GIS辅助油气勘探决策支持研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从应用的角度看,地理信息系统(GIS)是处理空间信息的软件系统。作为地球空间信息科学的重要组成部分,早期的GIS主要用于数据的管理、查询和图形数据的显示,随着GIS理论与技术的不断发展和完善,对这些数据的处理和空间分析得到了越来越广泛的关注,其应用领域也逐渐扩展到社会生活的各个方面。与其他资源与环境类学科一样,油气勘探所处理的对象有其固有的空间特性,由于需要同时处理这些对象在地下的精确空间定位信息及其相关的属性信息,处理过程相当复杂。作为油气勘探的中心环节之一,油气勘探决策的任务是优选有利的勘探目标区块,涉及与空间位置相关的多种因素的综合研究。多年来,油气勘探工作者通过手工或计算机辅助编制各种专题图件来解决被处理对象的空间位置与其相应属性的关联问题。地理信息系统的优势正在于基于位置前多属性处理和分析。GIS与油气勘探的结合为油气勘探决策过程的可视化与智能化提供了方便快捷的辅动手段和方法。本文着眼于通用GIS软件平台空间分析功能的扩展,以满足油气勘探决策过程中各专题分析和研究的需要。
     本文深入探讨了在GIS的支持下开展油气勘探决策的基本途径和解决方案,系统研究了油气勘探决策支持的几个关键问题的数学建模方法,构建了基于GIS的盆地古构造分析、储层综合评价、油气运移路径模拟的概念模型、数学模型及实现流程,提出了GIS辅助油气勘探决策支持的单因素评价和多因素综合的渐进分析方法,在地理信息系统基础软件平台SuperMap Objects支持下初步设计与开发出了一个辅助油气勘探决策的应用系统,并利用该系统提供的功能模块开展了松辽盆地北部深层天然气勘探目标优选的GIS辅助决策分析,初步实现了GIS与油气勘探开发领域的专家知识的集成与融合,促进了GIS在油气勘探开发领域的应用从简单的数据管理、查询与显示向深入的地学分析迈进。
     GIS最实用的功能摸块包括数据的组织,空间数据查询及其可视化、多数据层的叠加与混合、空间关系分析及决策支持。GIS在油气勘探开发中扮演的是“管理者”和“分析师”的角色,其一方面能起到对海量数据的管理作用,同时还能从GIS数据库中提取相关信息进行各种复杂的专题分析,起到辅助油气勘探决策支持的作用。针对油气勘探决策的每一个问题,本文提出的GIS辅助油气勘探的多途径解决方案包括GIS的空间分析方法的综合应用、油气勘探领域的数学建模方法与GIS的直接融合、在GIS环境下构建新的解决油气勘探决策问题的功能组件等。GIS辅助油气勘探决策支持的应用模型是从油气勘探研究角度对油气勘探决策问题的理解、定义、分解、表达到基于GIS的理解、定义、表达的转换,再到基于GIS的建模、求解的过程,是GIS辅助油气勘探决策数学模型的构建、系统的设计与开发、应用实例的处理与分析的基础和结构框架。GIS辅助油气勘探决策支持的建模和系统设计是GIS辅助油气勘探决策支持应用模型的具体实现。
    
     储层的储集性能、构造的发育状况、油气的运移路径等对于油气勘探决策者准确圈定油气
    的富集场所具有决定性作用,本文主要就这三方面开展深入研究。在GIS支持下开展古构造演
    化研究的关键是将古构造重建的数学建模方法与GIS的空间分析技术集成,实现盆地古构造重
    建的数据输入、管理、分析、处理和可视化表达的一体化,其具体步骤包括:原始数据输入与
    盆地古构造重建数据库建立、空间分析及构造面古海拔深度求取及D以生成与古构造面形态再
    造。Gls辅助储层综合评价是对表征储层物性的各因素的综合分析研究,储层物性表征参数主
    要包括孔隙度、渗透率、储集层的厚度及其砂地比、沉积环境、储层的埋藏深度等定量参数及
    酸性流体源、输导通道、孔隙演化与油气运移期的适配性等定性的预测性参数。GIS辅助储层
    综合评价建模过程以栅格GIS分析为基础,是多个Gls通用功能模块的组合操作,其核心任务
    有两个,一是单个储层表征参数的分析与评价,所用到的最主要的Gls功能模块为赋值或再分
    类,二是多个储层表征参数分析结果的综合分析与评价,可视为多个储层表征参数分析结果的
     “求交”运算,可通过GIS的叠加分析模块来实现。油气的运移路径是连接烃源区和聚集区的
    纽带,基于GIS的油气运移路径模拟以GIS的栅格数据结构为基础,以油气成藏理论为指导,
    按照油气运移的机理,设计专门的算法来实现。算法的设计思想是:以输导层顶面DEM为基
    础,用3 x3的窗口按8方向搜索确定油气运移路径。首先将3x3窗口的中心像元置于烃源区
    边界像元上,通过比较中心像元周围8邻域像元高程值,以较中心像元高程高,且高程最大的
    像元作为油气运移的指向,将窗口中心像元移到该像元上,按同样的方法搜索下一个像元,窗
    口中心像元的移动轨迹就是油气运移的路径。如果中心像元的邻域像元中有两个或两个以上像
    元高程相等,且高程较中心像元高,则记录所有高程相等的像元,以这些像元中的每一个像元
    作为新的搜索起点的中心像元,寻找下一个目标像元。当油气从一个圈闭向另一个圈闭再运移
    时,先给定凸点所在圈闭的溢出点,以此溢出点作为新的运移路径的起点,按点状油气源运移
    路径模拟算法搜索油气二次运移?
