石化工业管道典型部件冲蚀破坏预测的CFD模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来石化工业管道事故频发,严重影响安全生产及企业经济效益。加氢裂化反应流出物空冷器(简称REAC)管束属于特种设备,承受高压临氢多相流的冲蚀,其失效易引发恶性事故。现有研究表明,REAC的腐蚀受一系列综合因素的影响,其中反应流出物的流动状况和腐蚀介质的浓度分布是二个关键因素。但迄今为止的研究只对腐蚀现象进行了定性分析,都没有系统地研究流动与腐蚀的定量关系。本文主要针对石化工业管道典型部件,如衬管、弯管等结构元件,进行CFD数值模拟,定量研究管道流动与腐蚀的关系,并进行结构优化。本文的主要研究内容及结论如下:
     1.通过对流体流动与腐蚀的定量分析,揭示了反应流出物的腐蚀性、多相流物性、多种工况及流动特性对冲蚀破坏的实际影响;
     2.详细探讨和分析得出国产化REAC管束腐蚀的失效机理,结论与实际状况比较吻合;
     3.对优化结构后的REAC管束进行CFD模拟比较,并得到更加合理的结构形式;
     4.对REAC出口弯管进行全面的CFD流动模拟,得到了弯管冲蚀破坏的流体动力学因素。
     本论文的主要创新点在于:
     1.提出了工业管道冲蚀破坏的一种有效预测方法。运用CFD软件对管道流体进行数值模拟,可以快速准确地找到冲蚀薄弱位置;
     2.针对有衬管结构的REAC管束失效案例,采用FLUENT数值模拟,得到了REAC管束的实际爆管原因;
     3.总结归纳出典型工业部件的管道冲蚀破坏规律,以指导结构优化设计和在线检测。
In recent years, petrifaction industry pipes accidents were occured frequently, it badly affected safe and economic benefits. Hydrogenation cracking reaction outflow air-cooler (REAC) pipes is important devices, it was suffered high pessure, hydrogen and multiphase flow erosion. Badly accidents were easily arose. Research in existence indicates that erosion of REAC pipes were affected aseries of integrative factors, flow status of reaction outflow and consistency distributing of corrosion medium are two key factors. But so far, all researches about erosion phenomenas were just qualitative analysis, these researches did not study quantitative analysis between flow and corrosion by the numbers. This paper mainly aimed at typical petrifaction industry pipes such as liner-pipe, elbow etc. to be simulated by CFD software to quantitative study relation between pipe flow and erosion and optimize pipes structures. The main contents of this paper are summarized as follow:
    1. Actual infection which causticity of reaction outflow , corporality of multiphase , operation conditions and flow status erosion destroy was opened out by quantitative analyse relation between liquid flow and erosion, opened out;
    2. Invalidation mechanism of homemade REAC liner pipe was summed up by particular discuss and analyse, the results were fit for actual instance;
    3. Optimized REAC liner pipe structure was simulated by FLUENT, compared with pristine structure to find more reasonable structure;
    4. REAC exit elbow was simulated by FLUENT, hydrokinetics factors to explain elbow erosion were summed up;
    The innovations in the paper are as following:
    1. A new method to predict erosion destroy of industry pipes was advanced, CFD software was applied to simulate pipe flow to find position where erosion weakness quickly;
    2. FLUENT was applied to simulate liner pipes which had invalidation case , the actual reason of REAC pipes bursting was found;
    3. Rules of typical industry pipes erosion destroy was summed up to guide optimized-structure and inspection on line.
引文
[
    
    
    [1] 陈学东,王冰等. 我国石化企业在用压力容器与管道使用现状何缺陷状况分析及失效预防对策. 压力容器,2001,18(5):43-53
    [2] Dr. Russell, D. Kane, Dr. Michael. Srinivasan Assessment of Corrosivity in Refinery Sour Water Systems. Corrosionsource-2000-Session O3-Paper 0301. htm InterCorr International, Inc. Equilon Enterprises, LLC
    [3] J. Turner. Design of Hydroprocessing Effluent Water Wash Systems. CORROSION/98 conference, Paper # 593, NACE
    [4] A. Singh, C. Harvey, R. L. Piehl. Corrosion of Reactor Effluent AirCoolers. CORROSION/97 conference, Paper # 490, RACE
    [5] R. L. Piehl. Corrosion by Sulfide-Containing Condensate in Hydrocarbon. Apl Div. of Refining, 33 Midyear Meeting.
    [6] R. L. Piehl. Corrosion Control in Hydrocouversion Effluent Pipingby NH4HS Control. United States Patent No. 3583901
    [7] J. Turner. Control Corrision in Washwater System. Hydrocarbon Processing, 1997, 6
    [8] C. A. Shargay, G. E. Jacobs, M. D. Price. Ammonium Salt Corrosion in Hydrotreating Unit Stripper Column Overhead Systems. CORROSION/99, Paper # 392
    [9] Z. A. Fouroulis. Mechanism of Refinery Corrosion by Aqueous Sour Water Condensates. Middle East Corrosion Conference, Kuwait, 1996
    [10] C. A. Shargay, A. J. Bagdasarian, J. W. Coombs, W. K. Jenkins. Corrosion in Hydro-processing Units in the Oil Refining Industry. Short Course Presented by RACE International, Houston, Texas, Sept. 1996, pp 10/1-18
    [11] Russel C. Strong, Raymond A. Stephenson, Ara J. Bagdasarian, James E. Feather, Robert B. Hull. Crude Unit Corrosion and Corrosion Control. CORROSION/96
    [12] Milton P. Ramos, Luiz A. Correa. On-Line Corrosion in Refinery Overhead System. CORROSION/95
    [13] Thomas Mebrahtu, K. J. Del Rossi. SEM and XPS Characterization of the Carbon Steel Surface Passivation Film in Anhydrous Hydrogen Fluoride Media. CORROSION/95
    [14] RP 0775-87 RACE. Preparation and Installation of Corrosion Coupons and Interpretations of Test Data in Oilfield Operations.
    [15] R. A. White, E. F. Ehmke. Materials Selection for Refineries and Associated Facilities. NACE, 1991
    [16] Claude Scherrer, Marc Durrieu, Gaston Jarno. Distillate and Resid Hydroprocessing: Coping with Corrosion with High Concentrations of Ammonium Bisulfide in the Pocess Water. Materials Performanes, 1980, 11: 25-32
    [17] R. L. Piehl. Refiners Tame Effluent Air-Cooler Corrosion. The Oil
    
