油气勘探风动潜孔锤反循环钻井系统流体动力学参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对油气勘探开发的特点和反循环钻进工艺应满足的要求,围绕风动潜孔锤反循环钻井流体动力学参数开展研究,旨在解决深井、大孔径等所带来的气量调节问题,为其应用到油气勘探开发领域奠定基础。
     首先,分析了油气勘探风动潜孔锤反循环钻井系统和开展流体动力学参数研究的必要性。综合考虑中心通道内流体、环状间隙流体与地层之间的热交换,建立气体反循环钻井温度模型,再结合井下循环系统建立风动潜孔锤反循环钻井压力模型。将最小动能方法、最小速度法和最低井底压力法相结合,推出注气量模型。至此,在数学理论推导层面上建立风动潜孔锤反循环钻井流体动力学参数计算体系。
     其次,为确定各计算模型修正系数,研究设计了反循环井底压缩气体流动模拟实验台。对不同底出刃时的中心孔压力,内喷孔和底喷孔不同组合时的井底流场,螺旋型和中心型内管的中心孔压力进行了测试。借助CFD软件对反循环钻井局部流场进行数值模拟分析,揭示了底出刃、底喷孔轴心距和内喷孔直径对反循环形成效果的影响机理,显示了关键点处流场的流动形态和特性,并创新设计出六边形导正块。实验研究和数值模拟得出的结论和认识为确定各计算模型的修正系数提供了重要依据,最终建立一套符合实际应用的油气勘探风动潜孔锤反循环钻井流体动力学参数计算体系。
     最后,基于建立的油气勘探风动潜孔锤反循环钻井流体动力学参数计算体系,结合GQ-320型风动潜孔锤反循环钻具系统,利用数学软件MATLAB编写程序,各模块进行耦合,得出的计算结果为实际钻井作业提供了参考基础。
The continued high-speed development of national economy pushes the oil-gas consumption to growth. The supply-demand relationship of oil and gas gradual becomes imbalance. It is an urgent need for national economic development to increase proven oil-gas reserves and increase oil-gas output. But, the majority oilfields explorations are in the mid-late stage, and most are "difficult-to-produce" reserves, which is difficult to be found and be exploited. Only low-voltage, low-permeability oil and gas fields have the exploitation potentiality. The facts showe that it is hard to effectively prospect and exploit "difficult-to-produce" reserves with existing conventional drilling technologies. Therefore, we can draw on technological progress to make "difficult to produce" oil-gas resources converting to "available" oil-gas resources. The pneumatic down the hole hammer (DTH) reverse circulation drilling technology is an new effective approach.
     The pneumatic DTH reverse circulation drilling technology was the important branch of the gas drilling technology, China with independent property rights. With the whole process into reverse circulation drilling craft, it was a high technology combined with three techniques-DTH hammer impacting breaking rock, fluid medium full hole reverse circulation and continuous obtaining rock core sample-into one system, and was evaluated the international advanced drilling technology by experts. At present, the DTH hammers have been formed series specification, and tens of matching reverse-circulation drill bits could meet the requirements of the different formation drilling. As the drilling process and the outfitting tools gradually become maturation, the pneumatic DTH reverse circulation drilling technology has got more widely applied in the solid mineral exploration and hydrology water well drill. These laid the foundation for this technology applying to oil and gas exploration and development field.
     The paper supported by the project of "feasible study on air reverse circulation drilling system ", the work that in so far as characteristics of oil and gas exploration and requirements of the pneumatic DTH reverse circulation drilling technology conducted researches on fluid-dynamic parameters of pneumatic DTH hammer reverse circulation drilling system. Around the gas reverse circulation drilling temperature model, the circulatory system pressure and the selection of gas injection parameter, the paper was undertaking a study to resolve gas regulation issues caused by deep well, large diameter and so on, in order that was supplied the favorable technical support when the pneumatic DTH reverse circulation drilling technology was applied in the oil and gas exploration drill field. The main research contents and conclusions were the following:
     1.It was systematicly introducing the pneumatic DTH reverse circulation drilling technique used in oil-gas exploration and drill system components. With regard for the current situations of oil-gas exploration field exploration and development, it was analyzed the potential advantages and what was needed is a research on fluid dynamics parameters. Based on the existing gas drilling theoretical studies at home and abroad, it was developed researches on fluid-dynamic parameters, on the leverl of mathematic theoretical deriving to build air reverse circulation drilling temperature calculation model, pressure calculation model, gas injection rate calculation model.
