超大型浮式海上基地连接件特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在南海未来的油气开发区域建立超大型浮式海上基地(VLFOB),将其作为存放周边油气田开发所需物资的海上补给基地和中转站,并能满足深水作业船风暴期间临时停靠的需求,这样就能解决由于南海油气勘探开发涉及的海域很广及其恶劣气候给南海油气勘探开发带来的诸多困难。
     超大型浮式海上基地是由八个单体模块组合而成的结构,模块间需要采用连接构件进行连接,连接构件将是危及其安全性的一个重要因素。本文针对VLFOB这一新型的超大型浮式结构物设计概念,对其连接件刚度和载荷特性进行了研究。
     首先研究了VLFOB连接件的刚度对其固有频率影响,利用有限元方法计算得到不同连接件刚度条件下系统的固有频率,与南海一年一遇海况、十年一遇海况、百年一遇海况和千年一遇海况的波浪谱对比后确定了连接件的拉伸刚度应该大于10000MN才能有效地防止共振,减少连接件的动力响应。
     然后通过数值计算和模型试验两种方法研究了单体间的连接面与浪向呈不同夹角时,连接面三个方向载荷的变化趋势。研究得出连接面径向载荷和轴向载荷受连接面与浪向夹角的影响明显,而垂向载荷受连接面与浪向夹角影响较小。综合分析连接面与浪向不同夹角时连接面三个方向载荷变化趋势得出VLFOB各个连接面与浪向呈0°至30°的夹角时承受的轴向载荷较大。
     通过研究在南海一年一遇、百年一遇和千年一遇海况下VLFOB连接面三个方向的极限载荷,得出在各海况下VLFOB连接面轴向载荷极值最大,径向载荷极值其次,垂向载荷极值最小。各海况下连接面载荷极值均是连接面与浪向夹角为0°时的轴向载荷,试验测得在南海一年一遇海况下29066.0t,在百年一遇海况下96712.2t。
A new concept of Very Large Floating Offshore Base (VLFOB) is proposed for the application in deepwater oil and gas exploration and production in the South China Sea. The long distance from mainland and the abominable weather make the supply of materials difficult and the workers and facilities unsafe, the VLFOB can solve these problems because it will be used as a supply base and a harbor for the deep ocean work boats.
     The VLFOB is constructed by 8 single modules and the connectors between the modules are one of the key factors about the safty of the VLFOB. In this paper the loads on the connectors of the VLFOB are studied.
     The natural frequencies of the VLFOB with different connector stiffness are calculated by FEM method, and the corresponding results are analyzed by comparing them with the wave spectrum of 1-year,10-year,100-year and 1000-year environments in South China Sea. The results show that the VLFOB can avoid sympathetic vibration effectively by adjusting the stiffness of the connectors to be larger than 10000MN.
     The loads acted on the connector are calculated by numerical computation method and measured through the model tests in the ocean basin, the results show that the axial load and radial load on the connectors are closely related to the angle between connectors and the wave, the vertical load is not so closely. Besides, When the angle between connectors and the waves is between 0 degree and 30 degree, the axial load is very large.
     The axial load when the angle between connector and wave is 0 degree is the largest in 1-year, 100-year and 1000-year environments in South China Sea,and it is 29066t in 1-year environment and 96712.2t in 100-year environment
引文
[1]寇雨丰.深海超大型浮式海上基地概念及总体性能研究[D].上海交通大学,硕士论文,2011.
    [2]温琳,苏文.南海深水油气开发与海南国际旅游岛建设[J].中国矿业,2011.20:208-210.
    [3] Keith R, McAllister. Mobile Offshore Base-An Overview of Recent Research[A]. International Workshop On Very Large Floating Structures[C], 1996: 69-76.
    [4]崔维成.超大型海洋浮式结构物水弹性响应预报的研究现状和发展方向[J].浮体力学, 2002, 6(1) :73-90.
    [5] Watanabe E. Wang C.M. and Utsunomiya T. et al. Very Large Floating Structures: Applications, Analysis and Design.Center for Offshore Research and Engineering National University of Singapore, Core Report No.2004-02.
    [6] Suzuki H. Overview of Megafloat: Concept, design criteria, analysis, and design[J]. Marine Structures, 2005,18(2):111-132.
    [7] C.M.Wang, E.Watanabe and T.Utsunomiya. Very large floating structures [M]. 2007.
    [8] Mcallister K R. Mobile offshore bases - an overview of recent research[J]. Marine Science and Technology, 1997,2:173-181.
    [9]吕海宁.超大型浮体水动力学试验研究[D].上海交通大学,硕士论文,2004.
    [10]付世晓.锚泊弹性浮体及通载浮桥的非线性水弹性响应研究[D].上海交通大学,博士论文,2005.
    [11]“超大型浮式结构物关键技术研究”课题汇报[R].海洋石油工程股份有限公司. 2010.
    [12]缪国平,刘应中,征服海洋之梦——超大型浮式海洋结构物[J].自然杂志.18(1) :26-30.
    [13] Paulling J R ,Tyagi S. Multi - module floating ocean structures[J ] . Marine Structures,1993, 6(2-3) :187-205.
    [14] Messier R H, Thompson L D. Effect of connector structural stiffness on intermodule displacements and forces for large modular floating structures[A]. International Workshop On Very Large Floating Structures[C],1996.
