天然气组分及碳同位素动力学研究与地质应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机质(干酪根)裂解生烃动力学模拟是以Arrenium方程为基础发展起来的、能够很好模拟有机质生烃的一种技术手段。目前,常用的模型都是基于干酪根裂解生烃由一系列相互独立平行一级反应组成的假设基础上。各种模型的主要区别在于活化能分布函数的不同,而指前因子,没有特别的意义,只作为调和参数存在,可以简化为统一的值。
     同位素动力学模拟是以生烃动力学模拟为基础发展起来的,它可以动态地再现地质历史过程中热解甲烷的碳同位素演化特征。因此,可为气藏的成藏历史恢复提供非常重要的信息。目前的同位素动力学模型以Lorant模型、Cramer模型和Tang模型为代表。本论文在实现各模型的基础上,对各自的特点、优缺点、使用限制进行了简单的评价。
     限定体系,湿气组分存在着生-裂的平衡。本论文建立了限定体系湿气组分模拟技术,为一些参数的地质应用提供了可能;并结合甲烷碳同位素动力学模拟的特点,发展了限定体系下乙烷等湿气组分的碳同位素模拟技术。多参数的联合应用,对于恢复快速沉陷盆地中气藏的成藏历史具有非常重要的意义,它可以弥补单纯依赖甲烷同位素数值获得多种解释的不足,并可以弥补甲烷碳同位素容易受各种次生作用影响而发生变化的缺憾,为天然气成藏研究提供一种互相左证,互相支持及相互弥补的方法。
     在初次运移、扩散、水洗等各种后生、次生作用过程中,天然气的特征和数量会发生变化。因此,对于一些成藏较早的气藏,其成藏历史的恢复,必须要考虑后生、次生因素的影响。本文对这些因素造成的影响进行了研究,并通过数值模拟的手段,对影响程度进行了界定。
     通过对鄂尔多斯盆地上古生界煤热解动力学实验研究与数据模拟,证明鄂尔多斯盆地上古生界天然气主要来源于上古生界煤的长期裂解累积;而盆地中部长庆气田区下古生界马家沟组五段的天然气以下古生界来源为主,上古生界煤成天然气只占26.7%;上古生界煤自白垩纪以来处于生烃停止状态,长期的扩散大约使30%的天然气损失,扩散损失的天然气富含轻碳甲烷,湿气含量少;水洗使大约8%的煤成气损失,损失的天然气在同位素特征上基本没有发生变化,却富含湿气组分(2%)。两种过程对于残余天然气特征影响较小,基本可忽略不计;初次运移过程中,以煤的吸附作用为主的各种物理作用使大量的湿气组分滞留在煤中,排出的天然气富集甲烷。
     动力学模拟结果证明塔里木盆地库车凹陷克拉2气藏天然气主要来自于中生代
    
    Abstraet
    煤系源岩的长期裂解一累积、累积阶段在上新世末期结束。圈闭形成之前由煤系源岩
    形成的天然气主要储集在煤系源岩及碎屑岩夹层组成的气囊带中;上新世末期,天
    然气充注中断的原因在于强烈的构造运动使气藏构造内发生构造高压环境。
Kinetic modeling of the hydrocarbons generation from organic matter's cracking is a useful method in reconstructing the history of petroleum generation in a basin. The kinetic models commonly used are proposed that the reactions of hydrocarbon generation from kerogen are parallel and independent. They should have the same exponential parameter, but distinguish themselves with different reaction energies. Because of the complexity of the mechanism of the real reactions, the exponential parameters are only an adjust factors without any physical chemistry significances.
    The progress of kinetic models of hydrocarbons generation promotes the technique to accurately simulate the stable carbon isotope ratio of methane. Kinetics could model the stable carbon isotope ratio of methane in the geological history. Therefore, it could help to assess how and when a gas accumulating. Up to date, Cramer model and Tang model are two models that are accepted in the world. In this Dissertation, those two models are implemented and their characters are analyzed. Also, the kinetics simulation of the stable carbon isotope ratios of other heavy gaseous components in confined system is made out. The usage of it, accompany with that of methane, could give much more accurate result in rebuilding the formation of a gas, especially a gas in a complex geological surrounding.
    The characters and quality of natural gases is changeful in many geological progresses, including primary migration, diffusion, water washing, bacterial activity. That made the formation information of natural gases changeable too. So, to analyze the formation of a gas should take into consideration of all those factors. In this paper, the quality and characters of the lost gas during the second processes are kinetically modeled.
    The modeling results based on pyrolysis experiments of Upper Paleozoic coal showed that gases in Upper Paleozoic reservoir are derived from those coals with a long time cracking history. In Ordovician reservoir, 70% of gases are from Low Paleozoic marine organic matter, and about 30% are coal-formed gas. During long time diffusion from the formation of coal-formed gas, about 30% gases rich in methane have escaped through the cap rocks, therefore, the gases left in reservoir became wet with much more heavy gaseous components. But the variance in the stable carbon isotope ratios of gas in reservoir is very inconspicuous. During water washing, about 10% coaled-gas has been lost with much more heavy gaseous components. Also, the modified characters of leaving parts are inconspicuous too. The primary migration of gases from source rock to reservoir rock makes more heavy gaseous parts leaving in the coal, because of the preferential adsorption of the coal for heavy gaseous components than for methane.