     (1)On the basis of the existing gas drilling theoretical studies, the heat exchanges between the drill string fluid, the annulus fluid and the formation were considered when establishing the gas reverse circulation drilling temperature model in progess.
     (2)And then with the order of gas flowing through the pipeline to establish the whole circulatory system pressure calculation model, which could get the whole down hole circulatory system pressure distribution law by calculating.
     (3)It was built the pneumatic DTH reverse circulation drilling gas injection circulation model, according to which the gas could be regulated with the increasing hole depth, so to guarantee DTH's normal work in the hole bottom.
     2.When the theoretical models were deduced, there were some assumed conditions of compressed gas flowing in hole bottom, so the auther desigened the reverse circulation bottom compressed air flow test bench. As far as these conditions were concerned, it was developed the reverses on reverse circulation drilling gas fluid-dynamic parameters. Through experiments on the cutting element bottom exposure, spiral type and central type inner pipe with different diameters nozzle flow field, eight sets of different combination of nozzles and bottom jet holes, the main research contents were the following:
     (1)To adjust the support screw height was to adjust the distance between the drill bit labial surface and the hole bottom, so it could research on the change relation between the cutting element bottom exposure and hole bottom flow field.
     (2)Under the conditions of nozzles and bottom jet holes arranged in different combinations, by measuring the circle gap flow rate to analyze the hole bottom flow field variation, so further to analysis on the reverse circulation mechanism.
     (3)By the premise of the reverse circulation drill bit labial surface chosen as concave shape, it was tested the difference between flow fields generated by spiral type and central type inner pipe with different diameters nozzle.
     3.With CFD software, establishing the reasonable physical and mathematical model, the pneumatic DTH reverse circulation drilling hole bottom flow field was got simulated, and truly represented the flow pattern of the reverse circulation drill hole bottom local flow field. Furthermore, it was to know in detail the structural characteristics of the hole bottom reverse circulation flow field, so to reveal effects between the cutting element bottom exposure, inner nozzle angle, bottom jet hole centre distance and the hole bottom fluid dynamic parameters.
     (1)Different centre distance bottom jet hole flow field simulation. The numerical simulation showed that as far as GQ-320 type bottom drill were concerned, there were about 1.1% that the change of the bottom jet hole centre distance had effect on hole bottom air volume.
     (2)Different types and different diameters nozzles flow field were simulated. The distribution of the hole bottom flow field was directly impacted by the nozzle diameter. Combined with the actual drilling conditions, it was determined by tyoes and diameters that the air model was whether to amend.
     (3)The cutting element bottom exposure was simulated. The compressed air jetted from the bottom jet hole, some gas was upwards going along the circle gap. The result of the numerical simulation was consistent with the experimental result.
     (4)The key point numerical simulation and centralizer structure optimization. Flow field characteristics of the centralizer parts are analyzed, and the hexagon centralizer was optimized design by CFD technology, which was reducing the pressure loss of the key points.
     The above conclusions and understandings provided important basises to establish the correction factor of calculation models. Eventually, it was established the oil-gas exploration pneumatic DTH reverse circulation drilling fluid-dynamic parameters calculation system.
     4.Based on GQ-320 type pneumatic DTH reverse circulation drilling system, program modules of the temperature model, the pressure model and the gas model were programmed by using mathematical software MATLAB, so a set of air parameter calculation system of the pneumatic DTH reverse circulation drilling was established. The results counted out according to the procedure were achieved good results with field application, and it was realized the real-time control on the ground gas supply quantum of drilling operations during the course of oil drilling.
     The main creative point in this paper includes:
     (1)On the basis of the existing gas drilling temperature theoretical studies, the heat exchanges between the drill string fluid, the annulus fluid and the formation were considered, when establishing the gas reverse circulation drilling temperature model in progess for the first time.