Geographic information system (GIS), a software system processing spatial information from applying viewpoint, is a very important component of geomatics and early focused on data management, querying, and displaying of mapped data. With the gradual development and maturation of GIS theory and technology, more and more GIS users have been attracted to its function of processing and spatial analysis of these data, its application also rapidly expanded to every aspect of social life. Like other resource and environmental disciplines, research objects of oil and gas exploration are inherently spatial. The procedure of data processing is particularly complex because it's necessary to simultaneously process the subsurface precise spatial location information of what is being processed and its related attribute information.. As one of critical work of oil and gas exploration, the central task of oil and gas exploration decision is optimum seeking favorable exploration target area, which concerned with multi-elemen
    ts synthetically study related to spatial location. For many years, oil and gas explorers manually or compute-aided drafted various thematic maps that served to solve association the spatial location of what is being processed with its related attributes. GIS has the predominance of location-based multi-attribute processing and spatial analysis. The combination of GIS with oil and gas exploration makes visualization and intelligentization of oil and gas exploration decision procedure easy and rapid.This paper put the emphases on expanding spatial analysis function of common software platform, so as to meet the demands of thematic research and analysis in oil and gas exploration.
    In this dissertation, basic approaches and solution schemes of oil and gas exploration decision based on GIS are deeply discussed. Mathematic modeling methods of several key problems in oil and gas exploration decision support are systematically researched. Conceptual model, mathematic model and implementation flow of basin palaeo-tectonic analysis, reservoir comprehensive assessment and oil and gas migration pathways simulation based on GIS are constructed. A assistant oil and gas exploration decision support application system is designed and developed using the basic GIS platform-SuperMap Objects. Making use of the functionality modules provided by this system, the GIS-aided decision analysis of optimum seeking favorable natural gas exploration target area are made in deep buried strata, northern Songliao basin. The integration and amalgamation of GIS with expert knowledge in the field of oil and gas exploration were preliminary realized, which greatly promoted GIS application in oil and gas exploration f
    rom simple data management, query and display toward deeply geological analysis.
