天然气减阻剂的研制及其减阻性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于全球对经济可持续发展的要求和对“洁净能源”的呼唤,天然气需求量与日俱增。天然气作为一种清洁高效的能源,已成为世界各国改善环境和促进经济可持续发展的最佳选择,也是我国改善能源结构、寻找煤炭替代资源的主要途径。当前,天然气的普及率和耗用量已成为评价一个国家、一个地区或一座城市的经济及社会发展水平的标志之一,这表明21世纪天然气将在能源结构中扮演越来越重要的角色。
     管道输送是世界上五大运输工具之一,目前,天然气的主要运输方式为管道输送,为了提高输量,长运距、大管径和高压力管道是当今世界天然气管道发展的主流。在天然气管道输送方面存在着:长距离大管径输送管道能耗大的突出问题;对长期服役已出现腐蚀老化管道,采用原设计压力输送甚至用增压等措施来维持原输气量,将带来的重大安全事故隐患问题;由于油气田开采产量自身规律和经济发展的各个时期需求量不同,要求同一口径管道的输送设备应具有经济合理的弹性调节能力的问题;同时在开发海上、沙模、沼泽、高寒等自然条件恶劣地区的油气田时,占总成本比例极大的油气输送动力、能耗问题也是构成能否经济合理开发的关键问题之一。
     解决上述问题的最好方法是使用减阻技术。对于天然气管道运输而言,减阻技术可方便地提高管道的输量,降低管线的压力,节约能源,提高管线运行的安全系数等,其功能主要有两方面:一方面是在恒定输量的情况下,降低管道两点间的摩阻,在保持两点压力降不变的情况下,增加输量,从而节省大量的人力、物力消耗;另一方面是提高天然输量弹性,以满足不同气田、不同地区的需要。在天然气实际管道输送过程中使用减阻技术,可提高管道的输量弹性,使管道由“刚性”变为“弹性”,并能很好的解决长距离大管径输送管道能耗大的突出问题。同时对长期服役已出现腐蚀老化管道,应用减阻技术在维持原输气量条件下,能够降低管道压力,提高管线运行的安全系数。
     目前,国内外普遍采用管道内涂层减阻技术来解决上述问题,并取得了很好的技术效果和良好的经济效益,但管道内涂层减阻方法施工设备复杂、费用较高,特别是随着输气时间的延长和不定时清管,管道内涂层不断脱落,减阻效果逐渐降低,若进行二次修补,则必须停产、拆装和清理,这在工程和技术上都将造成极大的困难。更重要的是,目前国内外管道内涂层减阻技术随着使用年限的增长,其暴露出来的致命缺陷日益显现,即管道内涂层脱落残片直接影响燃气轮压缩机高速运转的叶片寿命,严重时可使叶片损坏,造成供给输送天然气动力的燃气轮压缩机停运。
     针对内涂层减阻技术存在的缺陷,20世纪90年代,美国率先提出了天然气减阻剂减阻技术的概念。该概念主要技术内容是将具有表面活性剂性质的被称作天然气减阻剂的化学品定期注入天然气管道中,通过极性端对钢铁表面的吸附,形成弹性分子薄膜,达到降低管壁粗糙度实现减阻的目的。依据该概念其研究与开发思路为:合成对钢铁表面具有强吸附性能,同时具有抗高速运动气体牵拉作用的化合物,利用该化合物可在钢铁表面形成弹性分子薄膜特性,从而达到降低管壁粗糙度实现减阻的目的。对于这种全新的天然气减阻技术方案,目前在国外还处于实验室研究阶段,而国内则是完全空白。
     本课题在总结国内外研究现状及技术发展趋势的基础上,针对国际上天然气减阻剂工业产品尚属空白,但国外研发已出现由实验室向工业化开发萌芽的现状,依据我们前期“输油管道α-烯烃系列减阻剂开发及其制备工艺”积累的经验与相关研究仪器设备,同时迅速开展天然气减阻剂减阻理论和产品研发与应用技术两方面的研究。天然气减阻剂的研制及其减阻性能的研究其科学与技术的意义为:作为油气储存与运输工程二级学科,特别是对运输工程而言,由于石油能源工业的特殊性,世界各国其输送装备技术均可通过引进、消化和吸收方法加以解决,因而就技术水平而言,全世界基本上处于同一水平。但是减阻增输技术因其具有战略意义,各国仅出售产品不出售技术,并且研发资料严格保密相互封锁,因此减阻增输技术被公认为该学科的技术制高点,代表了一个国家该学科在国际上的学术理论与工程技术地位。在油品减阻剂的开发方面,“输油管道α-烯烃系列减阻剂开发及其制备工艺”获2008年国家技术发明二等奖,标志着我国在油品减阻剂研制与工程应用技术方面处于世界领先水平。在天然气减阻剂开发方面,我国在研发起步阶段已落后于国外,我们只有强化研发力度,采用超常规研发思路开展该方面的研究,使我国天然气减阻剂研发赶上和超过国外先进水平,从而使我国在减阻增输高技术领域占有一席之地。
     正是基于上述情况,促使我在前期参加“输油管道α-烯烃系列减阻剂开发及其制备工艺”基础上,继续从事天然气减阻剂的研制及其减阻性能的研究。经过五年多的努力,取得了以下成果:
     1、利用流体力学、量子力学及分子动力学模拟等手段,在分析天然气输送过程中能量损失产生的原因及水力摩阻的基础上,结合我们对于原油减阻剂积累的经验,对天然气减阻剂的减阻机理进行了研究。研究表明含氨基、酰胺基、咪唑等极性基团的化合物或聚合物由于与铁具有较高的结合能,而具备了作为天然气减阻剂的先决条件,这为天然气减阻剂的分子设计奠定了理论基础。