     (2)Based on the pneumatic DTH reverse circulation drilling pressure calculation model was established, and integrated the minimum speed law, the minimum kinetic energy law and the minimum bottom-hole pressure method, it was firstly built the pneumatic DTH reverse circulation drilling gas injection circulation model.
     (3)It was firstly studied the effects between cutting edges and the reverse circulation, and designed the reverse circulation bottom compressed air flow tester. Experiments showed that cutting edges had little effects on fluid-dynamic parameters, and CFD simulation revealed the mechanism between cutting edges and the reverse circulation.
     (4)Flow field characteristics of the centralizer parts are simulated, and innobatived several shapes. According to numerical simulation, the hexagon centralizer was optimized design which was reducing the pressure loss of the key points.
     At present, fluid-dynamic parameters of pneumatic DTH hammer reverse circulation drilling system still remains in the level of theoretical derivation, laboratory test and numerical simulation, and yet to be tested and revised by actual drilling. The above content in this paper are just the preliminary fundamental research about the technical problem of the compressed air changing when the pneumatic DTH reverse circulation drilling used in oil-gas exploration field. Further more, it is need to deeply comprehensive research on the pneumatic DTH reverse circulation drilling Introduced into the field of oil and gas exploration.
引文
[1]苏义脑主编.钻井基础理论研究与前沿技术开发新进展学术研讨会论文集[C].北京:石油工业出版社,2007.
    [2]杨丽丽.我国油气资源供需分析与对策研究[J].中国矿业’2007,16(3):10-13.
    [3]蒋有录,查明主编.石油天然气地质与勘探[M].北京:石油工业出版社,2006.
    [4]沈平平,赵文智,窦立荣.中国石油资源前景与未来10年储量增长趋势预测[J].石油学报,2000,21(4):1-6.
    [5]田泽.世界油气资源现状及未来趋势预测[J].新疆社会科学,2007,(2):24-29.
    [6]周英操,翟洪军编著.欠平衡钻井技术与应用[M].北京:石油工业出版社,2003.
    [7]曾义金,樊洪海译.空气和气体钻井手册[M].中国石化出版社,2006.
    [8]赵业荣,孟英峰,雷桐,等.气体钻井理论与实践[M].北京:石油工业出版社,2007.
    [9]许期聪,刘奇林,侯伟,等.四川油气田气体钻井技术[J].天然气工业,2007,27(3):60-62.
    [10]杨盛杰,张克明.吐哈气体钻井技术的研究与应用[J].钻采工艺,2006,29(6):29-32,86.
    [11]许爱.气体钻井技术及其现场应用[J].石油钻探技术,2006(7):16-19.
    [12]程宏英.天然气欠平衡钻井技术研究及其在长庆油气田中的应用[D].成都:西南石油学院’2001.
    [13]冯永兵,孙凯,唐一元,等.欠平衡钻井技术的发展研究[J].内蒙古石油化工,2008,(11):15-17.
    [14]何纶,魏武,许期聪,等.国内外气体型钻井流体应用技术的发展现状[J].钻井液与完井液,2007,(24)增刊:10-13.
    [15]Boyun Guo, Ghalambor A. Gas volume requirements for under-balanced drilling/deviated holes. Tulsa:PennWell Corporation,2002.
    [16]William C L.Air and Gas Drilling Manual(Second Edition). New York(USA):McGraw-Hill Companies,2001.
    [17]Cooper, Leonard W, and Hook. Air Drilling Techniques.1977, SPE,6435-MS.
    [18]王瑞和主编.钻井工艺技术基础[M].东营:石油大学出版社,1996.
    [19]George E, Cannon and Ralph A Watson.Review of Air and Gas Drilling [J]. 1956, SPE,703-G.
    [20]朱江,王萍,蔡利山,等.空气钻井技术及其应用[J].钻采工艺,2007,30(2):145-148.
    [21]许爱.气体钻井技术及其现场应用[J].石油钻探技术,2006(7):16-19.