    The core function modules for which GIS is particularly valuable are data organization, visualization and search of spatial data, combining and overlaying data layers, analyzing spatial relationships, and decision support. GIS acts as a "manager" and "analyst" in oil and gas exploration, which not only can manage mega-data, but also can assist oil and gas exploration decision support by acquiring related data from GIS database to make various complicated thematic analysis. In the light
    
    
    of each issue in oil and gas exploration decision, this dissertation puts forward GIS-assisted oil and gas exploration multi-way solutions which include synthetically applying spatial analysis methods of GIS, directly combining mathematic modeling methods in the field of oil and gas exploration with GIS, and components constructing for solving the issues of oil and gas exploration decision in GIS. Application model of GIS-assisted oil and gas exploration decision is a process from understanding, definition, decomposing, and expression to issues of oil and gas exploration decision with the viewpoint of oil and gas exploration research to GIS-based understanding, definition and expression, then to simulation and implementation based on GIS, which is the foundation and fr
引文
[1] 毕硕本,闾国年,杨一鹏等.大型油田GIS软件工程项目的实施管理技术初探.地理与地理信息科学,2003,19(3):42~44.
    [2] 边馥苓,朱国宾,余洁等.地理信息系统原理和方法.测绘出版社,北京,1996.
    [3] 曹代勇,李青元,朱小弟等.地质构造三维可视化模型探讨.地质与勘探,2001,37(4):60~62.
    [4] 曹瑜,胡光道,杨志峰等.基于GIS有利成矿信息的综合.武汉大学学报(信息科学版),2003,28(2):167~176.
    [5] 陈安蜀.MapGis简介及其在地质研究中的应用分析.前寒武纪研究进展,1998,20(2):61~63
    [6] 陈述彭.地理信息系统导论.北京:科学出版社,1999
    [7] 陈为公.应用GIS建立地质图空间数据初探.辽宁地质,2000,17(4):312~314
    [8] 陈伟,李允,黎明等.地理信息系统与油田开发管理.西南石油学院学报,2001,23(1):34~36
    [9] 池顺都,吴新林.1998.云南元江地区铜矿GIS预测时的找矿有利度和空间相关性分析.地球科学.23(1):75~78
    [10] 窦建伟,邵龙义、张鹏飞等.利用GIS处理地质信息的探讨.岩相古地理,1997,17(5):57~64.
    [11] 杜勇.基于网络的油田地理信息系统的研究与实现.油田地面工程,2003,22(2):67~68.
    [12] 龚再升,李思田.南海北部大陆边缘盆地分析与油气聚集.北京:科学出版社,1997
    [13] 苟学敏,陈季高,张华义等.基于GIS的油气勘探开发数据库建设.天然气工业,2002,22:126~131.
    [14] 郭仁忠.空间分析.武汉:武汉测绘科技大学出版社,2000
    [15] 郭占谦.松辽盆地的类型及形成与演化.武汉:地球科学,1998,23(增刊):21~26。
    [16] 郝芳,邹华耀,王敏芳,杨旭升.油气成藏机理研究进展和前沿研究领域.地质科技情报,2002,21(4):18~14
    [17] 何生厚,毛锋.数字油田的理论、设计与实践,科学出版社,2001
    [18] 何生厚,毛锋.数字大庆油田的开发与应用.数字油田的理论、设计与实践,科学出版社,2001:164~192
    [19] 何生厚,毛锋.数字胜利油田的开发与应用.数字油田的理论、设计与实践,科学出版社,2001:193~217
    [20] 何生厚,毛锋.数字中原油田的开发与应用.数字油田的理论、设计与实践,科学出版社,2001:218~238
    [21] 胡阁.地理信息系统及其在石油勘探中的应用.石油物探2002,41(2):232~235.
    [22] 胡鹏,黄杏元,华一新等.地理信息系统教程.武汉大学出版社,2002
    [23] 李功权,张春生.三维储层模型可视化的实现方法研究.物探化计算技术,2002,24(1):37~41.
    [24] 李建威,李先福.应用GIS进行铀矿预测的初步设想.铀矿地质,1988,14(3):171~173
    
    
    [25] 李培军.层状地质体的三维模拟与可视化.地质前缘,2000,7:271~277.
