廊固凹陷中岔口南地区二次三维地震勘探采集方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于廊固凹陷主体构造带的三维地震资料采集时间较早,限于当时勘探装备及技术水平,地震资料的品质较差,严重制约了该凹陷精细勘探的进程。根据对廊固凹陷进行“整体研究、整体部署、整体评价”的勘探部署要求,为实现后续的廊固凹陷三维地震数据的整体连片,保证地震资料的精度,确保精细落实该凹陷的勘探目标,要通过精细的地质论证确定在中岔口南地区实施二次三维地震采集。
     本文认真分析了廊固凹陷研究区域的概况,包括区域地表概况,地表地震地质条件、干扰波及表层吸收衰减、深层地震地质条件等。收集了研究区域内及周边的相关资料并对其进行了详细的分析、研究和评价,认为以往一次采集方法的缺陷主要是面元较大、覆盖次数较低、激发和接收参数不合适、仪器性能较低等。通过对研究区内以往的单炮记录进行定性和定量分析认为,原始单炮记录的信噪比较低,规则干扰和随机干扰相对严重,深层反射能量弱。此外,还对邻区近几年的采集效果进行了分析。综合起来,认为针对研究区地震地质条件复杂、原始资料频率低、障碍物及干扰多、表层条件复杂等施工难点,我们应该认真分析以往的采集方法及资料品质,采取减小采集面元,提高覆盖次数,进行激发因素试验,了解表层结构等措施提高资料的信噪比和分辨率;针对接收条件差,干扰严重等施工难点,我们应借鉴以往的施工经验,选择合理的接收参数,并保障施工安全。
     接下来,本文进行了地震采集方法的研究。通过建立地球物理模型,选择合理的观测方向、面元大小、覆盖次数、最大炮检距、接收线距、最大非纵距等采集参数,根据设计要求及地震地质条件确定了激发和接收参数以及静校正的方法。
     为了论证采集参数的合理性,对其进行优化,提高资料的品质,对设计的观测系统进行了点试验和二维线试验。再结合本次三维勘探的技术要求及以往的地震资料特点,确定了基本观测系统参数、激发参数、接收参数以及仪器参数。最后对采集效果进行了分析,认为全工区资料品质相对平稳,能量足,具有较高的信噪比和分辨率,为落实本区的潜山及潜山内幕各类圈闭,以及发现和落实周边深、小潜山圈闭奠定了非常好的资料基础。
It was very early when the 3D seismic data acquisition in the major structural zone of LangGu hollow was conducted. At that time, the exploration equipments and technologies were limited, the seismic data quality was very poor, so the exploration progress was seriously restricted. Based on the exploration requirement of“integral research, integral layout, integral evaluation”, to carry through 3D seismic data integation of LangGu hollow, ensure the precision of seismic data and find out the detail of exploration targets, we have to carry out secondary 3D seismic acquisition based on careful geologic argumentation.
     In this paper, we analyse carefully the general situation of the hollow, including seismic and geological conditions of the surface and deeper strata, disturbing waves, absorption and attenuation in the surface and so on. Then carefully collect, analyse, research and evaluate the correlative data of the study area and surrounding areas. Conclude the disadvantages of the first acuqistion include: big binning, insufficient coverage folds, unappropriate shooting and receiving parameters, low-performance equipments and so on. Do qualitative and quantitative analysis to the previous single shot records, we find that the S/N is very low, deep energy is very weak and there are too many regular and random disturbances. In addition, we analyse the previous acquisition results of the surrounding areas. In conclusion, to deal with the technical difficulties, including complicated seismic geologic conditions, low frequency of raw data, abundant obstructions, abundant disturbances and complicated surfaces, we should analyse the previous acquisition methods and data quality carefully, improve the S/N and resolution of the data by minishing binning, increasing coverage folds, doing shooting factor stimulation, surveying the surface structures and so on. To deal with the field construction difficulties, including poor receiving conditions and serious disturbance, we should choose the appropriate receiving parameters and insure the field security by taking experiences into consideration.