    [22]马光长,杜良民.空气钻井技术及其应用[J].钻采工艺,2004,27(3):4-8.
    [23]任双双,刘刚,沈飞.空气钻井的应用发展[J].断块油气田,2006,13(6):62-64.
    [24]耿瑞伦编.多工艺空气钻进技术[M].北京:地质出版社,1995.
    [25]Paul MacKay,徐合献,夏力.反循环钻井避免损伤低压气层[J].国外油气田工程,2003,19(9):19-20.
    [26]李静,赵小祥.欠平衡钻井技术及其应用与发展[J].石油钻探技术,2002,30(6):24-25.
    [27]陈志学.气体钻井工艺技术理论及应用研究[D].成都:西南石油学院,2006.
    [28]R R Angel.Volume Requirements for Air or Gas Drilling[J].1957,SPE,873-G.
    [29]Ikoku, Azar J J, Williams C. Department of Energy Practical Approach to Volume Requirements for Air and Gas Drilling[J].1980,SPE,9445-MS.
    [30]Alan P Roberts. Future Development of Water Control Methods in Air Drilling Operations[J].SPE,1959,1420-G.
    [31]Hook R. A,Cooper L. W and Payne B R,Air, Mist and Foam Drilling:A Look at Latest Techniques:Parts I and II[J].World Oil, April and May 1977.
    [32]Wilson G E.A General Overview of Air Drilling and Deviation Control[J].1981, SPE,9529-PA.
    [33]Paul A M. Reverse circulation drilling avoids damage to low-pressure gas reservoirs[J]. World Oil 2003 (3).
    [34]Tian Shifeng, Medley G H, Stone C R. Optimizing circulation while drilling under balanced [J]. World Oil.2000(6):48-55.
    [35]王运美,李琛,马建民.反循环钻井技术在浅层气开发中的应用[J].石油机械,2007,35(5):59-61.
    [36]王忠生,廖兵.双壁钻杆反循环空气钻井循环参数的分析与计算[J].钻采工艺,2008,31(3):1-4.
    [37]Benoit Amaudric Du Chaffaut, Voisinle Bretonnux(FR); Christian Wittrisch,Rueil Malmaison(FR).Reverse-circulation drilling method and system[P]. US:7290625B2,2007-11-06.
    [38]Matthew Floyd Shofner, Mansfield,TX(US).Down-the-hole hammer and components for a down-the-hole hammer, and a method of assembling a down-the-hole hammer[P]. US:7353890B2,2008-05-08.
    [39]Anthony M. Badalamenti, Katy, TX(US); Karl W,Blanchard.Cypress,TX(US); Michael G. Crowder, Orlando, OK(US); Ronald R. Faul, Katy, TX(US); James E. Griffith, Loco, OK(US); Henry E. Rogers, Duncan, OK(US); Simon Turton, Kingwood, TX(US). Systems for reverse
    circulation cementing in subterranean formations [P]. US:0011482 A1,2008-01-17.
    [40]申威.空气/泡沫钻井技术在伊朗19+2项目中的应用[J].钻采工艺,2005,28(4):31-34.
    [41]侯树刚,刘新义,杨玉坤.气体钻井技术在川东北地区的应用[J].石油钻探技术,2008,36(3):24-28.
    [42]魏武.空气钻井技术的应用[C].集团公司欠平衡钻井技术交流论文集,2004.
    [43]王忠生,廖兵.双壁钻杆反循环空气钻井循环参数的分析与计算[J].钻采工艺,2008,31(3):1-4.
    [44]王运美,李琛,马建民.反循环钻井技术在浅层气开发中的应用[J].石油机械,2007,35(5):59-61.
    [45]潘卫国,王益山,刘东勤.油气井反循环钻井方法及设备[P].中国专利:11356451A,2002-07-03.
    [46]殷琨,蒋荣庆.气体全井反循环钻井技术及应用[J].探矿工程,1996(5):13-15.
    [47]蒋荣庆,殷琨,王茂森,等.潜孔锤钻进理论与实践的新进展[J].探矿工程,2001,增刊:179-183.
    [48]李爱军.空气钻井井眼稳定问题初探[J].西部探矿工程,1994,6(1):11-14.