    [26] 李艳春,王东坡,杨光等.应用GIS技术进行油气资源评价的探讨.世界地质,1998,17(3):49~104.
    [27] 李志林,朱庆.数字高程模型.武汉:武汉大学出版社,2001
    [28] 厉青,段怡春,汤军等.油气勘探数据仓库的建设及其相关技术.成都理工学院学报,2002,29(3):310~314.
    [29] 刘江梅,方旭,黄后宽.基于GIS技术的油气勘探数据库应用与管理系统——EDUMIS的设计与实现.石油地球物理勘探,1999,34(增刊):142~150.
    [30] 刘少华,程朋根,陈红华.三维地质建模及可视化研究.桂林工学院学报,2003,23(2):154~158
    [31] 刘学锋,何幼斌,张或丹.利用回剥分析重建古构造格局.古地理学报,1999,1(2):15~21
    [32] 刘学锋,刘绍平.巴彦浩特盆地沉降史分析.西安石油学院学报,1997,12(2):25~31.
    [33] 刘学锋,孟令奎,黄长青,赵春宇.2003a.GIS支持下的盆地古构造再造——以松辽盆地北部古中央隆起带为例.地球科学,28(3):346~350
    [34] 刘学锋.对Watts等构造沉降量公式的修正.石油勘探与开发,1997,24(3):82~85.
    [35] 潘继平,王华,甘甫平.基于GIS的石油勘探图形库系统分析和设计.地球科学,中国地质大学学报,2002,27(1):59~62.
    [36] 屈春燕,叶洪.利用GIS分析活动断裂与地震的相关性.地震研究,2000,23(1):72~75
    [37] 宋端智,张爱敏,贾皓丽等.基于微机的三维地震资料可视化系统研究.中国矿业大学学报,2002,31(2):194~197.
    [38] 王川,杨怀义,鄢琦等.油气勘探开发地理信息系统.中国海上油气(地质),2001,15(3):227~228.
    [39] 王恒山,张琪.决策支持系统与地理信息系统的集成化研究.计算机工程与应用,2000,36(5):176~178
    [40] 王桥,吴纪桃.空间决策支持系统中的模型标准化问题研究.测会学报,1999,28(2):172~176
    [41] 王仁波,汤彬.基于三维GIS图形的盆地综合测井专家系统的建立.物探化计算技术,2000,22(4):302~305.
    [42] 邬伦,刘瑜,张晶等.地理信息系统——原理、方法和应用.北京:科学出版社,2001
    [43] 谢青,陈伟,黄诚等.OpenGL在油气藏开发管理GIS系统中的应用.西南石油学院学报,2003,25(1):36~38,73.
    [44] 徐永安,谭建荣,杨钦等.石油地质数据场的可视化.计算机工程与应用,1999,18~20
    [45] 徐云和,程朋根,陈红华.地矿3维GIS模型的构建及可视化.工程勘察,2003(2):48~50.
    [46] 杨龙,闫汉杰,夏吉庄.储层地质模型研究的计算机化与智能化.成都理工学院学报,1998,25(增刊):93~96,106.
    [47] 袁艳斌,韩志军,刘刚等.基于GIS的1∶5万区调野外空间数据快速采集技术.地球科学进展,2000,15(3):348~352
    [48] 张万选,张厚福.石油地质学.石油工业出版社,北京,1984
    [49] 赵文吉,张松梅,晋佩东.GIS技术在区域填图中实施方法与数字地图.长春科技大学学报,
    
    2000,30(3):285~292
    [50] 郑贵州.地理信息系统(GIS)在地质学中的应用.地球科学,1998,23(4):420~423
    [51] 周京春,王宝光,韩梅胜.GIS在油田地面工程建设中的应用.油气田地面工程,2000,19(2):71~73.