    Modeling results including stable carbon isotope ratios of both methane and ethane showed that gases in Kela 2 gas field are accumulated from coal burial to the end of Kuqa
    III
    
    
    stage of Cenozoic. The earlier gas generated from coal before the formation of Kela 2 structure was adsorbed in the coal measures. The accumulation of gases finished at the end of Kuqa stage (2 Ma B.P.), because of strong structural deformation of Kuqa depression, which made some faults cut off the thick salt cap rocks.
    The primary migration of gases from source rock to reservoir rock in these two basins showed different degree in depleting of heavy gaseous components because of the different maturity of their mother rocks.
引文
陈安定.陕甘宁盆地中部气田奥陶系天然气的成因及运移.石油学报,1994,15(2):1~10
    陈安定.论鄂尔多斯盆地中部气田混合气的实质.石油勘探与开发,2002,29(2):33-38.
    陈传平,梅博文,贾发敬.1994.生油岩产生低分子量有机酸的模拟实验研究.地球化学.23(2):155-160.
    陈能贵,张润合等.主要含气盆地有效气源岩发育特征与形成大中型气田的关系.内部资料 2000
    戴金星,戚厚发,宋岩,1984.鉴别煤成气和油型气若干指标的初步探讨
    戴金星.各类烷烃气的鉴别.中国科学(B辑),1992,2:185-193
    戴金星,夏新宇.长庆气田奥陶系风化壳气藏、气源研究.地学前缘,1999,6(增刊),195-203.
    关得师,张文正,裴戈.鄂尔多斯盆地中部气田奥陶系气层的油气源.石油与天然气地质,1994,14(3),191~199
    冯桥,张文正等.苏里格庙上古生界天然气成因类型及成藏机理研究.2001,内部报告
    付广,王朋岩,付晓飞.库车坳陷下第三系盖层封闭特征及其对油气成藏的控制作用.高校地质学报,2001,7(4):475-482.
    付少英,彭平安,刘金钟,张文正,李剑峰,昝川莉,2002.鄂尔多斯盆地上古生界煤的生烃动力学研究.中国科学D辑,32(10),812-818
    傅献彩等编著.<物理化学>本焊叩冉逃霭嫔纾?4版,2001.
    黄第藩,熊传武,杨俊杰等.鄂尔多斯盆地中部气田气源判识和天然气成因类型.天然气工业,1996,16(6):1~5.
    惠宽洋.鄂尔多斯盆地煤成气与油型气成因类型鉴别模式研究.矿物岩石,2000,20(2):43-48
    贾承造.塔里木盆地构造特征与油气聚集规律.新疆石油地质,1999,20(3),177-183.
    康志宏、梁慧社.库车坳陷地质结构及油气带预测.新疆地质,1998,16(1):49-57.
    赖特迈尔 CT,美国煤层甲烷资源.1990,北京:地质出版社.Pp.154,238
    李剑,谢增业,罗霞等.库车凹陷克拉2气田成藏机理研究.见:梁狄刚,黄第藩等主编.有机地球化学论文集.北京:石油工业出版社,2001.pp.163-172.
    梁狄刚,张水昌,陈建平等.库车凹陷油气成藏地球化学.见:梁狄刚,黄第藩等主编.有机地球化学论文集.北京:石油工业出版社,2001.pp.22-41.
    刘德汉,郑聪彬,肖贤明,米敬奎,申家贵.鄂尔多斯盆地奥陶系盐下碳酸岩盐生烃研究,2001.内部报告
    刘志宏,卢华复,贾承造等.库车前陆盆地克拉苏构造带的构造特征及油气.长春科技大学学报.1999,26(3),215-221.
    刘志宏,卢华复,李西建等.库车再生前陆盆地的构造演化.地质科学,2000,35(4),482-492.
    
    
    卢华复,贾东等.库车新生代构造性质和变形时间.地学前缘,1999,6(4),215-221.
    卢华复,贾承造,贾东等.库车再生前陆盆地冲断构造楔特征.高校地质学报,2001,7(3),257-271.
    卢书锷,1987.泥质沉积物排烃模拟.石油实验地质.9(1):22-23.
    卢双舫编著,1996.有机质成烃动力学理论及其应用.北京:石油工业出版社.pp.30-33.
    马启福,陈斯中,张启明,等,2000.超压盆地与油气分布[M].北京:地质出版社.
    任战利.利用磷灰石裂变径迹法研究鄂尔多斯盆地地热史[J].地球物理学报,1995,38:339-349.
    任战利.中国北方沉积盆地构造热演化史研究[M].北京:石油工业出版社,1999
    苏现波,陈江峰,孙俊民,程昭斌等,煤层气地质学与勘探开发.北京:科学出版社,2001.Pp.10.
    汤良杰.塔里木盆地构造演化与构造样式.地球科学—中国地质大学学报,1994,
    王飞字,张水昌等.塔里木盆地库车凹陷中生界烃源岩有机质成熟度.新疆石油地质,1999,20(3),221-224.
    王根长.塔里木盆地碎屑岩储层基本特征.石油实验地质,2001,23(1):62-66.
    吴中海,吴珍汉.鄂尔多斯、沁水盆地晚新生代隆升—剥蚀历史.地质科技情报,2001,20(3):16-20
    夏新宇.赵林.戴金星.张文正.李剑峰.鄂尔多斯盆地中部气田奥陶系风化壳气藏天然气来源及混源比计算.沉积学报,1998,3:75-80.
