烷基苯磺酸盐在溶液中聚集形态的分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是在分子设计的基础上,针对课题组合成的系列烷基芳基磺酸盐类表面活性剂,利用分子动力学(MD, molecular dynamics)模拟这个最新方法研究其在水溶液或油水界面中的聚集形态,从而进一步探讨结构与性能的相互关系。程序分析结果表明,模拟的烷基芳基磺酸盐类表面活性剂性质与实验结果变化规律相符,可以从分子水平解释常规实验方法所观察不到的现象。
     采用分子动力学方法模拟不同质量分数的十二烷基苯磺酸钠、水体系,结果发现,在溶液浓度远高于临界胶束浓度的情况下,活性剂单体分子很少形成球状有序聚集体,而是随体系浓度的变化形成以蠕虫、棒状或网状为主的聚集体。
     采用分子动力学方法模拟3种自制的十四烷基芳基磺酸盐在真空和水溶液环境下的结构与相互作用,利用自由能微扰方法(Free Energy Perturbation,FEP)计算了水合自由能,发现与用传统热力学表面张力法测定自制的烷基芳基磺酸盐结果一致。研究表明:烷基芳基磺酸盐在水溶液中的胶束化过程是自发进行的,随着分子结构中芳环向长烷基链中间位置移动,胶束化能力和胶束的稳定性均下降;研究还发现,疏水基周围水分子的“冰山结构”会影响胶束的稳定性,而水分子中氢键的生存周期是反应冰山结构变化的重要指标;同时,亲水基与水分子间形成氢键的数目会增强或减弱分子脱离胶束体的趋势,从而影响胶束结构的稳定性。
     采用分子动力学方法模拟了”油水两相”分离过程及鸡蛋清溶菌酶(chicken egg-white lysozyme, HEWL)晶体对十二烷基苯磺酸钠的界面吸附行为的影响,考察了分子支化程度、浓度和不同油相在界面分离过程中的影响及作用。结果表明:对于油/水两相体系,在短时间内分离可达到平衡,形成一个明显的油/水界面;且在不同烷烃/水体系中,以十二烷作为油相时,十二烷基苯磺酸钠在界面处浓度最大,吸附趋势最强;随着溶液浓度的增大,界面吸附密度先增加然后略降,与实验变化规律相符;研究还提出,接触面积(ASA,accessible surface area)可以作为衡量表面活性剂油水界面吸附能力及电解质降低油水界面张力效果的指标。HEWL晶体可以与活性剂形成形态复杂的复合物,从而影响表面活性剂降低油水界面张力的效果。
In this paper, the aggregation of alkyl benzene sulfonates in water and oil interface were studied by molecular dynamics. Then, the structure and the dynamic properties of these systems were discussed from molecular scale. The analysis of program can explain and predict some results and phenomena of experiments and provide approaches of theoretical directive for further study of these systems.
     Some surfactant/water systems were investigated by MD. We founded that the aggregation morphology are divided into several structures , such as sphere micelle, mixed micelle of sphere and rod, rod micelle and lamellar phase. However, with the increase of surfactant concentration, the monmeric surfactant can hardly become the sphere micelle.
     In order to investigate the influence of the molecular structure of surfactants on the micellization in solution, we used a molecular dynamics method and simulated the molecular structure and interaction of three alkyl aryl sulfonates in the vacuum and solution. The solvation free energy was calculated from free energy perturbation (FEP), and the result was consistent with that using surface tension method. Research show that the micellization of alkyl aryl sulfonate in aqueous solution is a spontaneous process, as the aromatic ring shift from the edge to the middle of the long carbonic chain, the formation ability of micelle and the micelle stability is decreased; the changes of“iceberg structure”which around hydrophobic groups and among the water molecules may affect the stability of the micellization, and lifetimes of hydrogen bonds were used to research the“iceberg structure”; at the same time, it was found that numbers of hydrogen bonds between hydrophilic groups of alkyl aryl sulfonates and water molecules can improve the decomposition trend of micellization, and affect the stability of micellization.
     The separation process of oil/water and the properties of sodium dodecyl benzene sulfonate and chicken egg-white lysozyme(HEWL) adsorbed at the water/oil interface, has been investigated on a molecular level by considering the variation of structure, interfacial and concentration using molecular dynamics simulations. The result found that:the two oil/water phases reached equilibrium in a short simulation time and an evident oil/water interface was formed; In the alkane/water system, as the dodecane is used to the oil, the surfactant had the biggest interface distribution density and the trend of absorbed to the interface; The adsorption density which were increased with the concentration of surfactant, then, slightly descended in the interface. These were consistent with the experimental results. At the same time, the accessible surface area(ASA) of surfactant could measure the adsorption capacity and the effect of electrolyte to the interfacial tension at oil/water interface. The HEWL-sodium dodecyl benzene sulfonate compounds at the water/oil interface can affect the interfacial tension.