    and Gas Journal
    [18] R. L. Piehl. Survery of corrosion in Hydrocracker Effluent Air Coolers. Materials Performance, 1976, 15(1): 15-20
    [19] A. Singh, C. Harvey, R. L. Piehl. Corrosion of Reactor Effluent Air-Coolers. CORROSION/97 conference, NACE
    [20] G. Damin, J. McCoy. Prevention of Corrosion in Hydrodesulfurizer Air Coolers and Condensers. Materials Performance, 1978, 17(12): 23-26
    [21] UOP Technical Service. Inspection of Hydroprocessing Unit and Hydrogen Plant
    [22] C. Harvey, A. Singh. Mitigate Failures for Reactor Effluent Air Coolers. Hydrocarbon Processing, 1999, 10: 59-72
    [23] C. A. Shargay, A. J. Bagdasarian, J. W. Coombs and W. K. Jenkins. Corrosion in Hydroprocessing Units in the Oil Refining Industry. Short Course presented by NACE International, Houston, Texas, 1996, 9, pp 10/1-18
    [24] C. A. Shargay, K. R. Lewis. Cost Comparision of Materials Options for Hydroprocessing Effluent Equipment and Piping. NACE, Corrosion 96, Paper 600
    [25] C. A. Shargay, K. R. Lewis. Cost Comparision of Materials Options for Hydroprocessing Effluent Equipment and Piping. NACE, Corrosion 96
    [26] 李智利. 冲蚀与腐蚀运行环境下多相流管道设计准则. 油气储运,1996,15(4):48-50
    [27] 赵会友,陈华辉,邵荷生. 几种钢的腐蚀冲蚀磨损行为与机理研究. 摩擦学学报,1996,4(16):112-119
    [28] 陈冠国,褚秀萍,张宏亮等. 关于冲蚀磨损问题. 河北理工学院学报,1997,11(19):27-32
    [29] 吴欣强,敬和民,郑玉贵等. 碳钢在高温环烷酸介质中冲刷腐蚀行为.中国腐蚀与防护学报,2002,10(22):257-263
    [30] A. Karimi, Ch. Verdon, L. Martin. Slurry Erosion Behavior of Thermally Spayed. WC-M Coating[J]. Wear, 1995, 186-187: 480-486
    [31] P. M. Rogers, I. M. Hutchings, J. A. Little. Coatings and Surface Treatments for Protection against Low-Velocity Erosion in Fluidized Beds[J]. Wear, 1995, 186-187: 238-246
    [32] H. X. Zhao, M. Yamamato, M. Matsumura. Slurry Erosion Properties of Ceramic Coatings and Functionally. Gradient Materialsibid. 1995, 186-187: 473-479
    [33] W. Tabakoff. High-Temperature Erosion Resistance of Coating for Use in Turbomachinery[J]. Wear, 1995, 186-187: 224-229
    [34] Bu-Qian, Wang. The Dependence of Erosion-Corrosion Wastage on Carbide-Metal Binder Proportion for HVOF Carbide-Metal Cermet Coating[J]. Wear, 1996, 196:141-146
    [35] H. Herm Stapelberg, Dmewes. The pressure loss and Slug Frequency of Liquid-liquid-Gus Slug flow in horizontal Pipes. Multiphase
    
