基于FCC汽油硫化物烷基化硫转移反应精馏脱硫的清洁汽油研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国成品汽油以催化裂化汽油为主,其较高的硫含量直接导致成品汽油的硫含量达不到高质量的清洁汽油标准。为满足日益严格的环保要求,国内外开发了多种降低汽油硫含量的技术。工业上普遍采用的加氢脱硫技术,催化汽油加氢脱硫可以有效降低催化汽油的硫含量,但同时引起辛烷值的损失问题和炼厂氢平衡的矛盾是人们十分关注的问题。因此开发一种高油收率的既能高效降低汽油硫含量又能基本不损失汽油辛烷值的非加氢工艺技术,具有重要的学术意义和应用价值。
     本文着重对FCC汽油硫化物烷基化硫转移反应精馏工艺进行研究。首先,对FCC汽油硫化物烷基化硫转移反应富集硫的过程开展研究,制备了两类烷基化硫转移的催化剂—高温烷基化固体复合酸催化剂和低温树脂类催化剂。固体复合酸催化剂优化的制备条件为:载体为Si02-Al203(Si/Si+Al含量为0.7),负载60%的复合酸,复合酸中多聚磷酸和正磷酸的质量比为2,催化剂的焙烧温度为500℃-550℃之间,催化剂的总酸量达0.32-0.33mmol/g,强B酸中心是发生烷基化硫转移反应的活性位,固体复合酸催化剂适宜的反应温度140-160℃,噻吩类硫化物的转移率在90%以L。对于树脂类催化剂,选用大孔磺酸树脂,树脂的总酸量5.33 mmol/g,通过负载AlCl3有效地增强催化剂的稳定性。树脂类催化剂适宜的反应温度120℃,多次重复使用结果表明,载Al量为3.48%时,噻吩类硫化物的转移率稳定在90%以上
     接着在间歇釜式评价装置上评价了研制的催化剂,在此基础上建立了FCC汽油硫化物烷基化硫转移连续反应精馏装置,优化了工艺条件,当回流比为1.5、反应段的温度固体复合酸催化剂段为140-160℃,树脂段为100-120℃,采用下进料的进料方式,反应精馏后塔顶馏出油(<170℃的汽油),收率高达85%(V)时,硫含量为31mg/L,脱硫率为85.4%,而辛烷值仅下降0.1-0.2个单位(RON),是理想的清洁汽油的调和组分,催化剂连续运行1000小时性能稳定。将反应精馏塔顶馏出油(<170℃的汽油)与重整汽油按体积比9:1调和,调和后汽油的硫含量达到国IV排放标准汽油。提高了炼厂‘生产清洁汽油资源利用的水平
     本文同时考察固体复合酸催化剂和树脂催化剂对硫化物烷基化反应过程,对汽油中主要硫化物噻吩、2-甲基噻吩、3-甲基噻吩、2,4-二甲基噻吩的烷基化反应动力学进行研究,建立了反应动力学模型。结果表明,对于固体复合酸为催化剂,当反应温度为160℃时,四种硫化物反应的转化率均达最大,大小依次为:2-甲基噻吩(2-MT)>3-甲基噻吩(3-MT)>噻吩(T)>2,4-二甲基噻吩(2,4-DMT),四种模型硫化物烷基化反应速率对温度的敏感性不同,3-MT的反应速率随温度升高迅速变大,而2,4-DMT的反应速率随温度变化不明显,因此适当的提高反应温度有利于提高3-MT和T的转化率。对于树脂催化剂,各硫化物活化能和指前因子的大小顺序均为:噻吩>3-甲基噻吩>2,4-二甲基噻吩>2-甲基噻吩。以树脂催化剂催化FCC汽油中主要硫化物的烷基化,T、2-MT、3-MT、2,4-DMT烷基化反应动力学方程分别为:ln(CT0/CT)=4.26×106.exp(-44.13/RT).t;ln(C2MT0/C2MT)=2.27×104.exp(-28.17/RT).t;ln(C3MT0/C3MT)=7.52×105.exp(-38.54/RT).t;Ln(C2,4-DMT0/C2,4-DMT)=6.86×104.exp(-31.75/RT).t。
     本文还采用密度泛函数方法研究了噻吩类硫化物与烯烃的烷基化的反应机理。通过模拟计算得到反应路径上的反应物、过渡态、中间体和产物的优化几何构型,提出了噻吩发生烷基化反应的反应路径。
     最后,本文针对FCC汽油硫化物烷基化硫转移反应精馏这一复杂的反应体系进行了模拟计算,建立了平衡级模型。采用Aspen plus的物性估算模型对反应体系的涉及的物性参数进行估算,根据本文所建立的汽油中的主要硫化物的反应动力学模型,采用Aspen plus软件中的平衡级理论的Rad Frac模型对反应精馏过程进行模拟计算,结果表明与实验值吻合较好,为进一步深入研究和工业放大提供依据。
FCC gasoline is the main blending component in the Chinese gasoline pool, and the quality of the gasoline pool is strongly affected by the high sulfur compounds in FCC gasoline. The stringent environmental requirements push refineries to develop new technology to remove sulfur compounds in FCC gasoline. Hydrodesulfurization is one of the most important and popular technologies for removing sulfur in gasoline. However, the saturation of olefins in the hydrodesulfurization process always leads to the problem of the octane loss. Another problem is the consumption of hydrogen is high and unbearable for refineries. Therefore, developing a new technology for efficiently removing sulfur in gasoline without losing its octane number is meaningful and excepted.