    徐永昌,沈平,刘文汇,等.天然气成因理论及其应用.北京:科学出版社.1994
    杨天宇 王涵云.1987.岩石中有机质高温高压模拟实验.石油与天然气地质.8(4):380-390.
    张金亮,常象春,张金功.鄂尔多斯盆地上古生界深盆气藏研究.石油勘探与开发,2000,27(4):30-38.
    张士亚.鄂尔多斯盆地天然气气源及勘探方向.天然气工业,1994,3:1-5.
    赵孟为.磷灰石裂变径迹分析在恢复盆地沉降抬升史中的应用——以鄂尔多斯盆地为例.地球物理学报,1996,39(增刊):238-248
    周兴熙.库车坳陷第三系盐膏质盖层特征及其对油气成藏的控制作用.古地理学报,2000,2(4):51-57
    中国科学院地球化学研究所,1984,石油有机地球化学简报,第一期
    Agarwal PK, Genetti WE, Lee YY, 1986. Chem. Eng. Sci. 41(9), 2373-2383.
    Anthony DB, and Howard JB, 1976. Coal devolatilization and hydrogasification. AIChE J. 22(4), 625-656.
    Aris, R. Arch. Ration. Mech. Anal. 1968, 27, 356-64.
    Aris R, 1989. Reactions in continuous mixtures. AICHE J. 35,539-548.
    Astarita G, 1989. Lumping nonlinear kinetics: Apparent overall order of reaction. AICHE J. 35, 529-532.
    
    
    Behar F, Leblond C, Saint-Paul C, 1989. Quantitative analysis of pyrolysis effluents in an open and closed system. Rev Inst Francais du Pét 44, 387-411.
    Behar F.,Vandenbrouke M.,Teerman S.C.,Hatcher P.G. Leblond C., Lerat O., 1995. Experimental simulation of gas generation from coals and a marine kerogen. Chemical Geology 126,247-260.
    Behar F, Vandenbroucke M, 1996. Experimental Determination of the Rate Constants of the n-C25 Thermal Cracking at 120, 400, and 800 bar: Implications For High-Pressure/High-Temperature Prospects. Energy & Fuels 10, 932~940.
    Behar F, Lewan MD, Lorant F, Vandenbroucke M, 2003. A Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions. Organic Geochemistry 34, 575~600.
    Berner U, Faber E and Stahl W. Mathematical simulation of the carbon isotopic fractionation between huminitic coals and related methane. Chemical Geology, 1992, 94:315-319.
    Berner U, Faber E, Scgeeder G, Panten D., 1995. Primary cracking of algal and landplant kerogens: Kinetic models of isotope variations in methane, ethane, and propane. Chemical Geology 126: 233-245.
    Blanc P, Connan J, 1992. Generation and expulsion of hydrocarbons from a Paris Basin Toarcian source rock: an experimental study by confined-system pyrolysis. Energy & Fuels 6, 666~677.
    Braun RL, Burnham AK, 1990. Mathematical model of oil generation, degradation, and expulsion. Energy & Fuels 4, 132-146.
    Braun RL, Burnham AK, Reynolds JG, Clarkson JE, 1991. Pyrolysis kinetics for lacustrine and marine source rocks by programmed micropyrolysis. Energy & Fuels 5, 192-204,
    Boudou JP, Espitalie J, 1995. Molecular nitrogen from coal pyrolysis: Kinetic modelling, Chem Geol 126, 319~333.
    Burnham AK, Braun RL, Gregg HR, Samoun AM, 1987. Energy & Fuels 1,452-458.
    Burnham AK. A simple kinetic model of petroleum formation and cracking. Lawrence Livermore: Lab. Report UCID21665, March, 1989
    Burnham AK., 1998. Comment on "Experiments on the role of water in petroleum formation" by MD Lewan. Geochimica et Cosmochimica Acta 62,2207~2210.
    Burnham AK, Braun RL, 1999. Global Kinetic Analysis of Complex Materials. Energy & Fuels 13(1), 1-22.
    Bustin RM, Clarkson CR. Geological controls on coalbed methane reservoir capacity and gas content. International Journal of Coal Geology. 1998, 38(1-2): 3-26..
    Cambell J.H.,Koskinas G.J.,Gallegos G.,Gregg M.,1980a. Gas evolution during oil-shale pyrolysis: 1. Nonisothermal rate measurements. Fuel 54,718-726.
    Cambell J.H.,Gallegos G.,Gregg M.,1980b. Gas evolution during oil shale pyrolysis: 2. Kinetic and stoichiometric analysis. Fuel 54,727-732.
    Carr AD, 1999. A vitrinite reflectance kinetics model incorporating overpressure retardation. Marine
    
    Petroleum Geology 16, 355-377.
    Cecil B., Stanton R., Allshouse S., et al. 1979. Effects of pressure on coalification. Ninth International Congress of Carboniferous Stratigraphy and Geology. University of Illinois, Urbana, Illinois, 19-26 May, abstracts of papers. 32.
    Chen Jianfa, Xu Yongchang and Huang Difan, 2000, Geochemical characteristics and origin of natural gas in Tarim basin, China: AAPG Bulletin, 84(5), 591-606.