    [52] 朱大培,牛文杰,杨钦等.油藏储集体模型可视化的研究与实现.中国图象图形学报,2002,7(3):267~271.
    [53] 朱小弟,李青元,曹代勇.基于OpenGL的切片合成法及其在三维地质模型可视化中的应用.测绘科学,2001,26(1):30~33.
    [54] 朱欣娟,石美红,薛惠锋等.基于GIS的空间分析及其发展研究.计算机工程与应用,2002(18):63~64
    [55] 龚健雅.地理信息系统原理.北京:科学出版社,2001
    [56] 朱自修,刘志飞.1998.运用GIS实现造山带侵蚀与沉积建模的探讨.矿物岩石,18(增刊):223~226
    [57] Abdul Wahab Zaki Ali, Multi-Scale Multidisciplinary Oilfield Data Integration Using Geographic Information Systems, 2001, http://www.searchanddiscovery.net
    [58] AI-AjmiA, M. D., Geographic Information System Application in Fracture Prediction for Jurassic Carbonate Reservoirs in Kuwait. 2002. www.searchanddiscoverry.com
    [59] Allen, P.A., J.R. Allen, Basin analysis principles and applications. Blackwell scientific publications, 1990, 263~281.
    [60] Armstrong, M.P., P.J. Densham, G. Rushton, Architecture for microcomputer based spatial decision support system. In: Proceedings of the Second International Symposium on Spatial Data Handling. International Geographical Union, Seattle, Wash. 1986:120~131
    [61] Barrell, K. A., Conducting a Field Study with GIS: Port Hudson Field, Tuscaloosa Trend, East Baton Rouge Parish, Louisiana. Geographic information systems in petroleum exploration and development. AAPG Computer Applications in Geology, 2000: No.4:187~194
    [62] Barrell, K.A., GIS: The Exploration and Exploitation Tool. Geographic information systems in petroleum exploration and development. AAPG Computer Applications in Geology, 2000: No.4: 237~248
    [63] Berry, J.K., A Brief History and Probable Future of GIS in Natural Resources. The Compiler, 1994, 12(1): 8~10
    [64] Bonham-Carter, G., An overview of GIS in the geosciences, Geographic information systems in petroleum exploration and development. AAPG Computer Applications in Geology, 2000: No.4: 17~26
    [65] Bonham-Carter, G.F., Geographic Information Systems for Geoscientists: Modeling With GIS. Oxford: Pergamon Press, 1996, P398
    [66] Carter, T. R., A. C. Castillo, The Petroleum GIS-Three-Dimensional Geological Mapping in the Subsurface of Southern Ontario, Canada: AAPG Eastern Section Meeting, Pittsburgh, PA, 2003, http://www.searchanddiscovery.net
    [67] Catalan, L., F. Xiaowen, I. Chatzis, et al., An experimental study of secondary oil migration. AAPG Bulletin, 1992, 76(4): 638~650
    
    
    [68] Chung, C.F., A.G. Fabbri, The Representation of Geosciences Information for Data Integration: Nonrenewable Resources, 1993, 2, 122~139
    [69] Coburn, T.C., J.M. Yarus, Geographic information systems in petroleum exploration and development. AAPG Computer Applications in Geology, 2000
    [70] Cooke D.F., Spatial Decision Support System: not just another GIS. Geo Info Systems, 1992, 2(5): 46~49
    [71] Day R A, Talaat K, Hoffman K S. 2000. Reservoir characterization of a stratigraphically and structurally complex Gulf of Suez oil field using three-dimensional modeling and GIS techniques. Geographic information systems in petroleum exploration and development. In: AAPG Computer Applications in Geology, No.4:205~212