    [49]项德贵,葛云华,孙梦慈,等.空气钻井井斜控制问题的探讨[J].钻采工艺,2005,28(5):1-3.
    [50]唐贵,程宏英,孟英峰.气体钻井过程中的瞬态流动分析[J].钻采工艺,2006,29(2):5-6,19.
    [51]唐贵,雷桐,舒秋贵,等.气体钻井井筒与地层流动耦合分析[J].石油钻采工艺,2005,27(4):15-17.
    [52]孟英峰,李永杰,陈一健,等.一种气体钻井下状态的连续监测方法[P].中国专利:101029564A,2007-09-05.
    [53]潘卫国,王益山,刘东勤.油气井反循环钻井方法及设备[P].中国专利:11356451A,2002-07-03.
    [54]刘永贵,周英操,王广新,等.欠平衡钻井环空岩屑对井底负压的影响[J].石油学报,2005,26(6):96-98,103.
    [55]苏义脑,周川,窦修荣.空气钻井工作特性分析与工艺参数的选择研究[J].石油勘探与开发,2005,32(2):86-90,122.
    [56]孟英峰,练章华,唐波,等.反循环钻头井底流场研究及其新产品开发[J].天然气工业,2004,24(9):51-53,7.
    [57]柳贡慧,刘伟.计算空气-氮气钻井最小气体体积流量的新方法[J].石油学报,2008,29(4):629-632.
    [58]张晓东,吴臣德,张园,等.气体钻井技术剖析及研究前景展望[J].石油机械,2008,36(6):75-78.
    [59]吴志均,唐红君.浅谈气体钻井需要关注的问题[J].钻采工艺,2008,31(3):28-30.
    [60]张金成.普光气体钻井技术发展与展望[J].石油钻探技术,2008,36(3):5-9.
    [61]王茂森.全孔反循环潜孔锤参数优化及其钻进工艺研究[D].长春:吉林大学,2007.
    [62]蒋荣庆,殷琨.反循环钻进的拓展应用[J].探矿工程,1997,(5):13-15.
    [63]李泉,李永杰,黎强,等.气体钻井排砂管线优化设计[J].天然气勘探与开发,2008,31(4):45-46,59.
    [64]张鲲鹏,薛飞,潘卫明,等.高压气体引射器的实验研究和仿真[J].热科学与技术,2004,3(2):133-138.
    [65]廖达雄,任泽斌,余永生,等.等压混合引射器设计与实验研究[J].强激光与粒子束,2006,18(5):729-732.
    [66]廖达雄.引射器性能优化和增强混合方法研究[D].西安:西北工业大学,2006.
    [67]王海桥,刘荣华,陈世强.独头巷道受限贴附射流流场特征模拟实验研究[J].中国工程科学,2006,31(8):11-14.
    [68]王海桥,施式亮,刘荣华,等.压入式受限贴附射流流场特征及参数计算[J].黑龙江科技学院学报,2001,11(4):4-7.
    [69]郝树青,殷琨,王清岩.反循环钻头引射孔倾角的仿真分析[J].煤田地质与勘探,2006,34(4):77-79.
    [70]郝树青,殷琨,王清岩等.引射孔倾角与孔径对钻头体反循环形成影响的仿真分析与实验研究[J].探矿工程(岩土钻掘工程),2006(5):37-41.
    [71]郝树青,殷琨,王清岩,等.潜孔锤反循环钻头体的改进与内部流场的仿真分析[J].世界地质,2007,26(1):98-101.
    [72]任红.贯通式潜孔锤反循环连续取心钻进取心机理研究[D].长春:吉林大学,2008.
    [73]博坤.贯通式潜孔锤反循环钻进技术钻具优化及应用研究[D].长春:吉林大学,2009.
    [74]博坤,王茂森,张春阳.反循环钻头结构仿真分析及实验研究[J].矿山机械,2008,36(23):25-28.
    [75]博坤,殷琨,王茂森.贯通式潜孔锤反循环钻进技术在矿区勘探中的应用研究.金属矿山,2009(3):133-136.
