胜利油田单6东超稠油脱硫降粘机理及现场实施方案研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国稠油储量丰富,如何有效动用这部分储量是一个难题。稠油化学改质是解决这个难题的有效方法之一,尤其是稠油井下化学改质技术,可以从源头上解决问题。有学者针对辽河油田稠油进行了这方面的研究,并已进行了现场实验,但针对胜利油田稠油的井下化学改质研究未见报道。本文从催化降粘和脱硫两方面入手,在近似蒸汽吞吐的温度和介质条件下,对胜利油田单6东区块超稠油进行了化学改质研究。
     在催化降粘方面,笔者制备了一种超强酸催化剂,在最佳反应条件下(稠油、水、催化剂质量比为100:30:0.05,温度260℃,反应时间24h),可使稠油粘度降低55.9%。并且在该催化剂作用下:稠油中碳数分布发生了明显变化,<C_(25)与>C_(35)分子数减少,C_(25)~C_(35)分子数增加;饱和烃、芳香烃含量增加,胶质、沥青质含量减少。红外光谱分析证明:超稠油经催化降粘反应后,其CH_2/CH_3值由3.45减小到3.05,芳香度(f_A)由0.301增加到0.364,说明在反应过程中,含芳环的化合物发生了部分脱烷基侧链的反应,这也可以从反应物中饱和烃与芳香烃的增加得到证实。本文还考察了阻聚剂、引发剂、溶剂、油层矿物和地层水对稠油催化降粘反应的影响。实验结果证明,除阻聚剂外,其它各物质均可与催化剂产生协同作用,不同程度地提高了稠油的降粘率。
     在脱硫方面,笔者配制了一种脱硫剂,该剂可用于稠油的湿法氧化脱硫。使用该剂,在一定反应条件下(稠油100g,水30g,脱硫剂0.06g,温度260℃,反应时间24h),硫脱除率可达58.2%。将催化剂与脱硫剂共同作用于稠油,反应体系中各物质的添加量为:超稠油100g、水30g、催化剂0.05g、引发剂0.3g、溶剂0.4g、偏钒酸钠0.01g、碳酸钠0.0015g,反应时间24h。实验结果显示,在220℃~260℃范围内,稠油降粘率在80%以上,脱硫率不低于70%。
     在室内实验的基础上,本文还研究了胜利超稠油井下脱硫降粘的现场实施方案。在技术原理、现场施工操作参数、现场实验效果评价等方面进行了初步的探讨。
Heavy oil reserve is abundant in China. To produce this reserve effectively is difficult. Heavy oil chemical upgrading is one of the effective methods. The method of heavy oil down-hole chemical upgrading, which can solve the problem originally, is effective particularly. Some scholars have studied this method and done some field experiment on heavy oil from Liaohe oilfield. No research about this method in producing heavy oil from Shengli oilfield is reported. In this paper, the catalytic visbreaking and desulfuration of extra-heavy oil from Shengli oilfield is studied in the proximate conditions of cyclic steam stimulation.
    A super acid catalyst is prepared for catalytic visbreaking of heavy oil. After visbreaking, the viscosity of extra-heavy oil is reduced 55.9% in the optimum test conditions (260癈, 24hr). The optimum mass rate is: oil : water : cat. = 100 : 30 : 0.05. The C35 molecules, resin and asphaltene in extra-heavy oil is decreased after catalytic visbreaking. The C25 --C35 molecules, saturated and aromatic hydrocarbon in extra-heavy oil is increased after catalytic visbreaking. The result of IR spectrum analysis shows: the CH2/CH3 of extra-heavy oil is decreased from 3.45 to 3.05 and the fA of extra-heavy oil is increased from 0.301 to 0.364. This result confirmed that aromatic compound in extra-heavy oil had broken its side chain alkylation. This reaction can also be confirmed by such fact that saturated and aromatic hydrocarbon in extra-heavy oil is increased after catalytic visbreaking. The synergetic effect of catalyst and polymerization inhibitor, initiator, solvent, reservoir mineral, formatio
    n water in catalytic visbreaking of extra-heavy oil have been reviewed in this paper. The experiments results shows that any mass, except polymerization inhibitor, has synergetic effect with catalyst and enhanced viscosity reduction rate of extra-heavy oil.