     2、在对天然气输送过程中能量损失分析的基础上,结合油品减阻剂室内评价系统设计开发积累的经验,模拟实际天然气管道输送情况,设计完成了国内唯一一条天然气减阻剂室内评价系统,该评价系统基本稳定可靠,具有良好的可操作性及重复性。该评价系统的设计完成,为天然气减阻剂的筛选与研制打下了坚实的基础。
     3、在分析天然气减阻剂减阻机理的基础上,实验室合成了硬脂酸咪唑啉、巯基三氮唑及乙烯基咪唑—乙烯基三甲氧基硅烷共聚物三种天然气减阻剂,并利用扫描电子显微镜、电化学方法对其成膜性能进行研究,研究表明三种物质在钢铁表面均具有良好的成膜性能,表现出了良好的可实际工业化应用前景。
     4、利用设计完成的天然气减阻剂室内评价系统对所合成的三种天然气减阻剂进行了减阻性能的研究,探讨了各种工艺条件对减阻性能的影响,确定了最佳减阻工艺条件。研究结果表明:在最佳减阻工艺条件下,硬脂酸咪唑啉减阻率可达8.4%,AAMT减阻率可达10.03%,而VI-VTMS共聚物减阻剂,其减阻率最大可达22.72%,达到了国际领先水平,并且聚合过程操作工艺简单,为工业化生产应用打下了基础。
The natural gas was growing in demand because of the needing on the economic sustainable development and the calling on the clean energy. As the green high efficiency energy, natural gas had become the optimum selection to improve environment and promote economic sustainable development for all over the world. It was also a main way to improve the energy structure and seek the coal replacement energy of China. At present, the popularization rate and the consumption of natural gas had became the mark of the economic and social development level to evaluate one country, one zone, or one city.
     Pipeline was one of five major forms of transportation in the world. At present, almost all of natural gas produced in the world were transported by pipeline. The long-distance, big-diameter and high-pressure pipeline was the main developing flow of gas pipeline in the world in order to increase the pipeline throughput. But there were several problems for the natural gas pipeline transportation. Firstly, high energy consumption was the outstanding problem for long-distance, big-diameter pipeline. Secondly, it took the hidden trouble of vital safety accident when using the design pressure or pressurization to maintenance the throughput for aging pipeline. Thirdly, it was required that the same diameter pipeline conveyer should have the economic and reasonable elastic adjusting ability because of the law of gas field exploitation and the various demand at different period. Fourthly, one of the key problems for the economic and rational exploitation was the transportation dynamics and energy consumption with high proportion to the total cost when exploitation the gas filed was in the hash natural conditions region, including offshore, desert, swamp, and alpine region.