引文
[1]赵国玺.表面活性剂物理化学[M] .北京:北京大学出版社,1991,13.
    [2]杜鲁.梅尔斯,表面、界面和胶体化学---原理及应用[M],化学工业出版社,2005,P 274.
    [3] Qiong Z, Milton J. Dependence of Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution, Langmuir, 19(2003) 4555.
    [4] Holland P M, Rubingh D N. In Mixed Surfanctant Systems. ACS Symposium Series 501; American Chemical Society: Washington DC, 1992, P 1.
    [5] Rosen M J. In Phenomena in Mixed Surfanctant Systems. ACS Symposium Series 311; American Chemical Society: Washington DC, 1986, P 144.
    [6] Holland P M, Rubingh D N, Nonideal multicomponent mixed micelle model. J. Chem. Phys., 1984, 87~100.
    [7]陈方博,方云,吴丽娜.十二烷基硫酸钠浓溶液的胶束行为与其溶液体相行为间的相关性[J].应用化学,2008,14(04):38.
    [8]王仲妮,李干佐,张高勇.十二烷基混合糖苷与其它表面活性剂二元体系表面吸附和胶束形成的顺序研究[J].高等学校化学学报,2006,27(02):314~318.
    [9] Milton J, Hongzhuang W, Pingping S. Ultralow Interfacial Tension for Enhanced Oil Recovery at Very Low Surfactant Concentrations, Langmuir, 21(2005)3749-3756.
    [10]李干佐,徐军.表面活性剂在油田中的应用及其作用原理[J].精细石油化工进展,2004,2:1~6.
    [11] Donaldson, E C.主编,闫熙照译,表面活性剂在采油中的应用,石油工业出版社,1992,p183.
    [12]于涛,丁伟,罗洪君.油田化学剂[M].北京:石油工业出版社,2002,69.
    [13]郭东红,张飞宇,邱宾.三次采油表面活性剂的研究与应用进展[J].应用科技,2008,16(7):13~15.
    [14]王刚,王德民,夏惠芬.聚合物驱后用甜菜碱型表面活性剂提高驱油效率机理研究[J].石油学报,2007,28(4):87.
    [15]崔正刚,邹文华,孙雪芳.重烷基苯磺酸盐/碱/原油体系的界面张力[J].油田化学,1999,16(2):153~157.
    [16]李志刚.三次采油用表面活性剂的合成及其界面性能的研究[D].大连:大连理工大学,2002,6.
    [17]杨捷.系列烷基苯磺酸盐异构体纯化合物的合成界面性能及构-效关系的研究[D].大连:大连理工大学,2005,5.
    [18]王琳,宫清涛,王东贤.支链烷基苯磺酸钠的合成、表征及其结构对表面性质的影响[J].石油化工,2004,33(2):104~108.
    [19]丁伟,宿雅彬,张春辉.支链异构十五烷基间二甲苯磺酸钠溶液表面性质及其溶剂行为[J].应用化学,2009,26(9):1023~1026.
    [20]于涛,杨洋,李安军.磺酸盐水溶液HLB值对其烷烃选择性的影响[J].石油学报(石油加工),2009,25(6):880~882.
    [21]于涛,杨洋,张春辉.支化十六烷基甲苯磺酸钠的油水界面张力[J].应用化学,2009,26(9):1012~1014.
    [22]陈正隆,“分子模拟的理论与实践”[M],山东大学出版社,2002.
    [23] Bacon D J, Docking by least-squares fitting of molecular surface patterns. J. Mol.Biol., 1992, 225:849-858.
    [24] Fan C F, Cagin T. A Molecular Dynamics Study. Macromol. Theo and Simul, 1997, 6:83-102.
    [25] Aldred P L, Colquhoun H M. Direct Force Field. Macromolecules, 2000, 35(25):9420-9425.
    [26] Andrews D H, The relation between the Raman spectra and the structure of organic molecules. J. Chem. Phys., 1930, 36:544-554.
    [27] Hill T L, Assessment of soil organic carbon in semi-arid. J. Chem. Phys., 1946,14:465-478.