    A desulfuration reagent is prepared for wet and oxidation desulfuration of extra-heavy oil. The sulfide content of extra-heavy oil reduced 58.2% after treatmented by this reagent (oil : water : reagent = 100 : 30 : 0.06, 260℃, 24hr). The viscosity of extra-heavy oil is reduced more than 80% and The sulfide content of extra-heavy oil reduced not less than 70% when catalyst and desulfuration reagent coexist in reaction system (220℃~260℃,24hr). The optimum mass rate is:
    oil : water : cat. : initiator : solvent ". NaVO3 : Na2CO3=100 : 30 : 0.05 : 0.3: 0.4 : 0.01 : 0.0015.
    In this paper, the field conduct program of extra-heavy oil down-hole desulfuration visbreaking is studied based on lab research. The research include: technical principle, operated parameter, effectiveness assessment.
引文
[1] 于连东.世界稠油资源的分布及其开采技术的现状与展望[J].特种油气藏,2001,8(2):98~103
    [2] 周风山,吴瑾光.稠油化学降粘技术研究进展[J].油田化学,2001,18(3):268~272
    [3] 郑焰,梁政,贾朝霞.稠油开采新思路-油层催化裂化技术[J].石油钻采工艺,1997,19(6):77~80
    [4] 范洪富,刘永建,赵晓非.国内首例井下水热裂解催化降粘开采稠油现场实验[J].石油钻采工艺,2001,23(3):42~44
    [5] Hyne J B. Aquathermolysis-A synopsis work on the chemical reaction between water(steam) and heavy oil sands during simulated stimulation. Synopsis Report No. 50, AOSTRA, 1986.
    [6] Clark P D, Hyne J B. Studies on the chemical reactions of heavy oils under steam stimulation condition[J]. AOSTRA Journal of Reacher, 1990, 29(6): 29~39
    [7] 李奉孝,王鸿勋主编,赵玉兰副主编.AOSTRA大学研究报告译文汇编(一),沥青化学.山东:石油大学出版社,1991年:134~153
    [8] 李奉孝,王鸿勋主编,赵玉兰副主编.AOSTRA大学研究报告译文汇编(二),沥青化学.山东:石油大学出版社,1991年:117~133
    [9] Jana M. Jacobson and Murray R. Gray. Use of IR spectroscopy and nitrogen titration date in structural group analysis of bitumen. Fuel, 1987, Vol (66): 749~752
    [10] Erdman, J.G. and Dickie, J.P. Mild thermal alteration of asphaltic crude oils. Preprints. Div. Pet. Chem. (ACS), 1964, 9(2): 69~79
    [11] 刘文章,唐养吾.国际重质原油开采会议论文选集(下).北京:石油工业出版社,1988年.
