晋著.图像处理和分析(第1版)[M].北京:清华大学出版社,1999.
    [58]Knoll P., M irzaei S., Validat ion of a parallel genetic algorithm for image recon struction from projections [J]. Journal of Parallel and Distributed Computing, 2003,63(3):356-359.
    [59]吴成柯,刘靖,侯格贤.图像分割的多参量遗传算法[J].自动化学报,1998,24(3):410-413.
    [60]Neuhauser C., Krone S.M., The Genealogy of samples in models with selection [J]. Genetics,1997,145(2):519-534.
    [61]Sawai H., Kizu S., Endo T., Performance Comparison of Parameter-Free Genetic Algorithm with Stead-State Genetic Algorithm[J]. IEICE D-Ⅱ,1998, J81-D-Ⅱ, 1455-1459.
    [62]Wang R.L., Okazaki K., An improved genetic algorithm with conditional genetic operators and its application to set-covering problem[J]. Soft Computing,2007, 11:687-694.
    [63]Esposito W.R., Floudas C.A., Global optimization for the parameter estimation of differential-algebraic systems[J]. Industrial Engineering & Chemical Research, 2000,39(5):1291-1310.
    [64]Tjoa I.B. and Biegler L.T., Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems[J]. Industrial Engineering & Chemical Research,1991,30:376-385.
    [65]Luus R., Parameter estimation of Lotka-Volterra problem by direct search optimization[J]. Hungarian Journal of Industrial Chemistry,1998,26:287-292.
    [66]Lin Y., Stadtherr M.A., Deterministric global optimization for parameter estimation of dynamic systems[J]. Industrial Engineering & Chemical Research, 2006,45(25):8438-8448.
    [67]Ting C., Su C., Lee C., Lee C, Multi-parent extension of partially mapped crossover for combinatorial optimization problems[J]. Expert Systems with Applications,2010,37(3):1879-1886.
    [68]Garcia-Martinez C., Lonzano M.,Herrera F., Molina D., Sanchez A.M., Global and local real-coded genetic algorithms based on parent-centric crossover operators[J]. European Journal of Operational Research,2008,185(3): 1088-1113.
    [69]Lu H., Fang W., Joint transmit/receive antenna selection in MIMO systems based on the priority-based genetic algorithm [J]. Antennas and Wireless Propagation Letters, IEEE,2007,6:588-591.
    [70]Tohka J., Krestyannikov E., Dinov I.D., Graham A.M., Shattuck D.W., Ruotsalainen U., Toga A.W., Genetic algorithms for finite mixture model based voxel classification in neuroimaging[J]. IEEE Transactions on Medical Imaging, 2007,26(5):696-711.
    [71]Deep K., Thakur M., A new crossover operator for real coded genetic algorithms [J]. Applied Mathematics and Computation,2007,188(1):895-911.
    [72]Clark D.P., Molecular biology:understanding the genetic revolution[M]. NewYork Academic Press,2005
    [73]Wang R. L., Okazaki K., An improved genetic algorithm with conditional genetic operators and its application to set-covering problem[J]. Soft Computing,2007, 11:687-694.
    [74]Lin L.,Gen M., Auto-tuning strategy for evolutionary algorithms:balance between exploration and exploitation[J]. Soft Computing,2009,13; 157-168.
    [75]Koumousis V.K., Katsaras C.P., A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance[J]. Evolutionary Computation,2006,10:19-28.
    [76]Yun Y.S., Gen M., Performance analysis of adaptive genetic algorithm with fuzzy logic and heuristics[J]. Fuzzy Optimization and Decision Making,2003,2: 161-175.
    [77]Sanchez S., Rodriguez M.A., Ancheyta J., Kinetic model for moderate hydrocracking of heavy oil[J]. Industrial Engineering & Chemical Research, 2005,44:9409-9413.
    [78]Ancheyta J., Sanchez S., Rodriguez M. A., Kinetic modeling of hydrocracking of heavy oil fractions:a review[J]. Catalysis Today,2005,109(1-4):76-92.
    [79]Hassanzadeh H., Abedi J., Modelling Parameter estimation of ultra-dispersed in situ catalytic upgrading experiments in a batch reactor[J]. Fuel,2010,89: 2822-2828.
    [80]Lis J., Genetic algorithm with the dynamic probability of mutation in the classification problem[J]. Pattern Recognition Letters 1995,16(12):1311-1320.
    [81]Tinos R, de Carvalho A., Use of gene dependent mutation probability in evolutionary neural networks for non-stationary problems[J]. Neurocomputing, 2006,70(1-3):44-54.
    [82]Serpell M., Smith J.E., Self-Adaptation of Mutation Operator and Probability for Permutation Representations in Genetic Algorithms[J]. Evolutionary Computation,2010,18(3):491-514.
    [83]Vose M.D., Liepins G.E., Schema Disruption[C].//BELEW, R., BROOKER L In Proceedings of the 4th international conference on Genetic Algorithms (ICGA 4). San Francisco:Morgan Kaufmann Publishers, Inc.,1991:237-242.
    [84]Culberson J.C., On the futility of blind search[J]. Journal of Evolutionary Computation,1998,6(2):109-128.
    [85]De Jong K.A., Spears W.M., A formal analysis of the role of multi-point crossover in genetic algorithms[J]. Annals of Mathematics and Artificial Intelligence,1992,5(1):1-26.