    [15]崔维成,吴有生,李润培.超大型海洋浮式结构物开发过程中需要解决的关键技术[J].海洋工程.2000,18(3) : 1-8.
    [16] Gene Remmers, Robert Z, Paul P, et al. Mobile offshore base[A] . ISOPE[C] 1998, 524- 529.
    [17] Zueck R., Taylor R. and Palo P. Development Option for Mobile Offshore Base Technology [A]. International Offshore and Polar Engineering Conference[C], 2001:13-18.
    [18] D.V. Ramsamooja, T.A. Shugar. Reliability analysis of fatigue life of the connectors for the US Mobile Offshore Base[J ]. Marine Structures, 2002,15:233–250.
    [19]余澜.移动式海上基地(Mobile Offshore Base-MOB)连接构件动力响应研究[D].上海交通大学,博士论文,2004.
    [20]余澜,李润培,舒志.移动式海上基地连接构件研究现状与发展[J].海洋工程. 2003,21(1): 60-66.
    [21] Mark S Derstine, Richard T Brown. A compliant connector concept for the mobile offshore base[A] .Proceeding of the Third International Workshop on Very Large Floating Structure[C]. 1999: 641- 650.
    [22] Riggs H R, Ertekin R C, Mills T R J. Impact of connector stiffiness on the response of a multi-module mobile offshore base[ A] . Proceeding of the International offshore and Polar Engineering Conference[C] . 1998: 200- 207.
    [23] Shixiao Fu, Torgeir Moan, Xujun Chen, Weicheng Cui. Hydroelastic analysis of flexible floating interconnected structures[J]. Ocean Engineering, 2007, 34: 1516–1531.
    [24] Byoung Wan Kim, Sa Young Hong, Jo Hyun Kyoung, Seok Kyu Cho. Evaluation of bending moments and shear forces at unit connections of very large floating structures using hydroelastic and rigid body analyses [J]. Ocean Engineering, 2007, 34: 1668–1679.
    [25]丁伟,余澜,李润培,姚美旺.移动式海上基地(MOB)连接构件动力响应试验研究[J].海洋工程. 2005,23(2): 11-15.
    [26]余澜,丁伟,李润培。移动式海上基地多模块间相互作用对连接构件载荷的影响。海洋工程,2004,22(1):25-31.
    [27]Wang D Y, Riggs H R, Eriekin R C. Three-dimensional hydroelastic response of a very large floating structure[ J] . Int. J. Offshore and Polar Energy, 1991, 1(4) : 307-316.
    [28] Ertekin R C, Riggs H R, Che X L, et al. Effcient methods for hydroelastic analysis of very large floating structure[ J] . J. Ship Research,1993, 37( 1) : 58-76.
    [29] Riggs H R, Ertekin R C, Mills T R J. Wave-Induced response of a 5 module mobile offshore base[ J] . Mechanics and Arctic Engieering , OMAE, 1998, 10.
    [30]余澜,李润培,舒志.移动式海上基地连接构件的动力特性[J].上海交通大学学报. 2003, 37(8): 1159-1163
    [31] Kim D, Chen L Blaszkowshi, Z Ray J. Linear frequency domain hydroelastic analysis for McDermon’s mobile offshore base using WAMIT[A]. Proceedings of the Third International Workshop on Very Large Floating Structure[C],1999:105- 113.
    [32] Wu Y S,Wang D Y, Riggs H R, et al. Composite singularity distribution method with application to hydroelasticity[J] . Marine Structure, 1993, 6: 143-163.
    [33] Ochi, M. K., Namseeg, H., Method for evaluating forces and moments for joining elements of large floating structures[A]. Proceedings of the First International Workshop on Very Large Floating Structure[C],1991:7-16.
    [34] R H Messier, Thompson L D. Effect of connector structural siffiness on intermodule displacements and forces for large modular floating structures[A]. International Workshop on Vory Large Floating Structure[C], 1996:393- 400.
    [35] Eric Weybrant, Vincent Caccese, Messier R H. A conputational study of the variation of connector forces with heading in large[A]. Proceedings of the Third Interational Workshop on Very Large Floating Structure[C].1999:632- 640.
    [36] Edwards M J, David Raj. Non-linear time-domain response of connected mobile offshore base units using linear frequency domain hydrodynamic forces[A] . Proceedings of the Third International Workshop on Very Large Floating Structure[C],1999:155- 161..
    [37]刘应中,缪国平.船舶在波浪上的运动理论[M].上海交通大学出版社,1987.
    [38]丛宇.波浪中母船对潜器的水动力干扰研究[D].哈尔滨工程大学,硕士学位论文,2008.
    [39]戴仰山,沈进威,宋竞正.船舶波浪载荷[M].国防工业出版社,2007.
    [40]张海彬.FPSO储油轮与半潜式平台波浪载荷三维计算方法研究[D].哈尔滨工程大学,博士论文,2004.
    [41]张法富,刘建辉,钟文军.波浪作用下的超大型浮式结构物整体受力研究[J].中国造船,2011,52:70-75.
    [42]谢永和.浅水超大型FPSO动力响应研究[D].上海交通大学,博士论文,2005.
    [43]杨建民,肖龙飞,盛振邦.海洋工程水动力学试验研究[M].上海交通大学出版社,2008.
    [44]超大型浮式结构物水池模型试验方案[R].上海交通大学,2010.
    [45]超大型浮式结构物水池模型试验研究报告[R].上海交通大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700