     The best way to solve these problems was using drag reducing agents(DRAs). Using DRAs could improve the throughput, decrease the pipeline pressure, save energy, and improve the safety, etc. It had two main functions:On the one hand, the friction was decreased keeping the throughput invariant and the throughput was improved keeping the pressure drop invariant. Thus, the labor and material were saved. On the other hand, the elastic throughput was improved in order to meet the different gas fields and area. The elastic throughput was improved and the rigid pipeline changed into elastic when DRAs were used in the practical pipeline transportation. It also solved the outstanding problem of high energy consumption for long-distance, big-diameter pipeline. At the same time, the operating pressure of pipeline was reduced and the running safety coefficient was improved when using DRAs to maintain the throughput for the aging pipeline.
     At present, the inner-coated drag reduction technology was adopted to reduce the pipe wall roughness, which obtained excellent results and better economical benefits. But, for the inner-coated drag reduction technology, the construction equipments were complex and the cost was high. Especially, the drag reduction efficiency reduced and the inverse effect happened because of the runaway coating after long-time transportation and irregular pigging. It must stop production, dismount, and clean in order to repair. It was very difficult in the engineering technology. More important, the inner-coated drag reduction technology had fatal weakness that the exfoliated inner-coatings directly affected the high speed operation blade of compressor, on the severe case, blade was damaged causing the compressor outage.
     In 1990s, the concept of gas DRAs technology was firstly introduced according to the fatal weakness of inner-coated technology. The content of this concept was that the chemicals with surface activity said as gas DRAs were periodically injected into gas pipeline, the polar terminal was adsorbed onto the pipe iron wall surface to form the elastic film, so the pipe wall roughness was accordingly reduced and the drag reduction was obtained. The general idea of research and development according to the concept was that synthesis of compounds having high adsorption properties with iron and resistant to draw-off of high speed gas. At present, this technology was in developing phase abroad, but it was blank home.
     This paper overviewed the technology state and trend of gas pipeline development. According to the state that the natural gas DRAs was blank, and it was showed the industrial germination. Based on our experience and equipments on the studying process of "development and preparation technology of oil pipeline a-olefin", the natural gas DRAs drag reduction theory and the research and application of DRAs production were studied in this paper. The scientific and technical significance of synthesis of natural gas DRAs and its drag reduction performance studying was:Oil & gas storage and transportation was the grade-2 subject. Its transportation equipment can be solved by introducing, digesting, and adsorbing for all over the world. So, it was ranged in the same level. But the technology of drag reduction and throughput increasing possess a strategic significance, so only the products was for sale and the technique was keeping secret. The technology of drag reduction and throughput increasing was considered as the commanding point in this subject. It was representative for academic theory and engineering technology status of a county in the word. The "development and preparation technology of oil pipeline a-olefin" has won the second state technological innovation prize which mark a international leading level of China in the oil DRAs. Because the development of natural gas DRAs was drop behind in China compared to abroad, it was necessary to study energetically in order to catch up with and exceed the advanced level to take a place in the technology of drag reduction and throughput increasing field.
     For the above reasons, the author was engaged in development of natural gas DRAs and its drag reduction performance studying on the basis of taking part in "development and preparation technology of oil pipeline a-olefin". The following creative achievements were obtained after five years efforts.
     1. The drag reduction mechanism was studied using the methods of fluid mechanics, quantum mechanics, and molecular dynamics simulation on the basis of the experience of oil DRAs. The results showed that the compounds or polymers including amino, amide, and imidazole with high bond energy with iron had the preconditions to become natural DRAs. It was laying a solid foundation for the molecular design of natural gas DRAs.
     2. The natural gas drag reduction evaluation system was designed simulating the actual natural gas pipeline under the conditions of analyzing the energy loss in the transportation and the experience of the oil DRAs drag reduction evaluation system. The system was stable, reliable, maneuverability, and repeatable. The system was laying a solid foundation for the screening and development of natural gas DRAs.