    [28] Allinger N L, Yu Y H. The MM3 Force Field for Hydrocarbons. J. Am. Chem. Soc., 1989, 111:8551-8566.
    [29] Allured V S, Kelly C M, Landis C R. SHAPES empirical force field. J. Am. Chem. Soc., 1991, 113:1-12.
    [30] Halgren T A, MMFF empirical force field. J. Comp. Chem., 2005, 17:520-522.
    [31] Jorgensen W L, Maxwell D S. Development and testing of the OPLS all-atom force field. J. Am. Chem. Soc., 1996, 118: 11225-11236.
    [32] Rappe A K, Casewit C J, Colwell K S. A full periodic table force field for molecular mechanics. J. Chem. Phys. Soc., 1992, 114:10024-10035.
    [33] Sun H, Molecular modeling of energetic materials. J. Chem. Phys., 1998, 102:7338-7364.
    [34] Jason D J, Frank Y. Shape of Phospholipid/Surfactant Mixed Micelles. Langmuir,2006, 22:998-1005.
    [35] Dominguez H, Rivera M. Molecular dynamics simulations of monolayers of surfactant mixtures. Langmuir, 2005, 21:7257-7262.
    [36] Michael R, Branka M. Using the Faeder/Ladanyi model. J. Chem. Phys.B, 2005,109: 16891-16900.
    [37] John C, Mee Y. Corresponding Author Contact Information. Interface Science, 2000, 5:101-110.
    [38] Kyoko W, Ferrario M. Molecular Dynamics Study of a Sodium Octanoate Micelle in Aqueous. J. Chem. Phys., 1988, 92:819-821.
    [39] Hartley G S, Aqueous solutions of paraffin chain salts. Pairs: Hermann, 1936.
    [40] Debye P, Anacker E W, Micelle shape from dissymmetry measurements. J. Chem.Phys., 1951, 55(5): 644-655.
    [41] Bruce C D, Berkowitz M L, Petera L. Molecular dynamics simulation of sodiumdodecyl sulfate micelle in water: Micellar structural characteristics and counterion distribution. J. Chem. Phys. B, 2002, 106(15): 3788-3793.
    [42] Maillet J B, Lachet V, Coveney P V. Large scale molecular dynamics simulationof self-assembly processes in short and long chain cationic surfactants. J. Chem. Phys., 1999, 1(23):5277-5290.
    [43] Shinto H, Tsuji S, Miyahara M. Molecular dynamics simulations of surfanctant aggregation on hydrophilic walls in micellarsolutions. Langmuir, 1999, 15(2):578-568.
    [44] Palmer J B, Liu J. Simulations of micelle self-assembly in surfactant solutions. Langmuir, 1996, 12(3): 746-753.
    [45] Goetz R, Lipowsky R. Computer simulations of bilayer membranes: self-assemblyand interfacial tension. J. Chem. Phys., 1998, 108(17): 7393-7409.
    [46] Schuettelkopf A W, Van D M(2004). PRODRG- a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica D60, 1355-1363.
    [47] Van W F, Billeter S R, Hunenberger P H, Mark A E. The GROMOS96 manual and user guide. Switzerland: Hochschulverlag AG and ETH, 1996.
    [48] Berendsen H J, Postma J P, van Gunsteren W F, Hermans J, Interaction models for water. In: Inter molecular Forces. Reidel Publishing Company Dordr, 1981, 331-342.
    [49] Anderson H C, Molecular dynamics simulations. J. Chem. Phys., 1980, 72: 2384.
    [50] Herman Berendsens group[EB/OL]. Groningen: department of Biophysical Chemistry of Groningen University, [2006-01-14]. http://www.gromacs.org.
    [51] David D S, Erik L, Berk H. Computer simulations of Protein Folding. Jounal ofComputational Chemistry, 2005, 26:1701~1714.
    [52] Taeho K, Alexander R, Christopher M. Force-Induced Insulin Dimer Dissociation.J. Am. Chem. soc. 2006, 128:5330~5331.
    [53] Catesme, C. J. Statics and dynamics of worm– like surfactant micellar system[J].J Phys Condens Matter, 1990, 2:6869-6892.
    [54] Schurtenberger P, Cavaco C. Enormous concentration-induced growth of polymer-like micelles. Langmuir, 1996, 12(12): 2894~2899.
    [55] Kollman K. Free energy calculations: Applications to chemical and biochemical phenomena. Chem Rev, 1993, 93:2395-2417.
    [56]丁厚强,蔡文生,邵学广.α-环糊精对氨基酸的手性识别[J].计算机与应用化学,2006,7(07):584~585.