    [12] Monin, J. C. Audlbert, A. Thermal cracking of heavy-oil/ mineral matrix system. SPE reservoir Engineering, November, 1988. 1243~1250
    [13] M. R. Fassihi. Thermal alteration of viscos crude oils. SPE 14225. Las Vegas, NV, 1985: 22~25
    [14] Richard. P. Dutta, William C. Mc. Caffrey, Murray R. Gray. Thermal cracking of Athabasca bitumen: influence of steam on reaction chemistry. Energy & Fuels, 2000, 14(2): 671~676
    [15] W. R. Shu, K, J. Hartman. Thermal visbreaking of heavy oil during steam recovery processes. SPE Reservoir Engg. Sept. 1996. 474~482
    [16] Stine. In-situ conversion of hydrocarbonaceous oil. US. Patent. 4, 448, 251. May' 15, 1984
    [17] R. George S. Ritchie, Rodney S. Roche. Pyrolysis of Athabasca tar sands: analysis of the condensable products from asphaltene. Fuel, 1979, 58(3): 523~530
    [18] Glen Brons, Michael Siskin. Bitumen chemical changes during aquathermolytic treatments of Cold Lake tar sands. Fuel, 1994, 73(6): 183~191
    [19] Hamid Pahlavan, Islam Rafiqul. Laboratory simulation of geochemical changes heavy crude oils during thermal recovery. Petroleum science & engineering, 1995, (12): 219~231
    [20] M. C. Torrente, M. A. Galan. Kinetics of the thermal decomposition of oil shale from Puertollano. Fuel, 2001, 80(2): 327~334
    [21] M. Sasaki, C. Song, M. A. Plummer. Transition metal tetrachloroaluminate catalysts for probe reactions stimulating petroleum resides upgrading. Fuel, 200, 79(1): 295~303
    [22] Nguyen Phuong Tung. Studying the mechanisms of crude oil pour and viscosity reduction when developing chemical additives with the use of advanced analytical tools. SPE 65024, Texas, 2001.13~16
    
    
    [23] J.G.Speight.石油沥青质的热解化学[J].石油学报(石油加工),1990,6(1):29~35
    [24] Daniel Duprez. Selective steam reforming of aromatic compounds on metal catalysts. Applied catalysis A: General, 1992, 82(1): 111~157
    [25] Nicolaos Economodis, Robert F. Coil, Panagiotis G. Smirniotis. catalytic performance of Al_2O_3/SiO_2/TiO_2 loaded with V_2O_5 for the selective catalytic reduction of Nox with ammonia. Catalysis Today, 1998, 40(1): 27~37
    [26] I. Suelves, R. Moliner, M. J. Lazaro. Synergetic effects in the copyrolysis of coal and petroleum residues: influence of coal mineral matter and petroleum residue mass ratio. Journal of Analytical and Applied pyrolysis, 2000, 55(1): 29~41
    [27] Bruce P. Pelrine, Ewing, N.J. Iron-based ionic liquid catalysts for hydro-processing carbonaceous feeds. US. Patent, 6, 139, 723. Oct. 31, 2000
    [28] McFarlane et al. Process for dispersing transition metal catalytic particles in heavy oil. US. Patent 5, 916, 432. Jun. 29, 1999
    [29] SadieS. Salim Alexis r. Bell. Effects of Lewis acid catalysts on the hydrogenation and cracking of three-ring aromatic and hydroaromatic structures related to coal. Fuel, 1984, 63(2): 469~476
    [30] Thomas J. Clough, Santa Monica. Process for recovering hydrocarbon. US. Patent 4, 846, 274 Jul. 11, 1989
    [31] C. Ozgen garacan, Ender Okandan. Change of physical and thermal decomposition properties of in-situ heavy oil with steam temperature. Petroleum Science and technology 1997, 15(566): 429~443
    [32] Tshitende Kasongo, Zhiang Zhou, Zhenghe Xu et al. Effect of clays and calcium ions on bitumen extraction from Athabasca oil sands using flotation. The Canadian J. of Chem. Egg. 2000, 78(4): 674~681
    [33] Nobuyasu Kanda, Hironori ltoh, Susun Yokyana et al. Mechanism of hydrogenation of coal-derived aspaltene. Fuel, 1978, 57(6): 676~680
    [34] aria T. Martinez, Ana M. Benito, Maria A. Callejas. Thermal cracking of coal residues: kinetics of asphaltene decomposition. Fuel, 1997, 76(9): 871~877
    [35] Rafael E. Campos, Joes A. Hernandez. In-situ reduction of oil viscosity during steam injection process in EOR. US. Patent, 5, 314, 615. May 24, 1994
    [36] Ben M. Benjamin, Vernon F. Rasen, PaulH. Maupin et al. Thermal cleavage of chemical bonds in selected coalrelated structures. Fuel, 1978, 57(3): 269~272
    [37] McFarlane. Process for dispersing transition metal catalytic particles in heavy oil. US. Patent. 5, 916, 432. Jun. 29, 1999
    [38] Stuart L. Soled. Hydroprocessing using bulk group Ⅷ catalysts. US. Patent. 6, 162, 350, Dec. 19, 2000
    [39] Babcock. Flourinated solid acid as catalysts for the preparation of hydrocarbon resins. US. Patent. 6, 281, 309 B1. Aug. 28, 2001
    [40] Cesar Ovalles. Extra-heavy crude oil downhole upgrading process using hydrogen donor under steam injection conditions. SPE 69692. 2001, March 12~14, Venezuela.