     3. Three natural gas DRAs including stearic imidazole, AAMT, and VI-VTMS copolymers were designed and synthesized according to the drag reduction mechanism. The SEM and electrochemical methods were employed to study the property of film-forming. The results showed that three materials had better film-forming properties on the iron surface and the industrial application background.
     4. The drag reduction efficiency of three synthetic materials were studied using the natural gas drag reduction evaluation system. The technological conditions effect on the drag reduction efficiency were discussed and the optimum technological conditions were determined. The results showed that the drag reduction efficiency of stearic imidazole was 8.4%, AAMT was 10.03%, VI-VTMS was 22.72%. The drag reduction efficiency of VI-VTMS was international leading level and the polymerization process was simple. It was laying a solid foundation for the industrial development.
引文
[1]史斗,郑军卫.天然气:21世纪我国国民经济新的增长点[J].地球科学进展,2001,16(4):533-539.
    [2]张静.天然气与中国能源发展前景[J].中国石油与化工经济分析,2007,12:20-24.
    [3]王颖,唐兴华,李苏平,张雪丹,刘延武.世界天然气储运技术简介[J].油气田地面工程,2003,7:19.
    [4]张宝兰.国外输气管道技术发展趋势[N].中国工业报,2006.6.15,第B02版.
    [5]阎光灿.世界长输天然气管道综述[J].天然气与石油,2000,9,18(3):9—20.
    [6]吴长春,张孔明.天然气的运输方式及其特点[J].油气储运,2003,22(9):39-43.
    [7]王功礼,王莉.油气管道技术现状与发展趋势[J].石油规划设计,2004,15(4):1-7.
    [8]阎光灿,冯亚利,吴邦辉.世界天然气输送管网系统[J].天然气与石油,1999,17(1):58—64.
    [9]阎光灿,冯亚利,吴邦辉.世界天然气输送管网系统[J].天然气与石油,1998,11(4):50—55.
    [10]林竹,刘本华等.输气管道减阻涂料现状及发展趋势[J].上海涂料,2004,1:16-18.
    [11]胡杰我国近年来油气勘探开发建设新形势[J].中国石油和化工经济分析,2007,16:38-45.
    [12]吴宏.西气东输管道工程介绍(上)[J].天然气工业,2003,23(6):117—122.
    [13]吴宏.西气东输管道工程介绍(下)[J].天然气工业,2004,24(1):80—85.
    [14]R.J.Schoneberger, Kraig S.Erickson, John M.Curry, Drag reducer helps boost crude thruput during hydrotest[J]. PIPELINE INDUSTRY,1992,7:41-43.
    [15]胡通年.减阻剂在我国输油管道上的应用试验[J].油气储运,1997,16(6):11-14.
    [16]于慎卿.减阻技术在我国石油管道上的应用[J].油气储运,1990,9(2):16-22.
    [17]王估.减阻添加剂的历史和现状[J].油气储运,1985,Vol 4,No 2,1-13
    [17]姚光镇.输气管道设计与管理[M].北京:石油大学出版社,1991.
    [18]吴玉国,陈保东.输气管线摩阻系数的影响因素以及减阻的主要方法[J].管道技术与设备,2003,5:1-3.
    [19]关中原,李春漫,尹国栋,李国平,税碧垣,刘兵.EP系列减阻剂的研制与应用[J].油气储运,2001,20(08):32-34.
    [20]税碧垣,李国平,刘兵,窦红梅,王龙飞.EP-W 203减阻剂的评价与现场试验[J].油气储运,2001,20(6):33-36.
    [21]刘子均,李佩.EP-W 203/H型减阻剂在安延管道的试验及应用[J].油气储运,2001,20(11)24-26.
    [22]Goudy C.F.L, Polymeric Drag reducers[J]. Oil Gas Journal,1989,87(20).25-32.
    [23]Charies L. Muth, Michael J. Monahan, L. Scott Pessetto, Application of drag reducing agents effect cost savings[J]. PIPELINE INDUSTRY,1986,6,15-24.
    [24]A. F. Horn, C. D. Wu, D. J. Prilutski John F. Motier, High Viscosity Crude Drag Reduction[J]. PIPELINE AND GAS JOURNAL,1986,7,22-25
    [25]Burger E.D. et al.Flow increase in the TransAlaska pipeline through use of a polymeric Drag-Reducing additive[J]. Journal of Petroleum Technology,1982,(6):102-106.
