一类疏水缔合型相渗透率改善剂体系的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以甲氧基聚乙二醇甲基丙烯酸酯(MPEGMA)和甲基丙烯酸二甲氨基乙酯(DMAEMA)为单体,依次经反相微乳液聚合﹑水解制备了疏水缔合型相渗透率改善剂体系的主剂,并研制了疏水缔合型相渗透率改善剂体系,具体内容如下:
     以甲氧基聚乙二醇甲基丙烯酸酯(MPEGMA)和甲基丙烯酸二甲氨基乙酯(DMAEMA)为单体,AIBA和NaHSO_3-(NH_4)_2S_2O_8为复合引发剂,采用反相微乳液聚合方法合成了疏水缔合型共聚物P(MPEGMA-DMAEMA)。同时考察了单体配比﹑乳化剂﹑引发剂﹑稳定剂﹑水相pH﹑时间﹑温度对聚合物特性粘数和转化率的影响,得出最佳合成条件:投料单体比(DMAEMA:MPEGMA)为5.7:1,乳化剂(Span-80,OP-10)浓度为7.8%,复合引发剂的浓度为0.6%,Na_2EDTA用量为0.08%,水相pH值控制在8.5,反应时间为5h,反应温度为30℃。此条件下的共聚合反应转化率可达52.42%,共聚物的特性粘数可达212.66ml/g。利用红外光谱分析证实了共聚物的结构,并用F-R法求得DMAEMA和MPEGMA的竞聚率分别为r~1=0.32,r~2=1.52。此外,考察了浓度﹑温度﹑剪切速率﹑剪切恢复性﹑剪切时间﹑盐对共聚物水溶液表观粘度的影响及吸附性,结果表明,共聚物溶液具有临界缔合浓度,适用于50℃条件,同时具有良好的耐盐性﹑抗剪切性和吸附性。
     选择P(MPEGMA-DMAEMA)部分水解聚合物HP(MPEGMA-DMAEMA)作为相渗透率改善剂体系的主剂,考察了它在油砂上的吸附性能,即达到平衡时相渗透率改善剂体系主剂的浓度约为5100mg/L,饱和吸附量约为0.652mg/g,同时也考察了交联剂浓度﹑盐﹑pH和温度对体系的影响,表明该体系适合于pH为7,温度为45℃的地层条件,且具有较好的耐盐性。最后通过岩心驱替实验,测定疏水缔合型相渗透率改善剂体系对油和水的残余阻力系数分别为1.5和29.8。
Using N,N-dimethylaminoethylmethacrylate (DMAEMA) and methoxy polyethylene glycol methacrylate (MPEGMA) as monomers, the main agent of hydrophobically associating relative permeability modifier system(RPMS) was prepared through inverse emulsion polymerization, hydrolysis. Finally, a hydrophobically associating RPMS was developed. The details were as follows:
     Using AIBA and NaHSO_3-(NH_4)_2S_2O_8 as initiators, hydrophobically associating copolymer was synthesized by inverse emulsion polymerization. The effects of monomer ratio, emulsifier concentration, initiators concentration, amount of Na_2EDTA, pH of aqueous phase, reaction time and reaction temperature on the intrinsic viscosity of polymer and the convert ratio of the polymerization were studied. Finally, the optimal reaction conditions of this experiment were as follows: monomer feed ratio (DMAEMA:MPEGMA) is 5.7:1, concentration of emulsifier is 7.8%, concentration of initiators is 0.6%, amount of Na2EDTA is 0.08%, pH of aqueous-phase is 8.5, time of polymerization is 5h, temperature of polymerization is 30℃. In these conditions, the convert ratio reaches 52.42% and the intrinsic viscosity reaches 212.66ml/g. It was structurally confirmed by FT-IR. The reactivity ratios of the copolymer were obtained by the Fineman-Ross method. The results show that the reactivity ratios of DMAEMA and MPEGMA are r~1=0.32, r~2=1.52. Furthermore, the effects of its concentration, temperature, shear rate, shear recovery, shear time and salt on the apparent viscosity of copolymer aqueous solution were investigated. We also researched its adsorbability. The results reveal that the copolymer solution has critical association concentration, is suitable for 50℃and has better adsorbability, salt and shearing resistance.