    Chermin HAG, van Krevelen DW, 1967. Chemical Structure and Properties of Coal ⅩⅦ - A Mathematical Model of Coal Pyrolysis. Fuel 36, 85-104.
    Chung HM, Sackett WM, 1979. Use of stable carbon iso-tope compositions of pyrolytically derived methane as maturity indices for carbonaceous materials. Geochimica Cosmochimica Acta 43,1979-1988.
    Chung HM. Origin of gaseous hydrocarbons in subsurface environments: Theoretical consideration of carbon isotope distribution. Chemical Geology, 1988,71: 97-103.
    Clarkson CR, Bustin RM, 1996. Application of adsorption potential theory to coal/methane adsorption isotherms at elevated temperature and pressure; implications for reservoir characterization. Abstracts with Programs - Geological Society of America 1996, 28(7), 42.
    Clarkson CR, Bustin RM, 1997a. High pressure adsorption/desorption isotherms; application to predicting reservoir capacity and drainage. AAPG Bulletin 81(9): 1547.
    Clarkson CR, Bustin RM, 1997b. Variation in permeability with lithotype and maceral composition of Cretaceous coals of the Canadian Cordillera. International Journal of Coal Geology 33(2): 135-151.
    Clayton C, 1991. Carbon isotope fractionation during natural gas generation from kerogen. Marine Petroleum Geology 8, 232-240.
    Crack J, 1975. The mathematics of diffusion. Clarendon Press, Oxford.
    Cramer B, Kross BM, Littke R. Modelling isotope fractionation during primary cracking of natural gas: a reation kinetic approach. Chemical Geology, 1998, 149: 235-250.
    Cramer B, Faber E, Gerling P, Krooss BM, 2001. Reaction kinetics of stable carbon isotopes in natural gas-insights from dry, open system pyrolysis experiments. Energy & Fuels 15, 517-532
    Crisp PT, Brenner S, Venkatesan MI, Ruth E, Kaplan IR, 1979. Organic chemical characterization of sediment-trap particulates from San Nicolas, Santa Barbara, Santa Monica and San Pedro basins, California. Geochim Cosmochim Acta 43, 1791~1801.
    Crosdale PJ, Beamish BB, Valix M, 1998. Coalbed methane sorption related to coal composition. International Journal of Coal Geology 35,1-4, 147-158.
    Conkright ME, Sackett WM, Peters KE, 1986. Application of the pyrolysis-carbon isotope method for determining the maturity of the Bakken shale. Org. Geochem. 10, 1113-1117.
    Conkright ME, 1989. Stable carbon isotope compositions during the thermal alteration of organic
    
    matter. Ph.D. dissertation, Univ. South Florida.
    Domine F, 1989. Kinetics of hexane pyrolysis at very high pressures 1. Experimental study. Energy & Fuels 3, 89~96.
    Domine F. 1991. High pressure pyrolysis of n-hexane, 2,4-dimethylpentane and 1-phenylbutane; is pressure an important geochemical parameter?. Organic Geochemistry 17(5), 619-634.
    Domine F. Enguehard F, 1992. Kinetics of hexane pyrolysis at very high pressures; 3, Application to geochemical modeling. Organic Geochemistry 18 (1), 41-49.
    Doue F, Guiochon GJ, 1968. J. Chim. Phys. 65, 395-409.
    Espitalie J, Madec M, Tissot B, 1980. Role of mineral matrix in kerogen pyrolysis: inuence on petroleum generation and migration. American Association of Petroleum Geologists Bulletin 64, 59-66.
    Evans C.R.,Rogers M.A.,Bailey N.J.L.,1971. Evolution and alteration of petroleum in Western Canada. Chemical Geology 8/3,147-170.
    Evans, C.R., Staplin, F.L., Regional facies of organic metamorphism; geochemical prospecting for petroleum and natural gas; in Geochemical Exploration (International Geochemical Exploration Symposium, 3rd, Proc.) Special Volume—Canadian Institute of Mining and Metallurgy v11; Canadian Institute of Mining and Metallurgy, Montreal, PQ, Cnada, 517-520.
    Faber, E., W. J. Stahl, and M. J. Whiticar, 1992, Distinction of bacterial and thermogenic hydrocarbon gases, in R. Vially, ed., Bacterial gas: Paris, Editions Technip, 63-74.
    Fabuss BM, Smith JO, Satterfield CN, 1964. Thermal crackingof pure saturated compounds. In Advances in Petroleum Chemistry and Refining. McKetta JJ, Kobe KA (Eds); Interscience: New York. pp157~201.
    Frank DJ, Sackett WM, 1969. Kinetic isotope effects in the thermal cracking of neopentane Geochimica et Cosmochimica Acta 33(7), 811-820.
    Freund H, Clouse JA, Otten GA, 1993. Effect of pressure on the kinetics of kerogen pyrolysis. Energy & Fuels 7, 1088~1094.
    Friedman HLJ, 1963. Polym. Sci., Part C 6, 183-195.
    Friedrich, H.U., and H. Jüntgen, Some measurements of ~(12)C/~(13)C ratio in methane or ethane desorbed from hard coal or released by pyrolysis, in H.R. Gaertner and H. Wwhner, eds., Advances in organic geochemistry, 1971:Oxford, Pergamon, 639-646.
    Galimov EM. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks. In: Schoell M. (Guest-Editor.), Origins of Methane in the Earth. Chemical Geology,1988,71:77-95 (special issue).
