化学—微生物复合降粘技术在稠油集输中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着稠油不断开发,如何实现稠油输送已成为紧迫任务,降低稠油凝点和粘度,改善其流动性是解决输送问题的关键。本文以辽河稠油为研究目标,主要对乳化降粘剂的研制、稠油降解菌的筛选及性能评价、化学-微生物复合降粘集输工艺进行了系统研究。
     本论文通过正交实验,研制出降粘剂FB的最优配方是op-10、NP-10、NaHCO3、TX-10质量比为1:1:1:1。考察了加入量、油水体积比、温度等因素对乳化降粘效果的影响,优化了最佳乳化降粘工艺,确定最佳降粘剂加入量为200mg/L、油水体积比为7:3、处理温度为50℃。实验发现,使用降粘剂FB在最佳工艺条件下,稠油降粘率达到了89.65%。
     以稠油为唯一碳源,成功地从土壤中筛选出F系列稠油降解菌,即F-1~F-3。其中菌株F-2生长速度快,环境适应能力最强,微生物量为2.34×109cfu/g,排油圈直径达到了5.6cm。实验研究了菌株F-2的最佳培养条件为培养天数7d、添加K2HPO4 150mg/L、NH4NO3 100mg/L、石油2.0g/L。根据红外谱图分析,初步断定菌株F-2所产生的生物表面活性剂为糖与环酯结合形成不饱和糖酯类物质。发酵过程中F系列菌株pH值不断降低,说明产生了数量不等的酸类物质。微生物实验考察了时间、接种量、温度等因素对F系列菌降解稠油效果的影响,菌株F-2的降解率一直处于最高状态,确定最佳降解时间为6d、接种量为6%、温度为45℃,该条件下稠油降解率达到了81.28%,乳状液的类型均转变为O/W型。
     本文选取降解效果较好的单菌F-2和混合菌F-23作为化学-微生物复合降粘实验研究菌种,分别考察了处理时间、温度、营养源等因素对降粘效果的影响,确定最佳处理时间为6d、温度为45℃、需要同时添加氮源和磷源,在该实验条件下,稠油粘度最终降为116.45mPa·s,降粘率高达99.15%,凝点降为22.0℃,降凝幅度为5.5℃,说明复合降粘工艺能够很好地改善稠油物性,从而证明了化学-微生物复合降粘技术在稠油集输中的可行性。实验还对后续废水处理进行了破乳研究,筛选出破乳剂SP-169,通过正交实验得出复合降粘的最佳破乳条件:温度为30℃、处理时间为20min、加入量为100mg/L,此时脱水率高达99.35%。
With the continuous development of heavy oil exploitation, it has become an urgent task to transport heavy oil, The key to solve the transportation problem is to reduce the pour point and viscosity of heavy oil, which improve its liquidity, Liaohe heavy oil was used as the research objectives. This paper systematically studied the composition of emulsifying viscosity reducer, the screening of heavy oil degrading bacteria and its performance, gathering-transportation technology of chemistry-microbial compound viscosity reduction.
     Through orthogonal tests, the optimum formula of viscosity reducer was FB, which composed of op-10, NP-10, NaHCO3, TX-10, and mass ratio was 1:1:1:1. Effects of adding amount of reducer, oil-water volume ratio, temperature and other factors on viscosity reduction were investigated, Optimized conditions were determined that the optimum amount of thinning agent was 200mg/L, oil-water volume ratio was 7:3, processing temperature was 50℃. The heavy oil viscosity reduction rate reached 89.65% by using thinning agent FB, at the best conditions.
     With heavy oil as the sole carbon source, the F series heavy oil degrading bacteria were successfully screened from the soil, namely, F-1~F-3. Among which strain F-2 has fast growth rate, strongest ability to adapt environment, its microbial biomass was 2.34×109cfu/g, oil spreading diameter reached 5.6cm. Optimum culture conditions for strain F-2 was culture time-7d, concentration of K2HPO4-150mg/L, NH4NO3-100mg/L, oil-2g/L. According to infrared spectrum analysis, the bio-surfactant produced by strain F-2 was unsaturated ring sugar estersThe pH value continue decreasing during the fermentation process of F series strains, indicating acidic substances were form in that process. The effects of micro-organisms of time, inoculum size, temperature and other factors on the F-bacteria effect of degradation of heavy oil were investigate d, strain F-2 gaved the highest degradation tresults. The best conditions determined wasdegradation time: 6d, inoculum size: 6%, temperature: 45℃, the degradation rate of heavy oil under these conditions reached 81.28%, the type of emulsion were transformed into O/W type.