     This paper focused on the research of the catalytic alkylation desufuirzation process of FCC gasoline by reactive distillation. At the beginning, the alkylation reaction was investigated for the enrichment of sulfur compounds in light fractions to heavy fractions. Two types of the alkylation catalysts were prepared, one was compound solid acid catalyst for high temperature alkylation and the other was resin supported catalyst for low temperature alkylation. As for solid acid catalyst, SiO2-Al2O3 was select as its supporter and the optimal Si to Si+Al ratio is 0.7; the loading amount of solid acid is 60% and the mass ratio of polyphosphoric acid to phosphoric acid is 2. The optimized calcination temperature for preparing the catalyst is 500℃-550℃. At the conditions, the total acid quantity of the solid acid catalyst reaches 0.32-0.33mmol/g, and the strong Broensted acid sites give the main activity for the alkylation reactions. As for resin supported catalyst, pocket sulfonic acid resin was selected for preparing the catalyst. The total acidity of the resin is 5.33 mmol/g. The method of loading AlCl3 on the surface of resin can effectively improve the reactive stability of the catalyst. The feasible reaction temperature of the resin catalyst is 120℃. Results showed that the optimal Al loading amount is 3.48%, and the catalyst could be reused for several times with a stable 90% conversion of thiophenic sulfur compounds.
     The two catalysts were tested in a batch reactor. Based on the batch reactor result, a continuous reactive distillation column was setup and the two catalysts were investigated for obtaining the optimal conditions. The optimal reflux ratios for both of the two catalysts were all 1.5. The reaction temperatures for resin supported catalyst and compound solid acid catalyst are 100-120℃and 140-160℃, respectively. At optimal conditions, the sulfur content in the distillate of the reactive distillation column was depressed to very low level, and its octane number only dropped about 0.1-0.2 units compared with the feedstock. The yield of the gasoline fraction (<170℃) reaches 85% and its sulfur was lower than 30mg/L. This low sulfur fraction was an ideal blending compound for blending clean gasoline product.1000h pilot experimental result proved that the stability of the catalysts was satisfied. Blending the distillate with reformed gasoline in a ratio of 9:1 by volume, the sulfur content of the blend could meet the requirement of the national IV gasoline emission standard, which improved the clean gasoline resource utilization and allocation level of refineries.