    [76]刘建林.气体钻井用贯通式潜孔锤关键技术研究[D].长春:吉林大学,2009.
    [77]蒋荣庆,殷琨.贯通式气动潜孔锤反循环连续取心(样)钻进在水文水井钻中的应用[J].探矿工程(岩土钻掘工程),1991,(06):14-17.
    [78]蒋荣庆,殷琨,辜华良.潜孔锤钻进在复杂地层中应用[J].地质与勘探,1999,35(06):83-86.
    [79]蒋荣庆,殷琨.潜孔锤反循环连续取心用于金矿勘探[J].地质与勘探,1990,26(11):55-59.
    [80]张永勤,刘辉,陈修星.复杂地层钻进技术的研究与应用[J].探矿工程(岩土钻掘工程),2001(S1):159-165.
    [81]中南309队.提高复杂地层岩、矿心采取率的双管钻具[J].探矿工程(岩土钻掘工程),1974(04):49-51.
    [82]韩烈祥,孙海芳.气体反循环钻井技术发展现状[J].钻采工艺,2008,31(5):1-5.
    [83]钟兵,方铎,施太和.井内温度影响因素的敏感性分析[J].天然气工业,2000,20(2):57-60.
    [84]张勇,宋金初.井眼循环温度分布规律[J].内蒙古石油化工,2005,(12):127-128.
    [85]文乾彬,梁大川,谢礼科,等.钻井过程中井内温度分布模型概述[J].西部探矿工程,2007,(11):60-63.
    [86]蔚宝华,卢晓峰,王炳印,等.高温井地层温度变化对井壁稳定性影响规律研究[J].钻井液与完井液,2004,21(6):15-18.
    [87]刘永贵,邵天波.井下压力温度测试工具的开发应用[J].石油钻探技术,2004,32(6):27-31.
    [88]俞佐平.传热学[M].北京:人民教育出版社.1979.
    [89]王楚,李椿,徐安士.热学[M].北京:北京大学出版社.2002.
    [90]郝玉福,吴淑美,邓先琛.热工理论基础[M].北京:高等教育出版社.1995:206-358.
    [91]王存新,孟英峰,姜伟,等.气体钻井中井眼温度变化及其对注气量的影响[J].天然气工业’2007,27(10):67-69.
    [92]王存新.气体钻井井眼温度及携岩能力研究[D].南充:西南石油大学,2006.
    [93]C S Kabir, A R Hasan, G E Kouba, M M Ameen. Determining circulating fluid temperature in drilling, workover, and well control operations. SPE24581.
    [94]唐林,冯文伟,王林.井内及井壁瞬态温度的确定[J].钻井液与完井液,1998,15(5):29-33.
    [95]钟兵,施太和,方铎.深井钻井过程中井内温度分布的新模型[J].西南石油学院学报,1999,21(4):53-55.
    [96]何世明,何平,尹成,等.井下循环温度模型及其敏感性分析[J].西南石油学院学报,2002,24(1):57-60.
    [97]文乾彬.井内钻井液温度分布预测及分布规律研究[D].南充:西南石油大学.2008.
    [98]A R Hasan, C S Kabir. Aspects of well bore heat transfer during two-phase flow. SPE22948.
    [99]唐林,冯文伟.钻井过程中井壁热应力数值模拟[J]. 西南石油学院学报,1998,20(4):38-42.
    [100]钟兵,方铎,付建红,等.钻井过程中井内流动与传热的耦合数值计算[J].天然气工业,2001,21(4):57-59.
    [101]钟兵,方铎,施太和.井内流动与传热的三维耦合数值模拟[J].应力力学学报,2001,18(3):33-40.
    [102]何世明,尹成,徐壁华,等.确定注水泥与钻井过程中井内循环温度的数学模型[J].天然气工业,2002,22(1):4245.
    [103]A R Hasan, C S Kabir. A mechanistic model for computing fluid temperature profiles in gas-lift wells. SPE26098.
    [104]E F Pacheco, S M Farouq Ali. Wellbore heat losses and pressure drop in steam injection. JPT, Feb.1972:139-144.