    [86]Spears W.M., The role of mutation and recombination in evolutionary algorithm [D]. George Mason University, Fairfax, VA,1998.
    [87]Schaffer J.D., Eshelman L.J., On crossover as an evolutionary viable strategy [C].//BELEW RK, BROOKER LB. SAN Mateo. In Proceedings of the 4th International Conference on Genetic Algorithms. CA:Morgan Kaufmann Publishers,1991:61-68.
    [88]Sigalov D., Shimkin N., Cross Entropy Algorithms for Data Association in Multi-Target Tracking[J]. IEEE Transactions on aerospace and electronic systems,2011,47(2):1166-1185.
    [89]Wang K.H., Yang D.Y., Pearn W.L.,Comparative analysis of a randomized N-policy queue:An improved maximum entropy method[J]. Expert Systems with Applications,2011,38(8):9461-9471.
    [90]Hsiao B., Chern C.C., Chiu CR, Performance evaluation with the entropy-based weighted Russell measure in data envelopment analysis[J]. Expert Systems with Applications,2011,38(8):9965-9972.
    [91]Deb K., An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering,2000,186(2-4): 311-338.
    [92]张建明,冯建华.两群微粒群算法及其在油品调和优化中的应用[J].化工学报,2008,59(7):1721-1726.
    [93]陈霄,王宁.DNA遗传算法及应用研究[D].杭州:浙江大学博士论文,2010.
    [94]时永香,杨晓梅,韩贻仁.分子细胞生物学[M].北京:高等教育出版社,2007
    [95]Shopova E.G., Vaklieva-Bancheva N.G., Basic-A genetic algorithm for engineering problems solution[J]. Computers & Chemical Engineering,2006, 30:1293-1309.
    [96]Deb K., An efficient constraint handling method for genetic algorithms[J]. Computer Method in Applied Mechanics and Engineering,2000,186(2-4): 311-338.
    [97]Singh A., Forbes J.F.,Vermeer P.J.,Woo S.S., Model-based real-time optimization of automotive gasoline blending operations[J]. Journal of Process Control,2000, 10(1):43-58.
    [98]Zhang Y., Monder D., Forbes J.F., Real-time optimization under parametric uncertainty:a probability constrained approach[J]. Journal of Process Control, 2002,12(3):373-389.
    [99]赵小强.炼厂生产调度问题研究[D].杭州:浙江大学博士论文,2005.
    [100]Litvinenko V.I., Burgher J.A., Vyshemirskij V.S., Sokolova N.A., Application of genetic algorithm for optimization gasoline fractions blending compounding[C]. Proceedings of the IEEE International Conference on Artificial Intelligences Systems (ICAIS'02). Divnomorskoe, Russia,2002:391-394.
    [101]Glismann K., Gruhn G., Short-term scheduling and recipe optimization of blending processes[J]. Computers & Chemical Engineering,2001,25(4-6): 627-634.
    [102]Zhao X., Rong G., Blending scheduling under uncertainty based on particle swarm optimization algorithm[J]. Chinese Journal of Chemical Engineering, 2005,13(4):535-541.
    [103]Forbes J.F., Marlin T.E., Model accuracy for economic optimizing controllers: the bias update case[J]. Industrial & Engineering Chemistry Research,1994, 33(8):1919-1929.
    [104]Healey J.R. W.C., Maasen S.W., Peterson R.T., A new approach to blending octanes [C]. Proceeding of 24th Meeting API Refining Division, vol.39, New York:1959.
    [105]Floudas C.A., Aggarwal A., Ciric A. R., Global optimum search for non-convex NLP and MINLP problems[J]. Computers and Chemical Engineering,1989, 13(10):1117-1132.
    [106]Summanwar V.S., Jayaraman V.K., Kulkarni B. D., Kusumakar H.S., Gupta K., Rajesh J., Solution of constrained optimization problems by multi-objective genetic algorithm [J]. Computers and Chemical Engineering, 2002,26:1481-1492.
    [107]Michalewicz Z., genetic algorithms, numerical optimization, And constraints[J]. Proceeding of the sixth international conference on genetic algorithms, San Mateo, CA:Morgan Kaufmann,1995,151-158.
    [108]Amirjanov A., investigation of a changing range genetic algorithm in noisy environments[J]. International Journal for Numerical Methods in Engineering, 2008,73:26-46.
    [109]Amirjanov A., The dynamics of a changing range genetic algorithm[J]. International Journal for Numerical Methods in Engineering,2010,81:892-909.
    [110]Venkateswarlu C.H., Gangiah K., Constrained generalized predictive control of unstable nonlinear process[J]. Chemical Engineering Research & Design, 1997,75:371-376.
    [111]Moody J., Darken C.J., Fast learning in networks of locally-tuned processing units[J]. Neural Computation,1989,1(2):281-294.
    [112]Sarimveis H., Alexandridis A., Mazarakis S., Bafas G., A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms[J]. Computers & Chemical Engineering,2004,28(1): 209-217.
    [113]Tao J.L., Wang N., Splicing system based genetic algorithm for developing RNF networks models[J]. Chinese Journal of Chemical engineering,2007,15(2): 240-246.
    [114]Venkatraman S., Yen G.G., A generic framework for constrained optimization using genetic algorithms[J]. IEEE Transaction on Evolutionary Computation, 2005,9(4):424-435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700