    Galimov EM, Ivlev AA, 1973. Thermodynamic isotope effects in organic compounds; Ⅰ. Carbon isotope eddects in straight-chain alkanes. Russian Jour. Phys. Chemistry 47, 1564-1566.
    
    
    Grint A, Mehani S, Trewhella M, Crook MJ, 1985. Role and composition of the mobile phase in coal. Fuel 64, 1355-1360.
    Gu"rdala G., Yalc,na MN, 2000. Gas adsorption capacity of arboniferous coals in the Zonguldak basin (NW Turkey) and its controlling factors. Fuel 79, 1913-1924.
    Hanbaba P, 1967. Reaktionskinetische Untersuchungen zur Kohlenwasserstoffentbindung aus Steinkohlen bie niedrigen Aufheizgeschwindigkeiten. Dissertation, University of Aachen.
    Henderson JH, Weber L, 1965. J. Can. Pet. Technol. Oct-Dec, 209-212.
    Helgeson H. C., Knox A. M., Owens C. E., and Shock E. L. (1993). Petroleum, oil field waters, and authigenic mineral assemblages: Are they in metastable equilibrium in hydrocarbon reservoirs? Geochim. Cosmochim. Acta 57, 3295-3339.
    Hesp W, Rigby D, 1973. Geochemical alteration of hydrocarbons in the presence of water. Acta Metallurgica 26, 70-76.
    Hill RJ, Jenden PD, Tang YC, Teerman S, Kaplan IR 1994. The influence of pressure on the pyrolysis of coal. In Reevaluation of Vitrinite Reflectance as a Maturity Parameter. (Eds) Mukhopadhyay PK, Dow WG. ACS Books: Washington, DC. Chapter 11, pp 161~193.
    Hill RJ, Tang YC, Kaplan IR, Jenden PD, 1996. The Influence of Pressure on the Thermal Cracking of Oil. Energy & Fuels 10, 873~882.
    Hill RJ, Tang YC, Kaplan IR, 2003. Insights into oil cracking based on laboratory experiments. Organic Geochemistry 34(12), 1651-1672.
    Ho TC, Aris R, 1987. On apparent second-order kinetics. AICHE J. 33, 1050-1051.
    Hoering TC, 1977. Olefinic hydrocarbons from Bradford, Pennsylvania, crude oil. Chem Geo120, 1~8.
    Hoering TC, 1984. Thermal reactions of kerogen with added water, heavy water and pare organic substances. Organic Geochemistry 5,267~278.
    Horvarth ZA 1980. Acta Geol. Hung. 26, 137-148.
    Huizinga B.J., Tannenbaum E., Kaplan I.R.,1987a. The role of minerals in the thermal alteration of organic matter-Ⅲ: Generation of bitumen in laboratory experiments. Organic Geochemistry 11, 591-604.
    Huizinga B.J., Tannenbaum E., Kaplan I.R., 1987b. The role of minerals in the thermal alteration of organic matter-Ⅳ: Generation of n-alkanes,acyclic isoprenoids,and alkenes inlaboratory experiments. Geochimica et Cosmochimica Acta 51,1083-1097.
    Hunt JM, 1979. Petroleum geochemistry and geology. Freeman: SanFrancisco, CA.
    Jackson KJ, Burnham AK, Braun RL, Knauss KG, 1995. Temperature and pressure dependence of n-hexadecane cracking. Organic Geochemistry 23, 10, 941~953.
    James, AT. Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components. AAPG Bull. 1983, 67(7),1176-1191
    Jenden PD, Newell KD, Kaplan IR, Watney WL, 1988. Composition and stable isotope geochemistry
    
    of natural gases from Kansas, Midcontinent, U.S.A. Chemical Geology 71, 117-147.
    Joubert JI, Grein CT, Bienstock D, 1973. Sorption of methane on moist coal. Fuel 52, 181-185.
    Joubert JI, Grein CT, Bienstock D, 1974. The effect of moisture on the methane capacity of American coals. Fuel 53, 186-191.
    Kissinger, H, E. J. Res. Natl. Bur. Stand. 1956, 57, 217-221.
    Kissinger HE, 1957. Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702-1706.
    Kross, B.M., Leythaeuser D. and Schaefer R.G. The quantification of diffusive hydrocarbon losses through cap rocks of natural gas reservoirs- are-evaluation. AAPG Bulletin, 1992, 76, 403-406
    Lamberson M N., Bustin RM. Coalbed methane characteristics of Gates Formation coals, northeastern British Columbia; effect of maceral composition. AAPG Bulletin. 1993, 77(12): 2062-2076.
    Landais P, Michels R, Elie M, 1994. Are time and temperature the only constraints to the simulation of organic matter maturation?. Organic Geochemistry 22 (3-5), 617-630.
    Landais P, Michels R, Elie M, 1995. Influence of Pressure and the Presence of Water on the Evolution of the Residual Kerogen during Confined,Hydrous, and High-pressure Hydrous Pyrolysis of Woodford Shale. Energy & Fuels 9, 204-215
    Lakshmanan C, White N, 1987. Proc. 15th. Aust. Chem. Engg. Conf. CHEMECA-87, 44.1-44.7.
    Lakshmanan CC, Bennett ML, White N, 1991. Implications of multiplicity in kinetic parameters to petroleum exploration: Distributed activation energy models. Energy & Fuels 5, 110-117.