    [105]J O Herrera, B F Birdwell, E J Hanzlik. Wellbore heat losses in deep steam injection wells Sl-B zone.SPE7117.
    [106]M Thompson, M Burgess. The prediction of interpretation of down hole mud temperature while drilling. SPE14180.
    [107]S Gristion, G P Willhite. Numerical model for evaluating concentric steam injection wells. SPE16337.
    [108]毛伟,梁政.计算气体井筒温度分布的新方法[J].西南石油学院学报,1999,21(1):56-58.
    [109]郭春秋,李颖川.气井压力温度预测综合数值模拟[J].石油学报,2001,22(3):100-104.
    [110]卢德唐,曾亿山,郭永存.多层地层中的井筒及地层温度解析解[J].水动力学研究与进展,2002,A辑17(31):382-390.
    [111]H H Keller, E J Couch, P M Berry. Temperature distribution in circulating mud columns. SPE3605.
    [112]A R Hasan, C S Kabir. Heat transfer during two-phase flow in well bore. SPE22866.
    [113]Ramey H J JR. Well bore heat transmission. JPT.1962,14(4):427-435.
    [114]A R Hasan, C S Kabir, M M Ameen, Xiaowei Wang. A mechanistic model for circulating fluid temperature. SPE27848.
    [115]李文绚,金保侠.气体动力学计算方法[M].北京:机械工业出版社,1990.
    [116]M.J.左克罗,J.D.霍夫曼著.王汝涌,吴宗真,林治楷译.气体动力学[M].北京:国防工业出版社,1984.01:59-62,66-82.
    [117]张也影.流体力学[M].北京:高等教育出版社,2002.
    [118]赵承庆,姜毅.气体射流动力学[M].北京:北京理工大学出版社,1998.
    [119]王振华.流体力学的基本理论[M].上海:上海大学出版社,2002.
    [120]Angel R R. Volume requirements for air and gas drilling, Pet Trans, AIME, (1957)210,325-330.
    [121]BOYUN GUO, ALI GHALAMBOE. Gas volume requirements for under balanced drilling[M]. United States of America:Penn Well Corporation,2002.
    [122]任双双,刘刚,沈飞,等.空气钻井计算模型[J].钻井液与完井液,2007,24(2):34-36.
    [123]刘刚,朱忠喜,张迎进,等.空气钻井中的压力及注气量问题研究[J].钻采工艺,2005,28(2):4-6.
    [124]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002.
    [125]周川.空气钻井工作特性分析与工艺参数的选择研究[D].北京:中国石油勘探开发研究院.2005.
    [126]苏义脑,周川,窦修荣.空气钻井工作特性分析与工艺参数的选择研究[J].石油勘探与开发,2005,32(2):86-90.
    [127]高如军,何世明,朴成中,等.气体钻井环空岩屑颗粒碰撞对井壁稳定性的影响[J].钻井液与完井液,200724(增刊):69-71.
    [128]刘刚,朱忠喜,张迎进,等.空气钻井中的压力及注气量问题研究[J].钻采工艺’2005(3):4-6.
    [129]王存新,孟英峰,邓虎,等.气体钻井注气量计算方法研究进展[J].天然气工艺’2006,26(12):97-99.
    [130]JOHNSON P W.Clearning Criteria and Minimum Flowing Pressure Gradients [J]. The Journal of Canadian Petrol Technology,1995(5):18-26.
    [131]袁兆广,周开吉,孟英峰,等.气体钻大斜度水平井最小气量计算方法研究[J].天然气工艺,2007,27(4):65-68.
    [132]任双双,刘刚,沈飞,等.空气钻井最小排量研究与应用[J].内蒙古石油化工,2006(3):94-95.
    [133]毕雪亮,陶丽杰,翟洪军,等.空气钻井最小流量计算的修正模型[J].断块油气田,2008,15(2):86-87.
    [134]蒋宏伟,邢树宾,王克雄,等.空气钻井最小注气量和地层出水量关系研究[J].大庆石油地质与开发,2008,27(2):106-109.