     Single strain F-2 and hybrid strain F-23 were used in the study of chemistry-microbial compound viscosity reduction technology, the effect of processing time, temperature, nutrient source and other factors on the viscosity reduction were investigated. The optimum processing time was 6d, temperature was 45℃, simultaneously needed to add nitrogen and phosphorus source. At experimental conditions, the heavy oil viscosity eventually reduced to 116.45mPa·s, the rate of viscosity reduction increased to 99.15%, solidifying point reduced to 22.0℃, pour point decreased for 5.5℃, which shown that complex viscosity reduction process could improve heavy oil’sproperties, this technology could be used in heavy oil gathering and transportation. The follow-up experiment was also carried out to study the demulsification in wastewater treatmen. SP-169 was used as demulsifier, the best demulsification conditions through the orthogonal experiment were determined as follow: the best temperature, processing time and adding amount were 30℃, 20min and 100mg/L, respectivly, the rate of dehydration reached 99.35%.
引文
[1]于连东.世界稠油资源的分布及其开采技术的现状与展望[J].特种油藏,2001,8(2):98-103.
    [2]郑钦祥.稠油降粘技术及输送方法[J].油气田地面工程,2006,25(4):6-7.
    [3]包木太,范晓宁,曹秋芳,等.稠油降黏开采技术研究进展[J].油田化学,2006,23(3):284-292.
    [4]范洪富,李忠宝,马军.离子液体在石油工业中的应用研究进展[J].油田化学,2007,24(3):283-286.
    [5]万仁博.采油技术手册[M].北京:石油工业出版社,1996,11-12.
    [6]泰匡宗,郭绍辉.石油沥青质[M].北京:石油工业出版社,2002,21-23.
    [7] David A S, Rond J B, Stephen J D. Colloidal nature of vacuum residue[J].FUEL: 1991, l(70): 779-782.
    [8]李向良,李相远,杨军,等.单6东超稠油粘温及流变特征研究[J].油气采收率技术,2000,7(3):12-14.
    [9] Browne G E. Downhole emulsification: viscosity reduction increases production[J]. Canad Petrol Technol, 1996, 35(4): 25-31.
    [10]孙仁远,王连保,彭秀君,等.稠油超声波降粘试验研究[J].油气田地面工程,2001,20(5):22-23.
    [11]阎向宏,张亚苹.超声波降低稠油粘度的实验结果[J].油气田地面工程,1996,25(5):20-21.
    [12]程亮,杨林,邹长军,等.稠油物理场降粘技术研究进展[J].化工时刊,2005,19(6):51-55.
    [13]张家栋,王秀艳,姚烈,等.聚合酸降粘剂的研究与应用[J].钻井液与完井液,2006,23(1):5-10.
    [14]胡刚,李刚,潘成松,等.TR-01稠油乳化降粘剂的研制及现场性能评价[J].特种油气藏.2009,16(3):82-84.
    [15]马文辉,赵鹏,徐群,等.稠油磺酸盐及其对稠油的乳化降粘性能研究[J].石油与天然气化工,2006,35(1):57-59.
    [16]曹嫣镔,郭省学,唐培忠,等.稠油乳化降粘剂S-5的研制及应用[J].精细石油化工进展,2004,5(10):18-21.
    [17]刘峰.超稠油乳化降粘技术试验研究[J].特种油气藏,2005,12(2):82-84.
    [18]朱宗奎,葛圣松.稠油乳化降粘剂研究进展[J].石油化工腐蚀与防护,2007,24(6):5-8.
    [19]陈玉祥,王霞,潘成松,等.表面活性剂在稠油降粘中的应用[J].重庆科技学院学报(自然科学版),2009,11(1):48-50.
    [20]李孟洲,尉小明,俞庆森.超稠油水基降黏剂SHVR-01的研制[J].精细石油化工进展,2003,4(4):1-3.
    [21]陈秋芬,王大喜,刘然冰.油溶性稠油降粘剂研究进展[J].石油钻采工艺,2004,26(2):45-48.
    [22]张毅,赵明方,周风山,等.马来酸酐-苯乙烯-丙烯酸高级酯稠油降黏剂MSA的研制[J].油田化学,2000,17(4):295-298.
    [23]王霞辉,李季,张秀莲,等.塔河油田油溶性降粘剂的合成及室内评价[J].化学工程与装备.2009,(3):65-67.
    [24]范洪富,李忠宝,梁涛.离子液体催化改质稠油实验研究[J].燃料化学学报,2007,35(1):32-35.
    [25]邹长军,刘超,罗平亚.离子液体介质中沥青砂内重组分降解过程[J].化工学报,2004,55(12):2095-2098.
    [26] Clark P D, Hyne J B. Studies on the chemical reactions of heavy oils under steam stimulation[J]. Aostra J Research, 1990, 6(1): 29-39.
    [27]李伟,朱建华,齐建华.纳米Ni催化剂在超稠油水热裂解降黏中的应用研究[J].燃料化学学报,2007,35(2):176-180.