    [26]John JM. Piping design handbook[M]. NewYork:Marcel dekker,1992.
    [27]吴玉国,陈保东.输气管线摩阻公式评价[J].油气储运,2003,22(1):23-28.
    [28]郑洽馀,鲁钟琪.流体力学[M].北京:机械工业出版社,1980.
    [29]胡士信,陈向新.天然气管道减阻内涂技术[M].北京:化学工业出版社,2003.
    [30]沈善策.输气管道采用内壁覆盖层时的工艺设计问题[J].油气储运,2000,19(7):19-24.
    [31]Sletfjerding, Elling, Gudmundsson, etal. Friction factor in gas pipelines in the North Sea [C].Richardson. SPE proceedings-Gas Technology Symposium. Texas USA:SPE,2000:459-467.
    [32]钱成文,刘广文,王武,刘春林.天然气管道的内涂层减阻技术[J].油气储运, 2001,20(3):1—6.
    [33]林竹,张丽萍,袁中立,秦延龙.减阻型涂料在天然气管道中的应用[J].焊管,2002,25(6):1—4.
    [34]刘雯,钱成文.输气管道内涂层用料[J].油气储运,2001,20(2):13-15,19.
    [35]Ying-Hsiao Li. Drag Reduction Method for Gas Pipelines:US, 5020561 [P].1991-06-04.
    [36]关中原,李国平,赵丽英,李春漫.国外减阻剂研究新进展[J].油气储运2001,20(6):1-4.
    [37]E.D.Burger, W.R.Munk and H.A.Whal, Flow Increase in the Trans Alaska Pipeline Flow using a Polymeric Drag Reducing Additive[J]. SPE 9419,1980,9:. 35-42.
    [38]Motier,J.F. and Prilutski,D.J. Case Histories of Polymer Drag Reduction in Crude Oil Lines. [J]. Pipe Line Industry,1985(6):33-37.
    [39]Jean Boschat, Jerome Sabachier etal. Ecuador Plans Expanded Crude Oil Line. [J].Oil & Gas Journal,1995(1):37-41.
    [40]Frank E Lowther. Drag Reduction Method for Gas Pipelines:US, 4958653[P].1990-07-26.
    [41]Ying-Hsiao Li, Chesnut G R, Richmond R D, etal. Laboratory Tests and Field Implementation of Gas-Drag-Reduction Chemicals [J].SPE Production & Facilities,1998,13(1):53-58.
    [42]Huey J Chen, Gene E Kouba, Michael S Fouchi, etal. DRA For Gas Pipelining Successful in Gulf of Mexico Trial [J]. Oil & Gas Journal,2000,98(23):54-58.
    [43]Randi Naess. Pressure Loss in Gas Pipe with Adsorbed Layers [R]. Norway: Department of Petroleum Engineering and Applied Geophysics of NTNU,1999.
    [44]Randi Naess. Drag Reduction Agents for Natural Gas Flow in Pipelines [D].Norway:Department of Petroleum Engineering and Applied Geophysics of NTNU,1999.
    [45]姚玉英.化工原理[M].天津:天津科学技术出版社,2004.
    [46]刘广文等天然气管道内涂层减阻技术[M].北京:石油工业出版社,2001.
    [47]博布罗夫斯基.天然气管路输送[M].北京:石油工业出版社,1985.
    [48]方景礼,叶向荣,李莹.缓蚀剂的作用机理[J].化学通报,1992,(6):5-13.
    [49]Kdlmdn E Trends in corrosion research [J]. Electrochim Acta,2001,46(24-25): 3607-3609.
    [50]M. Statmann, Chemically modified metal surfaces-a new class of composite materials [J]. Advanced Materials,1990,2(4):191-195.
    [51]Seal S, Sap re K, Kale A, M. Gopal and P. Jepson, Effect of multiphase flow on corrosion of C-steel in presence of inhibitor:a surface morphological and chemical study [J]. Corrosion Science,2000,42(9):1623-1634.