    [135]Boyun Guo,Ali Ghalambor.Gas Volume Requirements for Underbalanced Drilling胥思平译.欠平衡钻井气体体积流量的计算[M].北京:中国石化出版社,2006.
    [136]李文绚,金保侠.气体动力学计算方法[M].北京:机械工业出版社,1990.
    [137]张组培,殷琨,蒋荣庆,等.岩土钻掘工程新技术[M].北京:地质出版社,2003.
    [138]李世忠.钻探工艺学[M].北京:地质出版社,1992.
    [139]任红.贯通式潜孔锤反循环连续取心钻进取心机理研究[D].长春:吉林大学,2008.
    [140]黄标.气力输送[M].上海:上海科学技术出版社,1984.
    [141]陆厚根.粉体科技导论[M].上海:同济大学出版社,1998.
    [142]李诗久,周晓君.气力输送理论与应用[M].北京:机械工业出版社,1992.
    [143]http://www.cheml 7.com/st99813/Article_18410.html南京亿源仪表有限公司.
    [144]http://www.shrhyb.com上海荣华仪表厂.
    [145]http://www.hjybl8.com/threestyle/hjyb18/techarticle/216037.html上海华江仪表研究所.
    [146]http://www.gongkong.com/webpage/forum/200709/3-B6E8-F6746DE5A9AB-1.shtml中国工控网.
    [147]http://www.dongya.com.cn/product.htm杭州东亚仪表有限公司.
    [148](法)埃尔贝著,陈道龙译.压力测量-压力计和传感器[M].北京:原子能出版社,1989.
    [149]吴子牛.计算流体力学基本原理[M].北京:水力水电出版社,1990.
    [150]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [151]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
    [152]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [153]于勇,张俊明,姜连田.Fluent入门与进阶教程[M].北京:北京理工大学出版社,2008.
    [154]周天孝,白文.CFD多块网格生成新进展[J].力学进展,1999,29(3):344-365.
    [155]FLUENT6.3 User's Guide.FLUENT Inc,2006.
    [156]FLUENT Inc.GAMBIT Modeling Guide.FLUENT Inc,2003.
    [157]刘星,卞恩荣,朱金福.非结构网格生成技术[J].南京航空航天大学学报,1999,31(6):696-700.
    [158]刘伟,刘君,李沁.复杂外形数值网格生成技术[J].弹道学报,2000,12(4):41-43.
    [159]况雨春,曾恒,周学军,等.CFD在PDC钻头水力结构优化设计中的应用[J].石油机械,2006,34(2):49-51.
    [160]Ledgerwood L W. Advanced Hydraulics Analysis Optimizes Performance of Roller Cone Drill Bits[J].SPE 59111.
    [161]陈小榆,刘义军,宋晓健,等.井底漫流场数值模拟研究[J].西南石油学院学报,2002,24(1):84-86.
    [162]谢翠丽,杨爱玲,陈康民.钻头头部旋转流场影响因素及优化设计[J].水动力学研究与进展,2003,18(6):769-773.
    [163]谢翠丽,杨爱玲,陈康民.旋转钻头井底流场的初步数值研究[J].石油钻探技术,2002,30(3):6-8.
    [164]郝树清.贯通式潜孔锤反循环取心(取样)钻进井底流场模拟与实验研究[D].长春:吉林大学,2007.
    [165]苏金明,阮沈勇.MATLAB实用教程[M].北京:电子工业出版社,2005.
    [166]罗建军,杨琦.精讲多练MATLAB[M].西安:西安交通大学出版社,2002.
    [167]Alfio Quarteroni, Fausto Saleri. Scientific Computing with MATLAB.李敏波译.MATLAB科学计算[M].北京:清华大学出版社,2005.
    [168]罗华飞编,MATLAB GUI设计学习手记[M].北京:北京航空航天大学出版社,2009.
    [169]http://www.ilovematlab.cn/MATLAB中文论坛.
    [170]http://www.labfans.com MATLAB中国论坛实验室爱好者之家.
    [171]http://www.programbbs.com编程论坛.
    [172]陈壵光,毛涛涛,王正林.精通MATLAB GUI设计[M].北京:电子工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700