    [41] 常毓文,张毅,胡用久.稠油热采技术新进展[M].北京,石油工业出版社,1997年.
    [42] 范洪富,刘永建,赵晓非.井下水热催化降粘开采稠油新技术研究[J].油田化学,2001,18(1):13~16
    [43] 范洪富,刘永建,赵晓非.井下降粘开采稠油技术研究[J].石油与天然气化工,2001,30(1):39~40
    
    
    [44] 范洪富,刘永建,赵晓非等.金属盐对辽河稠油水热裂解反应影响研究[J].燃料化学学报,2001, 29(5):430~433
    [45] 刘永建,范洪富,钟立国等.水热裂解开采稠油新技术初探[J].大庆石油学院学报,2001,25(3):56~69
    [46] 赵晓非,刘永建,范洪富,钟立国.稠油水热裂解可行性的研究[J].燃料化学学报,2002,30(4):381~384
    [47] 范洪富,刘永建,钟立国.油层矿物对蒸汽作用下稠油组成与粘度变化的影响[J].油田化学, 2001.18(4):299~301
    [48] 敬加强,郑焰.稠油集输中催化裂化降粘技术的研究[J].油气储运,1998,17(4):6~8
    [49] Carlos Vallejos. Downhole Upgrading of extra-heavy crude oil using hydrogen donor and methane under steam injection conditions[J]. Preprints, 2000,45(4): 591~594
    [50] Hyne J B and Greidanus J W. Aquathermolysis of heavy oil[J]. Proc. 2nd Int. Conf. On heavy crude and tar sands. Caracas, Venezuela, 1982
    [51] Johnson H S, Bright A. Upgrading of heavy hydrocarbonaceous oil using CO and steam[P]. Canada Patent 1195639. Oct. 22, 1985
    [52] Thomas J C, Santa M. Process for recovering hydrocarbon[P]. US. Patent 4,846,274 Jul. 11, 1989
    [53] Bruce P. Pelrine, Ewing, N.J. Iron-based ionic liquid catalysts for hydro-processing carbonaceous feeds. US. Patent, 6, 139, 723. Oct. 31, 2000
    [54] Richard. P. Dutta, William C. Mc. Caffrey, Murray R. Gray. Thermal cracking of Athabasca bitumen: influence of steam on reaction chemistry. Energy & Fuels. 2000, 14(2): 671~676
    [55] 王恩波,胡长文,许林.多酸化学导论[M].第一版.北京:化学工业出版社,1998年.
    [56] 贾荣宝,袁光成.精细化工产品生产工艺精选[M].第二版.合肥:安徽科学技术出版社,1998年.
    [57] Zugazagoitia Herranz, D. Th(?)se doctorat 3(?)me cycle, University of Paris, 1981, 361
    [58] T(?)z(?), A.; Herv(?), G. J. Inorg. Nucl. Chem. 1977, 39, 999
    [59] 吴越.催化化学(上、下册)[M].第二版.北京:科学出版社,2000年.171~186
    [60] 梁文杰,刘晨光.重质油化学[M].第一版.山东:石油大学出版社,2002年.69~76
    [61] 王睿.磷钼杂多化合物湿法氧化脱硫动态特性研究[J].燃料化学学报,2001,29(2):159~164
    [62] 薛永兵,凌开成.煤直接液化中溶剂的作用和种类[J].煤炭转化,1999,22(4):1~4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700