    Lakshmanan CC, White N, 1994. New distributed activation energy model using Weibull distribution for the representation of complex kinetics. Energy & Fuels 8, 1158-1167.
    Latter S, Wilhelms A, Head I, et al., 2003. The controls on the composition of biodegraded oils in the deep subsurface—part Ⅰ : biodegradation rates in petroleum reservoirs. Organic Geochemistry 34: 601-613,
    Laxminarayana C, Crosdale PJ, 1999. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals. International Journal of Coal Geology 40(4):309-325.
    Levy J, Day SJ, Killingley JS, 1997. Methane capacity of Bowen Basin coals related to coal properties. Fuel 74, 1-7.
    Lewan MD, Winters JC, McDonald JH, 1979. Generation of oil-like pyrolyzates from organic-rich shales. Science 203,897~899.
    Lewan M. D. (1993a) Laboratory simulation of petroleum forma-tion: Hydrous pyrolysis. In Organic Geochemistry (ed. M. H. Engel and S. A. Macko), pp. 419-442. Plenum.
    Lewan M. D. (1993b) Identifying and understanding suppressed vit-finite reflectance through hydrous pyrolysis experiments. 10th Ann. Mtg. Soc. Org. Petrol. Abstr. Prog. 10, pp. 1-3.
    Lewan, M.D., 1997. Experiments on the role of water in petroleum formation. Geochimica et Cosmochimica Acta 61 (17), 3691-3723.
    
    
    Lewan MD, 1998. Reply to the comment by AK Burnham on "Experiments on the role of water in petroleum formation". Geochimica et Cosmochimica Acta 62,2211~2216.
    Li Desheng, Liang Digang, Jia Chengzao, Wang Gang, Wu Qizhi, and He Dengfa, 1996, Hydrocarbon accumulations in the Tarim basin, China. AAPG Bulletin 80(10), 1587-1603.
    Liu JZ, Tang YC, 1998. One example of predicting methane generation yield by hydrocarbon generating kinetics. Chinese Science Bulletin 43, 1187-1191.
    Lorant F, Prinzhofer A, Behar F, Huc AY, 1998. Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases. Chemical Geology 147: 249-264.
    Lorant F, Behar F, 2002. Late generation of methane from mature kerogens. Energy & Fuels 16, 412-427.
    Lu Huafu, Howell DG, Jia Dong, 1994. Rejuvenation of the Kuqa foreland basin, northern flank of the Tarim Basin, Northwest China. Intl. Geol. Rev. 36, 1151-1158.
    Lu Huafu, Jiu Dong, Chen Chuming et al, 1996. Evidence for growth fault-bend folds in the Tarim basin and its implication for fault-slip rates in the Mesozoic and Cenozoic. Proc 30th Int'l Geol Congr 14,253-262
    Mallinson RL, Burnham AK, Braun RL, Westbrook CK, 1991. Effect of pressure on hydrocarbon cracking. Abstracts of Papers -American Chemical Society, National Meeting. 201; 1, Pages GEOC 54.
    Mango FD, Hightower JW, James AT, 1994. Role of transition-metal catalysis in the formation of natural gas. Nature 368,536-538.
    Mango FD, Hightower J, 1997. The catalytic decomposition of petroleum into natural gas. Geochimica et Cosmochimica Acta 24, 5347-5350.
    Mango FD, Elrod LW, 1999. The carbon isotopic composition of catalytic gas: a comparative analysis with natural gas. Geochimica et Cosmochimica Acta 63,1097-1106.
    Mango FD, 2001. Methane concentrations in natural gas: the geneticn implications. Organic Geochemistry 32, 1283-1287.
    Mattavelli, L., T. Ricchiuto, D. Grignani, and M. Schoell, Geochemisty and habitat of natural gases in Po basin, northern Italy: AAPG Bulletin, 1983, 67, 2239-2254
    McNab JG, Smith PV, Betts RL, 1952. Geochim Cosmochim Acta 44, 2556-2563.
    McNeil RI, BeMent WO, 1996. Thermal Stability of Hydrocarbons: Laboratory Criteria and Field Examples. Energy & Fuels 10, 60~67.
    McTavish RA, 1978. Pressure retardation of vitrinite diagenesis, offshore North-west Europe. Nature 271,648~650.
    Michels R, Landais P, Philp RP, Torkelson BE, 1994, Effects of chemical composition on two-phase flow in porous rocks: a multivariate screening including interactive effects. Energy & Fuels 9,
    
    204~215.
    Michels R, Landais P, Torkelson BE, Philp RP, 1995. Effects of effluents and water pressure on oil generation during confined pyrolysis and high-pressure hydrous pyrolysis. Geochim Cosmochim Acta 59, 1589~1604.
    Monnier F, Powell TG, Snowdon LR, 1983. Qualitative and quantitative aspects of gas generation maturationof sedimentary organic matter. Examples from Canadian frontier basins. In: Bjorey et al. (Eds.) Advances in Organic Geochemistry 1981, Wiley, Chichester, pp. 487-495.
    Monthioux M, Landais P, Monin JC, 1985. Comparison between natural and artificial maturation series of humic coals from the Mahakam delta, Indonesia. Org Geochem 8,275~292.
    Monthioux M, Landais P, Durand B, 1986. Comparison between extracts from natural and artificial maturation series of Mahakam delta coals. Org Geochem 10, 299~311.