     After that, we study the seismic acquisition technologies. First, build geophysical model, choose the appropriate surveying direction, binning size, maximum offset, and receiving line-spacing, maximum off-line spacing and so on. Then determine the shooting parameters, receiving parameters and static correction methods based on design requirements and experiences.
     To demonstrate the rationality of the acquisition parameters, do optimization and improve the data quality, we conduct point and 2D-line experiments. Combined with present 3D exploration technologies and previous experiences, we determine parameters of fundamental geometry, shooting, receiving and equipments. Finally, we analyse the acquisition result, conclude that the record all over the area is of great balance, sufficient energy, high S/N and resolution. This is a good beginning for finding out the buried hills and theirs structures, also for discovering deep and small buried hill traps.
引文
[1]庞彦明,黄德利,刘云燕,高兴友.实用开发地震[M].北京:石油工业出版社,2001
    [2]李庆忠.走向精确勘探的道路—高分辨率地震勘探系统工程剖析.北京:石油工业出版社,1994
    [3]王永刚.地球物理资料解释.石油大学研究生院,2001
    [4]陆基孟主编.地震勘探原理[M] .中国石油大学出版社,1993年
    [5]俞寿朋等译.陆上三维地震勘探的设计与施工.石油地球物理勘探局,1996:20~26
    [6]宋玉龙.全三维地震勘探采集技术.石油物探,2002,41(增刊):70~72
    [7]杜世通主编.地震波动力学.东营:石油大学出版社,1996
    [8]朱相雨等.许庄—真武三维二次采集方法与效果分析.江苏油田勘探技术座谈会,2001
    [9] Baysal, Koslof, Sherwood et al. A two-way nonreflecting wave equation. Geophysics, 1984, 49:132-141
    [10] Geoff Bennett. 3-D seismic refraction for deep exploration targets[J]. The Leading Edge, 1999, 18(2):318-347
    [11] Clayton, R. W., Engquist et al. Absorbing boundary conditions for wave-equation migration[J]. Geophysics. 1980, 45:895-904
    [12]熊翥.我国物探技术的进步及展望.石油地球物理勘探,39(3):354~358
    [13] Claerbout, J. F.. Imaging of earth’s interior. New York: Blackwell Scientific Publications Inc., 1985
    [14] R.E.谢里夫等编.勘探地震学[M] .石油工业出版社,1999年
    [15]傅朝奎等.利用联合组合效应提高地震资料的信噪比和分辨率.石油地球物理勘探,2000;35(2):236~243
    [16]牟永光编.地震勘探资料数字处理方法[M] .石油工业出版社,1981
    [17]范哲清,卢刚臣,李玉海等.大港油田油气开发区三维地震二次采集部署方法探讨.石油物探,2005;44(1):51~58
    [18]吴云海,安方超.复杂地区三维地震勘探采集技术.新疆地质,2004,22(3):337~338
    [19]邓志文.复杂山地地震勘探.北京:石油工业出版社,2006
    [20]裘慰庭编.地震勘探采集技术论文集.北京:石油工业出版社,1993:116~140
    [21]杨云岭.地质模型在地震解释中的重要作用.油气地球物理,2003,1(1):4~7
    [22]谭绍全等.四扣地区目标地震勘探采集技术设计及应用效果.石油物探,2002,41(增刊):73~75