     Kinetics of catalytic alkylation of various sulfur compounds in gasoline were also investigated. These sulfur compounds include thiophene (T),2-methyl thiophene(2-MT), 3-methyl thiophene (3-MT) and 2,4-dimethyl thiophene (2,4-MT). In the case of compound solid acid catalyst, conversion rates of all sulfides reached at a maximum value at 160℃. The reaction rates of them follow the order 2-MT>3-MT>T>2,4-MT. The result also showed that alkylation of 3-MT or T was a temperature sensitive reaction, while alkylation of 2-MT was not sensitive to the reaction temperature. Therefore, higher conversion of 3-MT and T can be obtained by increasing the reaction temperature. As for resin supported catalyst, the activated energy and pre-exponential factor for alkylation reaction of various sulfur compounds were also determined. The alkylation kinetics equations for T,2-MT,3-MT and 2,4-MT are ln(CT0/CT)=4.26×106. exp(-44.13/RT)-t, In(C2MT0/C2MT)=2.27×104. exp(-28.17/RT)·t, ln(C3MT0/C3MT)=7.52×105. exp(-38.54/RT)-t and ln(C2,4-DMT0/C2,4-DMT)=6.86×104 exp(-31.75/RT)·t, respectively.
     Density functional theory (DFT) method was used to study the reaction mechanism of the alkylation of thiophenic compounds and 2-methyl-2-butylene. The geometry structures of reactants, intermediates, transition states and products were optimized, and frequency analysis was applied to confirm the reliability of the structures. Based on that, a reasonable reaction mechanism was also proposed. Finally, steady state simulation was carried out by Aspen Plus in order to provide some useful information for the industrial process of FCC gasoline alkylation reactive distillation. The properties of the reaction substances in the process were estimated on the basic of various modules provided by Aspen plus. Then, a RadFrac module was employed to simulate the process of reactive distillation process. The simulation results are in fair line with the experimental results of reactive distillation column. The above research results provide detailed information for the further research and industrial utilization of the technology.
引文
[1]Lucio A. N.R F.The best means to reduce auto emission in urban areas. Oil& Gas [J],1995,9 1(2):22-27.
    [2]张德义.提高炼油企业硫回收率降低石油产品的硫含量[J].石油化工技术经济.2000,16(2):6-9.
    [3]苗毅,关明华,罗一斌.清洁燃料的开发与生产[J].石油炼制与化工.2000,31(8):1-7.
    [4]Clean gasoline and diesel-the foundation for modern vehicles and clean air [C] International Council on Clean Transportation..2003
    [5]刘长久,张广林.石油和油品中的非烃化合物[M],中国石化出版社,1991,35-28.
    [6]轻质石油产品中硫含量测定法(电量法)[S],SH/T0 253-92,1999.
    [7]应晓浒,应林初.X射线荧光光谱测定灯用煤油中的微量硫[J].石油与天然气化工2000,29(2):94-95.
    [8]C. Lopez G arcia, M.Becchi, M.F.Grenier-Loustalot,O.Paisse, R.Szymanski, Analysis of aromatic sulfur compounds in gas oils using GC with sulfur detection and high-resolution MS[J],Anal. Chem.2002,74:3849-3857.
    [9]Stuntz,G F and F L Plantenga. New technologies to meet the low sulfur fuel chanllenge. Paper Presented at the 17th World Petroleum Congress[C],Riode Janeiro,September 1-5,2002.
    [10]Greeley J P. Selective Cat Naphtha Hydrofining with Minimal Octane Loss[C].NPRA, AM-99-31,1999.
    [11]Desat P H. Low Cost Production of Clean Fuels with Stars Catalyst Technology[C].NPRA, AM-99-40,1999.
    [12]Brignac G B.The Scanfining Hydrotreatment Process [J].World Refining,2000, 10(7):14-1.
    [13]Quentin Debusisschert,Jean-Luc Nocca.Prime-G-TM Commercial Performance of FCC Naphtha Desulfurization Technology[C].NPRA,2003,AM-03-26.
    [14]Kerry R, Scott S. Producing pow sulfur gasoline reliably[C]. NPRA Annual Meeting, Texas,2003,AM-03-122.