    Mukhopadhyay PK, Scotia N, Macodnald DJ, Calder JH, Hughes JD, Hatcher PG. Proceedings of the 1997 International Coalbed Methane Symposium, University of Alabama, Tuscaloosa, 1997. p. 183.
    Perlovsky LI, Vinkovetsky YA, 1989. The role of pressure in the generation and preservation of hydrocarbons. Bollettino di Geofisica Teoriea ed Applicata 31(122), 87~90.
    Pitt GJ, 1962. Fuel 41,267-274.
    Powell TG, 1978.An assessment of the hydrocarbon source rock potential of the Canadian Arctic Islands. Geological Survey of Canada Paper 78-12,82.
    Price LC, Wenger LM, 1992. The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis. Org Geochem 19, 141~160.
    Price L, 1993. Thermal stability of hydrocarbons in nature: Limits, evidence, characteristics, and possible controls. Geochim Cosmochim Acta 57, 3261~3280.
    Price LC, Schoell M, 1995.Constraints on the origins of hydrocarbon gas from composi- tions of gases at their site of origin. Nature 378,368-371.
    Prinzhofer A, Huc AY, 1995, Genetic and post-genetic molecular and isotopic fractionations in natural gases: Chemical Geology 126(3-4), 281-290
    Prinzhofer, A., and F. Lorant, 1997, Ethane/propane diagram for gas genesis characterization:18th international meeting European Association of Organic Chemistry, Proceedings, 567-568
    Prinzhofer A, Mello MR, Takaki T, 2000. Geochemical characterization of natural gas: a physical multivariable approach and its applications in maturity and migration estimates. AAPG Bulletin 84(8),1152-1172.
    Quiglev TMI, Mackenzie AS, 1988. The temperatures of oil and gas formation in the sub-surface. Nature 333. 549-552
    Rayleigh RS, 1896. Theoretical considerations respecting the seperation of gases by diffusion and
    
    similar processes. The London, Edinburgh, and Dublin Philos Magazine 42: 493-499.
    Rightmire CT., 1984. Coalbed methane resource. In: Rightmire, C.T., Eddy, G.E., Kirr, J.N. Eds. , Coalbed methane resources of the United States: American Association of Petroleum Geologists, AAPG Studies in Geology Series, 17, pp. 1-13.
    Roberts P, 1980. The optical evolution of kerogen and thermal histories applied to oil and gas exploration.In: Durand B (Ed.). Kerogen. Paris: Technip, 386-414.
    Rooney MA, Claypool GE, Chung HM, 1995. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chemical Geology 126:219-232.
    Rooney MA, Organic Geochemistry: Developments and applicationsto energy, climate, environment and human history; Grimalt, J. O., Dorrosoro, C., Eds.; A.I.G.O.A.: The Basque Country, Spain.;
    Ruppel TC, Grein CT, Bienstock D, 1972. Adsorption of methane/ethane mixtures on dry coal at elevated pressure. Fuel 51,297- 303.
    Sackett WM, 1993. Carbon isotope exchange between methane and amorphous carbon at 700℃. Organic Geochemistry 20(1), 43-45.
    Sackett WM, 1995. Thermal stability of methane from 600 to 1000℃. Organic Geochemistry 23(5), 403 -407.
    Sajgo C, McEvoy J, Wolff GA, Horvarth ZA, 1986. Influence of temperature and pressure on maturation processes—Ⅰ. Preliminary report. Org Geochem 10, 331~337.
    Saxby JD, Riley KW, 1984. Petroleum generation by laboratory-scale pyrolysis over six years simulating conditions in a subsiding basin. Nature 308, 177~179.
    Schaefer RG, Leythaeuser D, von der Dick H, 1983. Generation and migration of low-molecular weight hydrocarbons in sediments from Site 511 of DSDP/IPOD Leg 71, Falkland Plateau, South Atlantic. in Advances in Organic Geochemistry 1981 (eds Bjoroy, M. et al)(Wiley, Chichester,), 10, 164~174.
    Schloemer S, Krooss BM, 1997. Experimental characterization of the hydrocarbon sealing efficiency of cap rocks. Marine and Petroleum Geology 14, 565-580
    Schoell M, 1983. Genetic characterization of natural gases: AAPG Bulletin 67(12), 2225-2238.
    Seewald J. S. (1994) Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions. Nature 370, 285-287.
    Seewald, J.S., Benitez-Nelson, B.C., Whelan, J.K., 1998. Laboratory and theoretical constraints on the generation andcomposition of natural gas. Geochimica et Cosmochimica Acta 62, 1599-1617.
    Sezen Y, 1988. Method for determination of chemical rate mostly encountered in coal combustion processes. Int. J. Heat Mass Transfer 31(6), 1319-1322.
    Shih SM, Sohn HY, 1980. Nonisothermal determination of the intrinsic kinetics of oil generation from oil shale. Znd. Eng. Chem. Process Des. Dev. 19, 420-426.
    Simoneit BRT, Lonsdale PF, 1982. Hydrothermal petroleum in mineralized mounds at the seabed of
    
    Guaymas basin. Nature, 295, 198~202.
    Sing KSW, Everett DD, Haul RAW, Moscou L, Pirotti RA, Rouquerol J, Siemieniewsk TP, 1985. Pure Appl Chem 57: 603.