    [57] The DillGroup Wiki(Jan 19, 2004)“Solvation free energy”.[Online] Available: http://md.chem.rug.nl/education/Free-Energy_Course/2.hydration-fe.html
    [58]丁伟,王艳,于涛.系列十二烷基二甲苯基磺酸钠的合成与表面性能[J].应用化学,2007,24(9):1019-1022.
    [59] David van der Spoel.“gromacs user manual 4.0”. 2006, 56:76.
    [60]孙婷婷,蔡文生.环糊精二聚体的分子动力学模拟与自由能计算[J].中国科学B辑:化学,2008,4:301-307.
    [61] Guardia E, Marti J, Komolkin A.V. Microwave-Material Interactions and Dielectric Properties. J. Mol. Liq., 2002, 3:96-97.
    [62]李振泉,郭新利,王红艳.阴离子表面活性剂在油水界面聚集的分子动力学模拟[J]物理化学学报,2009,(01)6:12-16.
    [63] Frank H S, Evans M W. Free volume and entropy in condensed systems. J. Chem. Phys., 1945, 13:507~532.
    [64] Tanford, C. The Hydrophobic Effect: formation of micelles and biological membranes. John Wiley & Sons, 1978, USA.
    [65]陈聪,李维仲.甘油水溶液氢键特性的分子动力学模拟[J],物理化学学报,2009,25(3):507-512.
    [66] Lee H S, Tuckerman M E. The optimum values for the H-S bonds and H-S-H. J. Chem. Phys., 2007, 126:164501.
    [67] Southall, Water ordering measuremnent in the aqueous polymer systems. J. Phys.Chem. B, 2002, 106:521.
    [68] Elola M D, Ladanyi B M. A Molecular Dynamics Study. J. Chem. Phys., 2006, 125:184506.
    [69] Da S R P, Johnston K P, Rossky P J. Surfactant-modified CO2-water interface: Amolecular view, J. Phys. Chem. B, 2002, 106:13250.
    [70] La Rosa M., Uhlherr A., Schiesser C.H. A molecular dynamics study of monolayers of nonionic poly based surfactants. Langmuir, 2004, 20:1375.
    [71] Maiti P K, Lansac Y, Glaser M A. Self-assembly in surfactant oilgomers, Langmuir, 2002, 18(5):1908-1918.
    [72] Fodi B, Hentschke B. Simulated Phase Behaviour of Model Surfactant Solutions.Langmuir, 2000, 16(4):1626-1633.
    [73] Baaden M, Burgard M, Wipff G. TBP at the water-oil interface[J], J. Phys. Chem. B, 2001, 105:11131-11141.
    [74] Van Gunsteren W F. Biomolecular simulation: The GROMOS96 manual and userguide[EB/OL]. URL: http://www.igc.ethz.ch/gromos/manual.html, 1996.
    [75]康万利,懂喜贵.表面活性剂在油田中的应用[M],北京:化学工业出版社,2005:8-39.
    [76] H++: A server for estimating pKas and adding missing hydrogens to macromolecules. by Gordon J C, Myers J B, Folta T. Nucleic Acids Res. 2005, 33: 68-71.
    [77]于涛,刘红娟,丁伟.系列十二烷基二甲苯基磺酸钠的合成与表面性能[J],应用化学,2008,(09)1107:1109.
    [78] Doe P H, Wade W H. Surfactants for producing low interfacial tensions: linear Alkyl Benzene sulfonates[J]. Journal of American Oil Chemist's Society, 1977, 59(3):525-531.
    [79]张文会.从鸡蛋清中提取溶菌酶的研究[D].北京化工大学硕士学位论文,2003.
    [80] Steffen B. Petersen, Virpi Jonson, Peter Fojan, Reinhard Wimmer. Sorbitol Prevents the self-aggregation of unfolded lysozyme leading to an up to stabilization ofthe folded form[J]. Journal of Biotechnology, 2004, 114:269-278.
    [81] Materials Studio 4.0 Discover/Accelrys. San Diego. Ca. USA. 2004.
    [82] Lindah E, Hess B. A package for molecular simulation and trajectory analysis. J.Mol model. 2001, 7:306.
    [83] Berendsen H J, Postma J P M, Van G. Free Energies of Transfer of Trp Analogs from Chloroform. J. Chem. Phys, 1984, 81:3684.
    [84] Siewert J, Marrink, Alex H, Alan E. Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B, 2004, 108:750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700