    [15]Pradhan Vivek R, Burnett Ptohia A, Huff George A. Sulfur removal process[P].US6602405,2003.
    [16]Stuntz Gordon F, Smiley Randolph J, Halberd Thomas R. Naphtha desulfurization with no octane loss and increased retention[P]. WO019391,2005.
    [17]Shih S S, Owens P J. Mobils OCTGAINSM Process:FCC Gasoling Desulfurization Rearches a New Performance Level[C].NPPRA,AM-99-30,1999.
    [18]Girish K,Chitnis Michael J,Dabkowski Jeffrey A.Commercial OCTGAINSM Unit Provides"ZERO"Sulfur Gasoline with Higher Octane from a Heavy Cracked Naphtha Feed[C].NPPRA, AM-03-125,2003.
    [19]Burnett Ptohia A.The ISALT Process:A Refiner's option to meet RFG specifications[C].NPRA, AM-98-50,1998.
    [20]Rarrevo J D. Catalyst Select Experience for Hydrotreating[J].Oil&Gas Journal,2000, 98(41):72-74.
    [21]Edward J,Houde.Meet Gasoline Pool Sulfur and Octane Targets with the ISAL Process[C].NPRA,2000, AM-00-52.
    [22]Collins N A, TrewellaJ C. Alkylation process for desulfurization of gasoline[P].US5599441,1997,2-4.
    [23]Stuntz G F. The production of low sulfur naphtha streams via sweetening and fractionation combined with thiophene alkylation[P].WO 2005019387,2005-4-3.
    [24]Stuntz G F, Smiley R J, Halbert T R. Olefin addition for selective naphthadesulfurization with reduced octane loss[P].WO 2005019390,2005-4-3.
    [25]Stuntz G F, Smiley R J, Halbert T R. Naphtha desulfurization with no octane loss[P].WO 2005019393,2005-6-6.
    [26]Magne D J, Picard F. Process for desulfurization of gasolines[P].US 20050061711, 2005-1-13.
    [27]Pradhan V R, Burner P A, Mcdaniel S. Multistage process for removal of sulfur from components for blending of transportation fuels[P].WO 03012010,2003-2-13.
    [28]Pradhan V R, Bumett P A, Mcdaniel S.Multiple stage process for removal of sulfur from components for blending of transportation fuels[P].US 6733660,2004-5-11.
    [29]Pradhan V R, Burnett P A, Mcdaniel S.Multiple stage process for removal of sulfur from components for blending of transportation fuels[P].US6736963,2004-5-18.
    [30]Quentin D, Jean L N. Prime-G+(TM)from pilot to start-up of world's first commercial 10 ppm FCC gasoline desulfurization process[C].2002 NPRA Annual Meeting,San Antonio TX.
    [31]HufrG A.Sulfur removal process[P].US 6048451,2000-5-6.
    [32]Collins Nick A,Trewella Jeffrey C. Alkylation process for desulfurization of gasoline[P].US 559944 1,1997.
    [33]Virginie Bellie,Christophe Geantet,Michel Vrinat. Alkylation of 3-Methylthiophene with 2-Methyl-2-butene over a Zeolitic Catalyst[J].Energy&Fuels,2004,18:3449-3457.
    [34]许昀,龙军,张久顺.分子筛催化体系中汽油噻吩类含硫化合物烷基化反应脱硫的研究[J].石油炼制与化工,2005,36(2):38-42.
    [35]王素珍,罗国华,徐新.介孔分子筛MCM-41的合成及其催化噻吩与异丁烯烷基化反应性能[J].石油化工,2004.33(2):113-117.
    [36]罗国华,徐新,佟泽民.分子筛催化噻吩类硫化物与烯烃烷基化脱硫研究[J].化学反应工程与工艺,2005,20(2):132-137.
    [37]罗国华,徐新,靳海波.FCC汽油中的噻吩类硫化物烷基化硫转移反应脱硫[J].过程工程学报,2005,15(1):32-35.