    [72] Dickson, W.G., J. M. Christ, A. Danforth, I. W. Somerton, J. W. Granath, Tertiary Petroleum Systems around the World: Sediment Controls from Regional GIS Studies. 2002. www.searchanddiscoverry.com
    [73] England, W.A., A.S. Mackenzie, D.M. Mann, et al. The movement and entrapment of petroleum fluids in the subsurface. Journal of Geological Society of London, 1987, 144(2): 327~347
    [74] Fairfield, J., P. Leymarie, Drainage Networks from Grid Digital Elevation Models.Water Resource Research, 1991, 27(4): 29~61
    [75] Faye R.M., F. Mora-Camino, S. Sawadogo, et al., An intelligent decision support system for irrigation system management. Systems, Man, and Cybernetics, 1998, Vol.4:3908~3913
    [76] Feineman, D.R., GIS and Petroleum Geology in Retrospect: 1994 International Association for Mathematical Geology Annual Conference, Papers and Extended Abstracts for Technical Programs, 1994, 122~127
    [77] Foley, D.C., T.Y. Ghazi, How Conoco Uses GIS Technology to Map Geology, Geography Through Time: Oil and Gas Journal, 1995, 93(19): 74~77
    [78] Gomez-Herrera, J.E., R. Cruz, O. Rodriguez, I. Alonso, INFOPET.GIS Project: Representation and Data Structures for Petroleum Exploration Data: Thirteenth International Conference on Applied Geologic Remote Sensing 1999
    [79] Goodchild, M.F., A Spatial Analytical Perspective on Geographical Information Systems. International Journal of Geographical Information Systems, 1987, Vol. 1:327~334
    [80] Grace J D. 2001. How can 3-D and 4-D GIS technology be applied to field development? World Oil, 222 (11): 45~49
    [81] Guerlain S., D.E. Brown, C. Mastrangelo, Intelligent decision support systems. Systems, Man, and Cybernetics, 2000, Vol.3:1934~1938
    [82] Hamilton, D.E., T.A. Jones, Computer Modeling of Geologic Surfaces and Volumes. Tulsa, OK: American Association of Petroleum Geologists, 1992, P297
    [83] Henderson J.C, Finding synergy between decisions support systems and expert systems research. Decision Sciences, 1987, 18(3): 333~349
    [84] Heng-Li Yang, Information/knowledge acquisition methods for decision support systems and expert systems. Information Processing and Management, 1995, 31 (1): 47~58
    [85] Hindle, A.D., Petroleum migration pathways and charge concentration: A three-dimensional
    
    model. AAPG Bulletin, 1997, 81(9): 1451~1481
    [86] Hirsch, L.M., A.H. Thompson, Minimum saturations and buoyancy in secondary migration. AAPG Bulletin, 1995, 79(4): 696~710.
    [87] Hood K C, South B C, Walton F D, Baldwin O D, Burroughs W A. 2000. Use of Geographic Information Systems in Hydrocarbon Resource Assessment and Opportunity Analysis. Geographic information systems in petroleum exploration and development. In: AAPG Computer Applications in Geology, No.4:173~186
    [88] Houiding, S.W., 3D Geosciences Modeling—Computer Techniques for Geological Characterization. Berlin: Springer Verlag, 1994, P309
    [89] Hunt, J. M., Generation and migration of petroleum from abnormally pressured fluid compartments [J], AAPG Bull. 1990, 74(1): 1~12.