    Siskin, M., Brons, G., Katritzky, A.R., Balasubramanian, M.,1990. Aqueous organic chemistry. 1. Aqua thermolysis;comparison with thermolysis in the reactivity of aliphatic compounds. Energy & Fuels 4, 42-54.
    Smith, J E., Erdman, J G., Morris, D A. Migration, accumulation and retention of petroleum in the earth: 8th World Petrol. Congr. 1971, 13-26.
    Snowdon L.R., 1971.Source rock analysis in Alberta and the N.W. Territories, utilising borehole cuttings. Geological Survey of Canada Paper 71-1 (part-b)105.
    Snowdon L.R., 2001. Natural gas composition in a geological environment and the implications of the process of generation and preservation. Organic Geochemistry 32,913-931.
    Sobolik JL, Ludlow DK, 1992. Parametric sensitivity comparison of the BET and Dubinin-Radushke- vich models for determining char surface area by CO_2 adsorption. Fuel 71:1195-.
    Stahl WJ, Carey BD, 1975, Source-rock identification by isotope analyses of natural gases from fields in the Val Verde and Delaware basins, west Texas: Chemical Geology, 16,257-267
    Stahl W, 1977. Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chemical Geology 20: 121-149.
    Stalker L., Farrimond P., and Latter S. R. (1994) Water as an oxygen source for the production of oxygenated compounds (including CO2 presursors) during kerogen maturation, Org. Geochem. 22, 477-486.
    Sun Zhencheng, Feng Xiaojie, Li Dongming, Yang Fan, Qu Yonghong, and Wang Hongjiang, 1999. Cenozoic ostracoda and palaeoenvironments of the northeastern Tarim Basin, western China. Palaeogeography, Palaeoclimatology and Palaeoecology 148, 37-50.
    Sundararaman P, Merz PA, Mann RG, 1992. Determination of kerogen activation energy distribution Energy & Fuels 6, 793-803.
    Tang Y, Jenden PD, 1995. Organic geochemistry: developments and applications to energy, climate, environment and human history; Grimalt J O., Dorronso, C, Eds.: Donosta: San Sebastian. pp. 1067-1069.
    Tang Y, Perry JK, Jenden P D, et al., 2000. Mathematical modeling of stable carbon isotope ratios in nature gases. Geochimica et Cosmochimica Acta 64, 2673-2687.
    Tannenbaum E., Kaplan I.R., 1985. Low-Mr hydrocarbons generated during hydrous and dry pyrolysis of kerogen. Nature 317,708-709.
    Tannenbaum E.E., Ruth Huizinga B.J., Kaplan I.R.,1986. Biological marker distribution in coexisting kerogen,bitu-men and asphaltenes in Monterey Formation diatomite, California. Organic Geochemistry 10, 531-536.
    Tissot B, Califet-Debyser Y, Deroo G, Oudin JL, 1971. Origin and Evolution of Hydrocarbons in Early
    
    Toarcian Shales, Paris Basin, France. Am Ass Petrol Geol 55, 2177~2193.
    Tissot BP, Espitalie J, 1975. L'evolution thermique de la matie're organique des sediments; applications d'une simulation mathematique; potential petrolier des bassins sedimentaires et reconstitution de l'histoire thermique des sediments. Revue de l'Institut Franeais du Pe'trole 30, 743~777.
    Tissot B.P.,Welte D.H.,1984.Petroleum Formation and Occurrence. Springer Verlag, Berlin. pp.699.
    Tissot BP, Welte DH, 1984. Petroleum formation and occurrence. Springer: Berlin. pp 185-201.
    Ungerer P, Pelet R, 1987. Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature 327, 52-54.
    Ungerer P, Behar F, Villalba M, Heum OR, Audibert A, 1988. Kinetic modelling of oil cracking. Org Geochem 13,857~868.
    Ustinov EA, Do DD, Herbst A, Staudt R, Harting P, 2002. Modeling of Gas Adsorption Equilibrium over a Wide Range of Pressure: A Thermodynamic Approach Based on Equation of State, Journal of Colloid and Interface Science 250, 49-62.
    Walker LW, Verma SK, Utrilla JR, Davis A. Densities, porosities and surface areas of coal macerals as measured by their interaction with gases, vapours and liquids. Fuel, 1988, 67: 1615—.
    Weibull WJ, 1951. Appl. Mech. 18,293-296.
    Winters JC, Williams JA, Lewan MD, 1981. A laboratory study of petroleum generation by hydrous pyrolysis. In advances in organic geochemistry (eds. Bjoroy M., et al.) (Wiley, Chichester, 1983).
    Xiong YQ, Geng AS, 2000, Carbon isotopic composition of individual light hydrocarbons evolved from pyrolysis of source rocks from Ying-Qiong Basin, China. Marine and Petroleum Geology 17, 1041-1051.
    Yalcin MN. Geology and coal resources of Zonguldak Basin (Northwest Turkey) as a potential source for coal bed methane. AAPG Bulletin. 1991, 75(3), 697-
    Zhang Tongwei and Krooss BM, 2001. Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure. Geochimica et Cosmochimica Acta 65, 2723-2742.
    Zou Yanrong, Peng Ping'an, 2001. Overpressure retardation of organic matter maturation: A kinetic model and its application. Marine and Petroleum Geology 18, 707-713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700