    [52]Ramachandran S, Tsai B L, Blanco M, Chen H, Tang Y C, W illiam A G., Self-Assembled Monolayer Mechanism for Corrosion Imhibition of Iron by Imidazolines [J]. Langmuir,1996,12(26):6419-6428.
    [53]M A San.Migue, P M Rodger, The effect of corrosion inhibitor films on deposition of wax to metal [J]. Journal of Molecular Structure,2000,506(3): 263-272.
    [54]Shimura, T., Aramaki, K.. Direct modification of a passivated iron electrode with alkyltriethoxysilanes for preventing passive film breakdown in a borate buffer containing 0.1M of chloride ion [J]. Corrosion Science,2006,48(8):2332-2347.
    [55]胡士信,董旭,窦宏强.西气东输干线管道减阻内涂技术[J].材料保护,2001,34(10):1—4.
    [56]于萍,王蕾蕾,慕春玲,崔巍,张长桥,邢文国.Zn-Mg合金镀层的表面形貌及在Na2S04中的腐蚀产物分析[J].材料工程,2007,11:63-65.
    [57]沈长斌,薛钰芝.咪唑啉类缓蚀剂的结构特征及其缓蚀性能[J].大连铁道学院学报,2003,24(4):88—91.
    [58]朱镭,于萍,罗运柏.咪唑啉缓蚀剂的研究与应用进展[J].材料保护,2003,36(12):4—7.
    [59]Olivares-Xometl O., Likhanova N.V., et al. Surface Analysis of Inhibitor Films Formed by Imidazolines and Amides on Mild Steel in An Acidic Environment [J]. Applied Surface Science,2005,252(2006):2139-2152.
    [60]吕彤,李凡,郭晓红.咪唑啉柔软剂中间体的合成研究[J].天津纺织工学院学报,1999,18(1):31—32.
    [61]王慧龙,韩秀丽,郑家燊.高级脂肪酰胺基烷基咪唑啉的合成及缓蚀研究[J].郑州工业大学学报,2001,22(3):62—64.
    [62]刘瑞斌,王慧龙,辛剑,江平.高级脂肪酰胺基烷基咪唑啉合成工艺条件的研究[J].广东化工,2004,2:7—8.
    [63]Ramachandran S, Jovancicevic V, Molecular modeling of the inhibition of mild steel carbon dioxide corrosion by imidazolines [J]. Corrosion,1999,55(3): 259-267.
    [64]Cruz J, Martinez R, Genesca J, Garcia-Ochoa E. Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media [J]. Journal of Electroanalytical Chemistry,2004,566(1): 111-121.
    [65]Zheng J S, Zhao J G, Control of corrosion by inhibitors in drilling muds containing high concentration of H2S [J]. Corrosion,1993,49(2):170-174.
    [66]J.A.Martin, The existence of imidazoline corrosion inhibitors [J], Corrosion, 1985,41(5):281-287.
    [67]Jovancicev V. Inhibition of CO2 corrosion of mild steel by imidazolines and their precursors [J]. NACE Corrosion,1999,55(5):449-455.
    [68]王大喜,俞英.新型咪唑啉化合物的合成及缓蚀性能测试[J].石油大学学报(自然科学版),2000,24(6):52-54.
    [69]J.A.Martin, F.W. Valone, Spectroscopic techniques for quality assurance of oil field corrosion inhibitors [J], Corrosion,1985,41(8):465-473.
    [70]Blair C M. The existence of imidazoline corrosion inhibitors dicussion [J]. Corrosion,1985,5(41):616-623.
    [71]王保和,田红光.纸张柔软剂—双烷基酰胺咪唑啉季胺盐的合成研究[J].西北工业学院学报,1995,13(1):11—16.
    [72]张国运.纸张柔软剂的概况及应用[J].西南造纸,2004,33(1):15—17.
    [73]王大喜.取代基咪唑啉分子结构与缓蚀性能的理论研究—咪唑啉分子与铁 原子化学吸附位能曲线的量子化学计算[J].石油学报,2000,16(6):74-78.
    [74]Edwards, A., C. Osborne, S. Webster, D. Klenerman, M. Joseph, P. Ostovar and M. Doyle. Mechanistic Studies of the Corrosion-Inhibitor Oleic Imidazoline [J]. Corrosion Science,1994,36(2):315-3.