    [90] Ji, W., Ecosystem management: a decision support GIS approach. Geosciences and Remote Sensing Symposium, 1996, Vol.4:2225~2227
    [91] Jingyao, Gong, L.D. Cerken, Use Georeferenced Maps in Exploration. Search and Discovery Article, 2002. www.searchanddiscoverry.com
    [92] Joane, C., G. Stevenr, J. Philip, Applications of the new "PAYZONE" GIS oil production data set in exploration and development programs in Illinois. 2002. www.searchanddiscoverry.com
    [93] Lasseter, T.J., An Interactive 3-D Modeling system for Integrated Interpretation in Hydrocarbon Reservoir Exploration and Production, in Proceedings of International Symposium on 3D Computer Graphics in Modeling Geologic Structures and Simulating Geologic Processes, R.W. Pflug and J.W. Harbaugh, eds. Berlin: Springer-Verlag, Lecture Notes in Earth Sciences, 1992, Vol.41: 189~198
    [94] Lawrence, A.W.J., J.H. Traci, Metadata as a knowledge management tool: supporting intelligent agent and end user access to spatial data. Decision Support System, 2002(32): 247~264
    [95] Legg, C., Remote Sensing and Geographic Information Systems: Geological Mapping, Mineral Exploration and Mining. New York: John Wiley and Sons. 1994, P172
    [96] Liu L, Huang G H, Fuller G A. 2001. A GIS-supported remote sensing technology for petroleum exploration and exploitation. Journal of Canadian Petroleum Technology, 40(11): 9~12
    [97] Maidment, D.R., Developing a Spatial Distributed Unit Hydrography by Using GIS, Application of Geographic Information System in Hydrology and Water Resource Management, edited by K. Kovar and H. P. Nachtnebel, International Association of Hydrological Sciences, Wallingford, UK, 1993.
    [98] Mallet, J.L., GOCAD: A Computer Aided Design Program for Geological Application, in Three-Dimensional Modeling with Geoscientific Information Systems, A.K. Turner, ed., Dordrecht: Kluwer Academic Publishers, 1991,123~142
    [99] McGovem, J., D. Samson, A. Wirth, Knowledge acquisition for intelligent decision systems. Decision Support Systems, 1991, 7(3): 263~272
    [100] Mejia, M, M. Navarro, E.E. Wohl, Geological hazard and risk evaluation using GIS. Bulletin of the Association of engineering Geologists, 1994, (4): 21~30
    
    
    [101] Miller, B.M., Guide to The Development and Application of Geographic Information Systems for Sedimentary Basin Analysis—Case Study for The San Juan Basin, New Mexico and Colorado: U.S. Geological Survey, Bulletin 2025, 1992, p33
    [102] Mitchell-Tapping, J. Hugh, Exploration GIS Analysis of Basin Maturity in the South Florida Basin. 2002. www.searchanddiscoverry.com
    [103] Murphy, L.D., Geographical information systems: are they decision support systems? System Sciences, 1995, 4(2): 131~140
    [104] Parnell, J., Introduction: Approaches to dating and duration of fluid flow and fluid-rock interaction, in: Parnell J. Dating and Duration of Fluid Flow and Fluid-rock Interaction (Vol.144): Geological Society Special Publication, 1998. 1~8
    [105] Paulus, G., Analysis of Fluid Migration in Sedimentary Basins. Geographic information systems in petroleum exploration and development. AAPG Computer Applications in Geology, 2000: No.4:121~136
    [106] Pereira, J.M., L.Duckstein, A Multiple Criteria Decision-making Approach to GIS-based Land Suitability Evaluation. International Journal of Geographical Information Systems, 1993, Vol.7: 407~424
    [107] Piwowar, J.M., Integration of Spatial Data in Vector and Raster Formats in A Geographic Information System. International Journal of Geographic Information Systems, 1990, Vol.4, 429~444
    [108] Raper, J.F., Key 3D Modeling Concepts for Geoscientific Analysis, in Three-Demensional Modeling With Geoscientific Information Systems (A.K. Turner, ed.). Dordrecht, The Netherlands: Kluwer Academic Publishers, NATO ASI Series C: Mathematical and Physical Sciences, 1991, 354:215~232
    [109] Raper, J.F., The 3D Geoscientific Mapping and Modeling System: a Conceptual Design, in Three-Dimensional Applications in Geographic Information Systems, J.F. Raper, ed., London: Taylor and Francis, 1989, 11~19
    [110] Robinson, S.J., J. M. Drummond, An Integrated Approach to Geophysics and Near Surface Geology in Southern Tunisia Using GIS Techniques. 2002. www.searchanddiscoverry.com
    [111] Robinson, S.J., J.M Drummond, An Integrated Approach to Geophysics and Near Surface. Geology in Southern Tunisia Using GIS Techniques, http://www, searchanddiscovery, net
    [112] Ross, M.I., C.R. Scotese, Integrating ArcView and The PaleoGIS into An Earth System History Visualization Tool. Proceedings, Annual ESRI petroleum Users Group Meeting. Redlands, CA: Environmental Systems Research Institute, 1997
    [113] Safley, L.E., M. L. Fowler, Waterflood Optimization Using GIS Techniques in Citronelle Field, Mobile County, Alabama, U.S.A. Geographic information systems in petroleum exploration and development. AAPG Computer Applications in Geology, 2000: No.4:195~204
    [114] Sawyer, D.S., Total tectonic subsidence: A parameter for distinguishing crust type at the U.S. Atlantic continental margin. Journal of geophysical research, 1985, 90 (B9): 7751~7769.