    [23]姚本全.三维地震采集设计方法研究.江汉石油学院学报,2004,26(增刊):58~60
    [24]张翠兰,杜江.3D地震勘探的优化设计.石油物探译丛,2000,3:77~85
    [25]任义庆等.地震爆炸震源模拟.石油物探,1998;37(3):15~21
    [26]熊翥.复杂地区地震数据处理思路[M] .北京:石油工业出版社,2002
    [27] Stratigraphic modeling and interpretation-Geophysical principles and techniques. AAPG Memoir. 1977,26:389-416
    [28]张海新.地震数据采集观测系统的设计与实现.辽宁:大连理工大学,2005
    [29]牟永光.地震勘探资料数字处理方法[M].北京:石油工业出版社,1986
    [30] Hubral, P. Time Migration– some ray theoretical aspects. Geophysical Prospecting, 1977,25:738-745
    [31]张伟.三维地震观测系统优化设计的方法研究.成都:西南石油大学,2006
    [32]段书富,马永乐,侯伯军.高邮凹陷公道三维地震勘探二次采集技术.物探装备,2004;14(2):92-98
    [33]李庆珍.地震勘探三维观测系统设计[J].中国煤田地质,1998,10(2):54~55,63
    [34]李庆忠.地震勘探分辨率与信噪比的关系.石油地球物理勘探,2008,43(2)
    [35] N. S. Hamarbitan and G. F. Margrave, Spectral analysis of a ghost, Geophysics, 2001, 66(4):1267-1273
    [36]牟永光等.三维复杂介质地震数值模拟.北京:石油工业出版社,2005
    [37]钱绍瑚编著.实用高分辨率地震勘探数据采集技术.武汉:中国地质大学出版社,1998:42~90
    [38]刘财等编.勘探地震资料处理新方法及新技术[M].科学出版社,2006年
    [39]李万万.基于波动方程正演的地震观测系统设计.石油地球物理勘探,43(2):134~141
    [40]刘怀山等.组合爆炸法在高分辨率地震勘探中的应用.石油地球物理勘探,1990;25(6):734-743
    [41]李振春编.地震数据处理方法[M].中国石油大学出版社,2006年
    [42]陈发亮等.东部老区二次三维地震勘探的意义及效果.石油地球物理勘探,2004;39(2):163~170
    [43]刘树田.地震勘探中炸药震源药型选择问题研究.石油物探,1999,38(4):66~73
    [44]钱绍湖,李套山等.炸药震源爆炸机制及激发条件的研究.石油物探,1998,37(3):1~14
    [45] S.T.chen et. al, Experimental studies on downhole seismic sources. Geophysics, 150(2002) :410-413
    [46]蒋连斌等.震检联合在高分辨率地震资料采集中的应用.石油物探,2000,39(3):73~78
    [47]孟昭波等.地震勘探正演问题中震源机制的数值模拟.石油地球物理勘探,1990,25(1):45~52
    [48]於文辉.地震勘探中震源机制的理论分析.石油物探,1992,31(1):24~28
    [49]蒋先勇.东濮凹陷三维地震重新采集技术.断块油气田,2003,10(1):18~22
    [50]渥.伊尔马滋编.地震资料分析——地震资料处理、反演和解释[M] .石油工业出版社,2006年
    [51]赵殿栋,吕公河.高精度三维地震采集技术及应用效果.石油物探,2001,40(1):1~8
    [52]谭绍全.海上煤田高精度三维地震采集技术及应用效果.石油地球物理勘探,39(3):254~258
    [53]傅朝奎.关于地震采集中的井深和药量的研究[J].石油地球物理勘探,1998,33(增1):83~86
    [54]吴云海,安方超,李怀胜.复杂地区三维地震勘探采集技术.新疆地质,2004,22(3):337~338
    [55]周川江.精细三维地震勘探在构造复杂区的应用效果.中国石油学会东部地区第十二次物探技术研讨会:166~168
    [56]雍凤军.确定最佳地震采集参数的试验方法.石油物探,1996,35(2):96~100
    [57]蒋有录等编.石油天然气地质与勘探[M].石油工业出版社,2006年
    [58]张厚福等编.石油地质学[M].石油工业出版社,1999年
    [59] Albin K. Kerekes, Seismic array design by spatial convolution, Geophysics, 2001, 66(4) : 1195-1207
    [60]蒋连斌等.一种计算检波器线性组合响应曲线的实用方法.石油物探,1998;37(1):84~88
    [61]李套山等.虚反射信息的采集及其形成机制、频率响应的理论探讨.石油物探,1997;36(4):38~44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700