    [38]罗国华,徐新,杨春育.大孔磺酸树脂固载AlCl3用于噻吩与烯烃的烷基化反应[J].过程工程学报,2003,3(1):18-22.
    [39]黄蔚霞,李云龙.离子液体在催化汽油脱硫中的应用[J].化工进展,2004,3(1):297-299.
    [40]Yazu K, Yamamoto Y, Furuya T. Energy Fuels[J],2001,15(6):1535-1536.
    [41]C. Tucker, E. Sughrue, J. Vanderlaan, Production of ultra-low sulphur fuels today and tomorrow[C], NPRA (2003) AM-03-48.
    [42]R.P. Gupta, B.S. Turk, FCC gasoline desulfurization process[P]. US20050098478, 2005-6-7.
    [43]Murata S, Murata K, Kidena K. Energy Fuels[J],2004,18(1):116-121.
    [44]Zannikos F, Lois E, Stournas S. Fuel process technology[J].1995,42(1):35-45.
    [45]孔令艳,李钢,王祥生.化学通报[J],2004,(3):178-184.
    [46]Otsuki S, Nonaka T, Takashima N. Energy Fuels[J],2000,14(6):1232-1239.
    [47]陈敏为,甘礼.有机杂环化合物[M].北京:高等教育出版社,1990.
    [48]T Aida, D Yamamoto, M Iwata, K Sakata. Development of oxidative desulfurization process for diesel fuel. Heteroatom.Chem,2000,22(2):241-256
    [49]Shiraishi Y, Tachibana K. Desulfurization and Denitrogenation Process for Light Oils Based on chemical oxidation followed by liquid-liquid extraction[J]. Ind. Eng Chem. Res,2002,41(17):4362-375.
    [50]Sharipov A K, Nigmatullin V R. Catalytic oxidation of sulfides in lubric oil cuts with organic hydroperoxides[J]. Chem. Technology. Fuels Oils,2006,42(1):51-54.
    [51]Tam P S, Kittrell J R, Eldridge J W. Desulfurization of fuel oil by oxidation and extraction.1. Enhancement of extraction oil yield. Ind.Eng.Chem.Res,1990,29(3):321-324.
    [52]Levy R E, Rappas A S, Nero V P, et al. Unipure's ASR-2 Diesel Desulfurization Process: A Novel, Cost-Effective Process for Ultra-low Sulfur Diesel Fuel. NPRA, AM-01-10,2001
    [53]Song, C., and Reddy, K. M. Mesoporous Zeolite-Supported Co-Mo Catalyst for Hydrodesulfurization of Dibenzothiophene in Distillate Fuels. ACS Div. Petrol. Chem. Preprints,1996,41,567-573.
    [54]Doug C, Steven B Desulfurization by selective oxidation and extraction of sulfur containing compounds to economically achieve ultra low proposed diesel fuel sulfur requirements. NPRA, AM-00-25,2000
    [55]邹明旭,廖克俭,闫锋.柴油氧化萃取脱硫工艺研究[J].石油炼制与化工,2006,37(4):19-22
    [56]战风涛,吕志风,董晓芳.用H202/乙酸酐氧化脱除直馏柴油中的含硫化合物[J].石油炼制与化工,2003,34(11):22-26.
    [57]杨丽娜,李德非,李东胜.石油二厂催化裂化柴油化学方法脱硫[J].抚顺石油学院学报,2002,22(2):22-24.
    [58]Shiraishi Y, Hirai T. Desulfurization of Vacuum Gas Oil Based on Chemical Oxidation Followed by Liquid-Liquid Extraction,. Energy&Fuels,2004,18(1):37-40
    [59]Irvine R L. Process for desulfurizing gasoline and hydrocarbon feedstocks. US5730860, 1997.
    [60]Te M, Fairbridge C, Ring Z. Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2andformicacid/H2O2 systems. Appl Catal A:Gen,2001,21(9):267-280.
    [61]Collins F M, Lucy A R, Sharp C. Oxidative desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis J. Mol. Catal. A:Chem,1997,117(1-33):397-403
    [62]Yazu K, Yamamoto Y, et al. Oxidation of dibenzothiophenes in an organic biphasic system and Its application to oxidative desulfurization of light oil [J].Energy Fuels,2001,15(6):1535-1536.