    [115] Shree, S., Nath, J.E Bolte, L.G. Ross, J. Aguilar-Manjarrez, Applications of geographical information systems (GIS) for spatial decision support in aquaculture. Aquacultural Engineering.
    
    2000(23): 233~278
    [116] Smith, D.R., A.R. Paradis, Three-Dimensional GIS for The Earth Sciences, in Three-Dimensional Application in Geographic Information Systems, J.F. Raper, ed., London: Taylor and Francis, 1989, 149~154
    [117] Steckler, M.S., A.B.Watts, Subsidence of the Atlantic type continental margin of New York. Earth and planetary science letters, 1978,41: 1~13.
    [118] Stevenr, G., J. Crockett, P. M. Johanek, GIS Based Mapping and Distribution of New Oil/Gas Pay Horizon Maps in Illinois. 2002. www.searehanddiscoverry.com
    [119] Sundararajan, S., G. Srinivasan, W.O. Staehle, et al., Application of a decision support system for operational decisions. Computers and Industrial Engineering, 1998, 35(1-2): 141~144
    [120] Supiyanto, H., Finding Oil with GPS and GIS: Http://www.geoplace.com/asiapac/1998/1198/1198oil. asp
    [121] Tarantilis, C.D., C.T. Kiranoudis, Using a spatial decision support system for solving the vehicle routing problem. Information & Management, 2002, 39(4): 359~375
    [122] Taylor, K., G. Walker, D. Abel, A framework for model integration in spatial decision support systems. Int. J. Geographical information science, 1999, 13(4): 533~555
    [123] Thomas, M.M., J.A. Clouse, Scaled physical model of secondary migration. AAPG Bulletin, 1995, 79(1): 19~59
    [124] Turner, A.K., U.S. Geological Survey Releases Free Oil and Gas Datasets. GISWorld, 11(9), 1998, 34~36
    [125] Valgma, I., Estonian Oil shale Resources Calculated By GIS Method: Oil Shale, 2003, 20(3) (Special): 404~411
    [126] Watts, A.B., Tectonic subsidence, flexure and global changes of sea level: Nature, 1982, 297: 469~474.
    [127] Yarus, J.M., T.C. Coburn, Geographic information systems in petroleum exploration and development: An Introductory Essay. Geographic information systems in petroleum exploration and development. AAPG Computer Applications in Geology, 2000: No.4:3~6
    [128] Yero-Batista M, Gomez-Herrera J E, Linares-Cala E, Garcia-Sa R, Valdes-Pino P. 2002. INFOPET.GIS project: Representation and geosite data for petroleum exploration. Journal of Canadian Petroleum Technology, 1 (2) : 15~17
    [129] Zagorski, W. A., Model of local and regional hydrocarbon traps in the Lower Silurian Medina Sandstone Group, Cooperstown gas field, Crawford and Venango counties, Pennsylvania: M.S. thesis, University of Pittsburgh, Pennsylvania, 1991, p 132.
    [130] Zarate, P., C. Rgsenthal-Sabroux, A cooperative approach for intelligent decision support systems. In: Proceedings of the Thirty-First Hawaii international Conference, Kohala Coast, HI, USA. 1998. 72~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700