    flow, 1994, 20(2):293-303
    [36] H.Herm stapelbery, F. Dorstewiz, M.Nadler, D.Mewes. The slug flow of Oil,Water and Gas in Horizintal pipetines. AICHE, 1991:527-551
    [37] K.S.Han, M.K. Chun, H.J.Sung. Application of Lumley's Drag Reduction Model to Two-Phase Gas Particle Flow in Pipe. ASME J Fluid Eng,1991,113:130-136
    [38] A.M.Ansari, N.D. Sylvester. A Comprehensive Mechanistic Model for upward Two-Phase Flow in Wellbores.SPE 20630,1994:143-152
    [39] C.S.Kabir, A.R.Hasan. A Study of Multiphase Flow Behavior in Vertical Oil Wells: Part. [R] SPE,15138. Texas,USA:Society of Petroleum Engng,1992
    [40] L.Pan, S.Jayanti, G.F.Hewitt. Flow Patterns, Phase Inversion and Pressure Gradient Air-Oil-Water Flow in a Horizontal Pipe. Proceedings of The 2nd International Conference on Multiphase Flow 95-Kyoto Apr.1995,Kyoto,Japan.
    [41] 粱海杰,车得福,席光.管道内气液两相泡状流k-ε-kg-εg模型.西安交通大学学报,2001,35(1):15-18
    [42] 黄建春,郭烈锦.油气水三相流流过弯管的局部阻力特性研究.西安交通大学学报,1998,32(5):38-41
    [43] P.L.Spedding, D.R.Spence. Flow Regimes in Two-Phase Gas-Liquid Flow.Int.J.Multiphase Flow,1993,19(2):245-280
    [44] R.Pal, Emulsions Pipeline Flow Behavior Viscosity Equations and Flow Measurement.Ph.D.Thesis,Waterloo.Ontario
    [45] Pal.R. Pipeline Flow of Unstable and Surfactant Stabilized Emulsion.AICHE J, 1993, 39:1754-1764
    [46] Rose.S.C, Marooned Jr.S.S. The Flow of North Slope Crude Oil and Its Emulsions at Low Temperatures. SPE 2996. SPE 45th Annual Fall Modeling and Exhibition. Houston
    [47] Harald Kvandal, Terje Sontvedt. Frictional Pressure Loss For Stable Oil-Water Emulsions in Pipe flow. Two-phase Flow Modeling and Expermentation, 1995:601-607
    [48] B.Saadevandi, M.s.Arney, Friction Factor and Holdup Studies for Lubricated Pipelining-Experiments and correlations, Int.J.Multiphase Flow, 1993, 19:1061-1076
    [49] M.Acikfoz, F.Franca, K.T.Lahey. An Experimental Study of There-Phase Flow Regimes.Int.S.Multiphase Flow, 1992, 8:327-336
    [50] R.T.Lahey, M.Acikgoz, F.Franca. Global Volumetric Phase Fractions in Horizontal Three-Phase Flows. AICHEJ, 1992, 38(7)
    [51] 龚晓波,林高平,冯霄等.突扩管道中密相两相湍流的数值研究.西安交通大学学报,2001,35(8):858-863
    [52] 田贵山,王新军,徐廷相.垂直管内气固两相湍流模型及其数值计算.西安交通大学学报,1998,32(7):41-45
    [53] 林玉珍,刘景军,雍兴跃等.数值计算法在流体腐蚀研究中的应用——(Ⅰ)层流条件下金属的腐蚀.中国腐蚀与防护学报,1999,19(1):1-7
    
    
    [54] 雍兴跃,刘景军,曹楚南等.数值计算法在液体腐蚀研究中的应用—(Ⅱ)湍流条件下金属的腐蚀.中国腐蚀与防护学报,1999,19(1):8-14
    [55] 权晓波,李维,曾卓雄等.幂律流体突扩管道湍流流动的研究.西安交通大学学报,2001,35(11):1119-1121
    [56] 胡志伟,李勤凌,苗永淼.三维强弯管内湍流场的数值分析.西安交通大学学报,1998,32(1):49-52
    [57] Chao Wu, Kanthi Kran Dasika, Yitung Chen etal. Numeral Modeling of Lead Oxidation in Controlled Lead Bismuth Eutectic Systems:Chemical Kinetics and Hydrodynamic Effects, nternational Congress on Advanced Nuclear Power Plants in Hollywood. florida,2002, 6:9-13
    [58] R.G.Ballinger, J.Y.Lim. Research Activities in US Related to Material Compatibility Issues for Nuclear Systems Using Heavy-Liquid-Metal Coolant. 2001
    [59] Ning Li, Keith Woloshun, Alentina Tcharnotskaria. Lead-Bismuth Eutectic (LBE) Materials Test Loop(MTL) Test Plan. 2001
    [60] T.W.Darling, Ning Li.Oxygen Concentration Measurement in Liquid Pb-Bi Eutectic.2001
    [61] 傅德熏,马延文编著.计算流体力学.北京:高等教育出版社,2002
    [62] 李勇,刘志友,安亦然.介绍计算流体力学通用软件——Fluent.水动力学研究与进展,2001,A辑16(2):254-258
    [63] 姚征,陈康民.CFD 通用软件综述.上海理工大学学报,2001,24(2):138-144
    [64] 偶国富等.高压空冷器管束失效分析和预防.压力容器,2003,12
    [65] Dieter Pflug, Franz Bala. Failure at Reactor Effluent Air Coller Outlet Piping. Presented by 1993 Unicracking Conference Chacago,Illinois September 14-17,19333

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700