    [63]赵地顺.相转移催化作用下催化裂化汽油氧化脱硫研究[J].河北化工,2007(3):234-238.
    [64]徐亚荣,沈本贤,徐新良,赵基钢.催化裂化汽油氧化萃取脱硫[J].化工进展,2010(6):1051-1055.
    [65]Li C, Jiang Z X. Ultra-Deep Desulfurization of Diesel oxidation with a recoverable catalyst assembled in emulsion[J]. Chem. Eur. J.2004,10:2277-2280.
    [66]Hulea V. Fajula F. Mild oxidation with H2O2 over Ti-containing Molecular sieves-A very efficient Method for removing aromatic sulfur compounds from Fuels[J]. Catal.,2001,198:179-186.
    [67]Shiraishi Y, Hirai T, Komasawa I. Identification of Desulfurization Products in the Photochemical Desulfurization Process for Benzothiophenes and Dibenzothiophenes from Light Oil Using an Organic Two-Phase Extraction System. Ind. Eng. Chem, Res.,1999,38(9):3300-3309
    [68]Shiraishi Y, Taki Y, Himi T, et al. Visible Light-Induced Desulfurization Process for Catalytic-Cracked Gasoline Using an Organic Two-Phase Extraction System. Ind. Eng. Chem. Res.,1999,38(12):4538-4544
    [69]Ma, X., Sakanishi, K., Isoda, T., and Mochida, I. Comparison of Sulfided CoMo/AL2O3 Catalysts in Hydrodesulfurization of Gas Oil Fractions. Prepr., Div. Pet. Chem., Am. Chem. Soc.1994,39,622-626.
    [70]Shiraishi Y, Hara H, Hirai T, et al. A Deep Desulfurization Process for Light Oil by Photosensitized Oxidation Using a Triplet Photosensitizer and Hydrogen Peroxide in an Oil/Water Two-Phase Liquid-Liquid Extraction System. Ind. Eng. Chem. Res.,1999,38(4):1589-1595
    [71]Shiraishi Y, Taki Y, Hirai T, et al. Visible Light-Induced Deep Desulfurization Process for Light Oils by Photochemical Electron-Transfer Oxidation in an Organic Two-Phase Extraction System. Ind. Eng. Chem. Res.,1999,38(9):3310-3318
    [72]Shiraishi Y, Hirai T, Komasawa I. A Deep Desulfurization Process for Light Oil by Photochemical Reaction in an Organic Two-Phase Liquid-Liquid Extraction System. Ind. Eng.Chem.Res,.1998,37(1):203-211
    [73]Shiraishi Y, Hirai T, Komasawa I. Photochemical Desulfurization and Denitrogenation Process for Vacuum Gas Oil Using an Organic Two-Phase Extraction System. Ind. Eng. Chem. Res.,2001,40(l):293-303
    [74]Matsuzawa S,Tanaka J, Sato S, et al. Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2:effect of hydrogen peroxide and ultrasound irradiation J. Photochem. Photobiol.A:Chem.,2002,149(1/3):183-189
    [75]赵野,申宝剑,高金森.柴油脱硫技术评述[J].精细石油化工进展.2005,6(10):47-54.
    [76]刘万楹,雷正兰,吕伟.烃类液相等离子氧化[J].应用化学,1997,14(5):83-85.
    [77]Khare G P. Desulfurization and novel sorbents for same. US6346190,2001
    [78]Greenwood G, Kidd D, Reed L. Meet gasoline pool sulfur and octane targents with the isal process. NPRA, AM-00-12,2000.
    [79]I.V. Babich, J.A. Moulijn. Science and technology of novel processes for deep desulfurization of oil refinery streams:a review[J]. Fuel,2003,82:607.
    [80]王豪,唐晓东,吴雁.柴油非加氢脱硫技术的研究进展[J].西南石油学院学报.2004,26(6):46-39.