    [75]H.larson, Britta Lindholm and Michael Sharp. Electron transport in quaternized poly(4-vinylpyridine) films containing pentacyanoferrate(Ⅱ/Ⅲ) on electrodes. The influence of the binding type of the electroactive complex [J]. J. Electroanal. Chem,1992,336 (1-2):263-279.
    [76]F.Deforian, L. Fedrizzi, S. Rossi and P. L. Bonora. Organic coating capacitance measurement by EIS:ideal and actual trends [J]. Electrochim Acta,1999, 44(24),4243.
    [77]Desheng Kong. Self-assembled monolayer of a Schiff base on Au(111) surface: electrochemistry and electrochemical STM study [J]. Electrochim Acta, 2002,48(4):303-309.
    [78]Agnieszka ebrowska, Pawel Krysin, Electrochemical studies of blocking properties of solid tethered lipid membranes on gold [J]. Bioelectrochemistry, 2002,56:179-184.
    [79]Campuzano A, Pedrero M, Montemayor C, Enrique F and Jose M. Characterization of Alkanethiol Self-Assembled Mono layers-Modified Gold Electrodes by Electrochemical Impedance Spectroscopy [J]. Journal of Electroanalytical Chemistry,2006,586(1):112-121.
    [80]Patolsky F, Zayats M, Katz E, I. Willner. Precipitation of an Insoluble Product on Enzyme Monolayer Electrodes for Biosensor Applications:Characterization by Faradaic Impedance Spectroscopy, Cyclic Voltammetry, and Microgravimetric Quartz Crystal Microbalance analyses [J]. Analytical Chemistry,1999,71(15): 3171-3180.
    [81]Lopez DA, Simison SN, Sanchez SR. Inhibitors performance in CO2 corrosion EIS studies on the interaction between their molecular structure and steel microstructure [J]. Corrosion Science,2005,47(3):735-755.
    [82]Xiuyu Liu, Shenhao Chen, Houyi Ma. Protection of iron corrosion by stearic acid and stearic imidazoline self-assembled monolayers, Applied Surface Science, 2006,253(2):814-820.
    [83]Bentiss, F., Michel Traisnel, Leon Gengembre and Michel Lagrenee. Inhibition of acidic corrosion of mild steel by 3,5-diphenyl-4H-1,2,4-triazole [J]. Applied Surface Science,2000,161(1-2):194-202.
    [84]Chebabe. D, Z. Ait Chikh, A. Dermaj, K. Rhattas, T. Jazouli, N. Hajjaji. Synthesis of bolaamphiphile surfactants and their inhibitive effect on carbon steel corrosion in hydrochloric acid medium [J]. Corrosion Science,2004,46(11): 2701-2713.
    [85]Ebrini, M. Electrochemical and quantum chemical studies of new thiadiazole derivatives adsorption on mild steel in normal hydrochloric acid medium [J]. Corrosion Science,2005,47(2):485-505.
    [86]Ling-Guang Qiu, An-Jian Xie, Yu-Hua Shen. A novel triazole-based cationic gemini surfactant:synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid [J]. Materials Chemistry and Physics,2005,91(2-3):269-273.
    [87]Diao Y. X., Han M. J., Wan L. J., Itaya K., Uchida T., Miyake H., Yamakata A., Osawa M. Adsorbed structures of 4,4-bipyridine on Cu(111) in acid studied by STM and IR [J]. Langmuir,2006,22(8):3640-3646.
    [88]Cruz, J., E. Garcia-Ochoa, M. Castro. Experimental and theoretical study of the 3-amino-1,2,4-triazole and 2-aminothiazole corrosion inhibitors in carbon steel [J]. Journal of the Electrochemical Society,2003,150(1):B26-B35.
    [89]Bentiss F, Traisnel M, Gengembre L, Michel L. A new triazole derivative as inhibitor of the acid corrosion of mild steel:electrochemical studies, weight loss determination, SEM and XPS [J]. Applied Surface Science,1999,152(3-4): 237-249.
    [90]Bentiss F, Traisnel M, Gengembre L and Hornez J. C. The corrosion inhibition of mild steel in acidic media by a new triazole derivative [J]. Corrosion Science, 1999,41(4):789-803.