    [28] Clark P D, Clarke R A, Hyn E J B, et al. Studies on the effect of metal species on oil sands undergoing steam treatments[J]. AOSTRA J Res, 1990, 6(1): 53-64.
    [29]唐晓东,崔盈贤,何柏,等.辽河稠油注空气催化氧化降黏实验研究[J].油田化学,2008,25(4):316-319.
    [30]王杰祥,樊泽霞,任熵,等.单家寺稠油催化水热裂解实验研究[J].油田化学.2006,23(3):205-208.
    [31] Wei L, Jian-hua Z, Jian-hua Q. Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis[J]. Journal of Fuel Chemistry and Technology, 2007, 35(2): 176-180.
    [32]张贵才,潘斌林,葛际江,等.辽河稠油蒸汽吞吐条件下降黏规律研究[J].油田化学,2007,24(1):19-24.
    [33]胡合贵,戚国荣,高建厂,等.不同分子结构星型降凝剂对油品降凝、降黏性能的影响[J].石油学报(石油加工),2000,16(1):40-45.
    [34] Watanabe K, Kodama Y, Syutsubo K. Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities[J]. Appl.Environ.Microbiol, 2000, 66(11): 4803-4809.
    [35] Aries E, Doumenq P, Artaud J, et al. Effects of petroleum hydrocarbons on the phospholipid fatty acid composition of a consortium composed of marine hydrocarbon-degrading bacteria[J]. Organic Geochem, 2001, 32: 891-903.
    [36] Banat I M. Biosurfactants production and possible use in microbial enhanced oilrecovery and oil pollution remediation:A review[J]. Bioresource Technol, 1995, 51(1): 1-12.
    [37]田永娥,黄建新.一株假单胞菌对高粘原油的乳化降解作用[J].环境科学与技术.2009,32(6):29-33.
    [38] Kingsley U, Steve G, Turgay P, et al. A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils[J]. Chemosphere, 2006, 62: 1403-1410.
    [39]易绍金,缪永霞.稠油降粘菌的降粘作用研究及其现场应用[J].石油天然气学报(江汉石油学院学报).2009,31(1):134-137.
    [40] Prabhu Y, Phale P S. Biodegradation of phenanthrene by pseudomonassp. Strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation[J]. Applied Microbiology and Biotechnology, 2003, 61(4): 342-351.
    [41]易绍金,邓勇.产表面活性剂菌在稠油乳化降粘中的实验研究[J].石油与天然气化工.2008,37(1):59-61.
    [42] Makkar R S, Rockne K J. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons[J]. Environmental Toxicology Chemistry, 2003, 22(10): 2280-2292.
    [43]张廷山,陈晓慧,姜照勇,等.石油微生物特性的实验研究[J].西南石油大学学报,2007,29(6):58-62.
    [44] Simoncyril U N. Bioremediation of sterile agricultural soils polluted with crude petroleum by application of the soil bacterium, pseudomonas putida, with inorganic nutrient supplementations[J]. Current Microbiology, 2001, 42(4): 231-236.
    [45] Potter T L, Duval B. Cerro Negro bitumen degradation by a consortium of marine benthic microorganisms[J]. Environ.Sci.Technol, 2001, 35: 76-83.
    [46] Calvo C, Toledo F L, Gonzalez-lopez J. Surfactant activity of a naphthalene degrading Bacillus pumilus strain isolated from oil sludge[J]. Journal of Biotechnology, 2004, 109(3): 255-262.
    [47]李凤梅,郭书海,牛之欣等.稠油降解菌的筛选及其对胶质和沥青质生物降解[J].土壤通报,2006,37(4):764-767.
    [48]袁红莉,杨金水,王占生,等.降解石油微生物菌种的筛选及降解特性[J].中国环境科学,2003,23(2):157-161.
    [49]胡浩,沈红,王浩.一株原油降黏细菌的筛选[J].山东大学学报,2002,37(3):276-279.
    [50]赵庆辉,刘其成,刘志惠.超稠油耐高温乳化降粘剂优选实验研究[J].特种油气藏,2001,8(3):89-92.
    [51]陶磊,王勇,李兆敏,等.CO2/降粘剂改进超稠油物性研究[J].陕西科技大学学报.2006,26(6):25-29.
    [52]苑权,郑延成,李克华,等.稠油降粘剂复配降粘效果评价[J].精细石油化工进展,2004,5(11):29-32.
    [53]郭平,李苗,张廷山.CO2-微生物开发近海普通稠油可行性分析[J].西南石油大学学报,2007,29(1):126-129.
    [54] Banat I M, Rahman K S M, Thahira R J, et al. Bioremediation of hydrocarbon pollution using biosurfactant producing oil degrading bacteria [J]. Water Studies Series, 2003, 22(11): 221-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700