    [81]唐晓东,王豪,税蕾雷等.直馏柴油NOx-空气催化氧化脱硫研究[J].炼油技术与工程,2004,34(6):47-49.
    [82]唐晓东,崔盈贤,于志鹏.直馏柴油的选择性氧化脱硫[J]石油学报(石油加工),2006,22(1):90-94.
    [83]Kilbane J. Trends in Biotechnology [J]. Biotechnology.1989,7(4):97.
    [84]Tippett T,K G, Cooper B H. Ultra Low Sulfur Diesel:Catalyst and Processing Options[C].1999 NPRA Annual Meeting. AM-99-06.
    [85]Boron D J, Deever W R, Atlas R M. Bio-desulfurization & of Gasoline:An Assessment of technical and Economic Feasibility and Outline of R&D Roadmap Toward Commercialization[C].1999 NPRA Annual meeting. AM-99-54.
    [86]马敬环,刘家祺.反应精馏技术的进展[J].化学反应工程与工艺,2003,19(1):1-8.
    [87]杨志才,崔现宝.乙酸与丁醇酯化反应精馏过程[J].化工学报,1998,49(1):39-47.
    [88]鲍杰,严国祥.合成MTBE非均相催化精馏过程数学模拟[J].化学工程,1994,22(5):6-19.
    [89]漆志文,孙海军.反应分离过程模拟—反应精馏过程[J].华东理工大学学报,1999,25(1):19-23.
    [90]张瑞生.板式反应精馏塔的模拟计算—修正的Newton—Raphmn法[J].华东化工学院学报,1989,15(1):25-31.
    [91]廖安平,蓝平.乙酸丁酯制取新工艺[J].石油化工,2001,30(11):831-834.
    [92]盖旭东,金涌,王展文.新型催化精馏塔流体力学研究[J],化学工程,1999,27(1):5-9.
    [93]EriIto, J.A. Rob van Veen, On novel processes for removing sulphur from refinery streams[J].Catalysis Today,2006 (11)6:446-460.
    [94]Zhang Xia, Feng Lijuan, Li Xianguo. Progress in Research on Green Solid Phosphoric Acid Catalyst[J]. Chemical Intermediate,2006,6(2):1-4.
    [94]李鹏飞,庞先集.在离子交换树脂上负载PdCl3的固体超强酸催化荆的研制[J].精细石油化工,1993(1):17-22.
    [95]王燕平.负载AlCl3于离子交换树脂固体超强酸催化剂的研制[J].首都师范大学学报,2000,21(1):21-24.
    [96]Otsuki S,Nonaka T,Takashima N,et a l. Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction[J]. Energy & Fuel.2000,14:1232-1239.
    [97]Jiang B W,Tilley T D.General,Efficient Route to Thiophene-1-Oxides and Well-Defined, Mixed Thiophene-Thiophene-1-Oxide Oligomers[J]. J. Am.Chem.Soc,1999,12 1(41):9744-9745.
    [98]Suh M C,Jiang B W,Tilley T D.An efficient modular synthetic route to oligomers based on zirconocene coupling:Properties for phenylene-thiophene-1-oxide and phenylene-thiophene-1,1-dioxide chains[J]. Angew.Chem., Int. Ed.,2000,39 (16):2870-2873.
    [99]M. Levent, O. Kaya, M. Kocakerim, V. Yigit, O. Kucuk. Optimization of desulphurization of Artvin-Yusufeli lignite with acidic hydrogen peroxide solutions[J].Fuel,2007,86(5):983-992.
    [100]傅献彩,沈文霞,姚田扬.物理化学[M].北京,高等教育出版社,1990,10(4):751-752.
    [101]Peter K,Vollbart C,Schore Neil E. Organic Chemistry D[M].the 3td, NEWYORK:WH Freeman and Company,1999:1124-1128.
    [102]李明丰,褚阳,屈锦华,习远兵.生产清洁汽油的选择性加氢脱硫RSDS技术[J].2010中国石油学会年会技术论文集.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700