    [91]Quraishi M A, Sardar R. Aromatic triazoles as corrosion inhibitors for mild steel in acidic environments [J]. Corrosion,2002,58(9):748-755.
    [92]F. Bentiss, M. Bouanis, B. Mernari, M. Traisnel, H. Vezin and M. Lagrenee. Understanding the adsorption of 4H-1,2,4-triazole derivatives on mild steel surface in molar hydrochloric acid [J]. Applied Surface Science,2007,253(7): 3696-3704.
    [93]Sastri, V. S., M. Elboujdaini, and J. R. Perumareddi. Utility of quantum chemical parameters in the rationalization of corrosion inhibition efficiency of some organic inhibitors [J]. Corrosion,2005,61(10):933-942.
    [94]范洪波.新型缓蚀剂的合成与应用[M].北京:化学工业出版社,2004,15.
    [95]J. Bauman, J. Wang. Imidazole Complexes of Nickel (Ⅱ), Copper (Ⅱ), Zinc (Ⅱ), and Silver (Ⅰ)[J]. Inorg. Chem.,1963,3:368.
    [96]Frederick P. Eng, Hatsuo Ishida. Fourier transform infrared studies on the thermal degradation of polyvinylimidazoles. Part Ⅰ[J]. Journal of Applied Polymer Science,1986,32(5):5021-5034.
    [97]Frederick P. Eng, Hatsuo Ishida. Fourier transform infrared studies on the thermal degradation of polyvinylimidazoles. Part Ⅱ[J]. Journal of Applied Polymer Science,1986,32(5):5035-5055.
    [98]Jyongsik Jang, Hatsuo Ishida. Silane-modified polyvinylimidazole(1) for corrosion protection on copper at elevated temperatures[J]. Journal of Applied Polymer Science,1993,49(11):1957-1962.
    [99]P. Bajaj, D.C. Gupta, Copolymerization of styrene with [(2-methacryloyloxy)propoxy]trialkyl(aryl) silanes[J]. Journal of Polymer Science: Polymer Chemistry Edition,1983,21(5):1347-1359.
    [100]G. N. Babu, P. Bajaj. Copolymerization of styrene and acrylonitrile with 2,6-dimethyl-2,7-octadiene-6-trimethylsilyl-ether [J]. Angewandte Makromolekulare Chemie,1977,64(1):211-223.
    [101]P. Bajaj, D. C. Gupta, S. K. Varshney. Blending of polystyrene with styrene-siloxane block and graft copolymers[J]. Polymer Engineering & Science, 1983,23(15):820-825.
    [102]P. Bajaj, S. K. Varshney, A. Misra. Block copolymers of polystyrene and poly(dimethyl siloxane). I. Synthesis and characterization[J]. Journal of Polymer Science:Polymer Chemistry Edition,1980,18(1):295-309.
    [103]P. Bajaj, Y. P. Khanna, G. N. Babu. Copolymerization of styrene with vinyltriethoxysilane and vinyltriacetoxysilane[J]. Journal of Polymer Science: Polymer Chemistry Edition,1976,14(2):465-474.
    [104]P. Bajaj, D. C. Gupta, A. K. Gupta. Structure and properties of acrylonitrile-[(2-methacryloyloxy)alkoxy]trimethyl silane copolymers[J].Journal of Applied Polymer Science,1980,25(8):1673-1684.
    [105]P. Bajaj, G. N. Babu, D. N. Khanna, S. K. Varshney. Room temperature-vulcanized silicone elastomer:Effect of curing conditions and the nature of filler on mechanical and thermal properties[J].Journal of Applied Polymer Science,1979,23(12):3505-3514.
    [106]P. Bajaj, T. K. Mandal. Chemical modification of viscose rayon by dimethyl and methylvinyl diacetoxysilanes[J]. Journal of Applied Polymer Science,1978, 22(2):511-523.
    [107]Tomislav M. Stefanac, Michael A. Brook, and Rodica Stan. Radical Reactivity of Hydrovinylsilanes:Homooligomers[J]. Macromolecules,1996,29 (13): 4549-4555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700