     Choosing partially hydrolyzed polymer of the copolymer as the main agent of hydrophobically associating RPM system, its adsorbability on the oil sandstone is investigated, that is to say, the equilibrium concentration is approximately 5100 mg/L while the saturated adsorption is about 0.652 mg/g. Cross linker concentration, salt, pH and temperature also have effects of RPMS. The results show that the system is suitable for pH 7, the formation temperature of 45℃,and has preferable salt tolerance. Finally, the residual resistance factors to water and oil were measured by core displacement test. The residual resistance factor to water is found to 29.8 while that to oil is 1.5.
引文
[1] Yue Xue, Anping Yang. Comparing rigless water-cut reduction methods[J]. SPE106789, 2007.
    [2] Scott G.Nelson, Leonard J.Kalfayan, William M.Rittenberry. The applicaton of a new and unique relative permeability modifier in selectively producing water production[J]. SPE84511, 2003.
    [3] Clive Cornwall, Adam Boughey. Relative permeability modifier (RPM): suitability screen- ing with reservoir core under reservoir conditions[J]. SPE112503, 2008.
    [4] C.A.Grattoni, P.F.Luckham, X.D.Jing, et al. Polymers as relative permeability modifiers: adsorption and the dynamic formation of thick polyacrylamide layers[J]. Journal of Petroleum Science and Engineering, 2004, 45:233-245.
    [5] C.B.de Melo Ricardo, S.Aboud.Ricardo. Over 100 conformace fracturing operations in Brazil: results and improvements[J]. SPE113624, 2008.
    [6]刘建新,张营华,任韶然.新型相对渗透率改善剂控水性能试验研究[J].石油天然气学报,2008,30(5):141-142.
    [7] A.Zaitoun, G.Chauveteau. Adsorption of pore structure and residual oil on polymer bridging adsorption[J]. SPE39674, 1998.
    [8] Guy Chauveteau, RenéTabary, Nicolas Blin, et al. Disproportionate permeability reduction by soft performed microgels[J]. SPE89390, 2004.
    [9]朱明.甲基丙烯酸二甲氨基乙酯的制备[J].四川大学学报,2002,39(4):738-741.
    [10] D.Lullo, P.Rae. New insights into water control-A review of the state of the art[R]. SPE77963, 2002.
    [11]马宝歧,吴安明.油田化学原理与技术[M].北京:石油工业出版社,1995.
    [12]叶仲斌.提高采收率原理,第1版[M].北京:石油工业出版社,2000.
    [13]第九第十次全国油田堵水技术研讨会材料,第1版[M].北京:石油工业出版社,1995.
    [14]柳继仁,刘庆旺,王德金.选择性化学堵水工艺优化研究[D].大庆石油院,2007.
    [15]刘建新.相对渗透率改善剂的研究与应用[D].中国石油大学,2009.
    [16]张桂林.胜利油田水平井钻井技术现状与发展趋势[J].石油钻探技术,2005,3(7):66 -69.
    [17]时鹏程.随钻测井技术在我国石油勘探开发中的应用[J].测井技术,2002,26(6):441-445.
    [18]李庆松.相渗透率改善剂的研制[D].吉林大学,2004.
    [19]张营华.油水相对渗透率改善剂实验研究[D].中国石油大学,2009.
    [20]郭海滨.聚合物乳液渗透率改善体系的研究及性能评价[D].中国石油大学,2007.
    [21]邱晓惠,张汝生,杨振周,等.相渗透率改进剂FA-RPM的室内研究[J].石油钻采工艺,2007,35(1):63-65.
    [22]张照,李建强,鲁毅强.新型选择性堵水剂(RPM)的合成和表征[J].内江科技,2008,29(7):94-95.
    [23]方波,卢拥军,程巍,等.阳离子半乳甘露聚糖的用途[P].CN:101113325A, 2008-1- 30.
    [24] Jenn-tai Liang, R.S.Seright. Further investigations of why gels reduce water permeability more than oil permeability[J]. SPE37249 (November 1997), 225-230.
    [25] R.S.Seright. Use of preformed gels for conformance control in fractured systems[J]. SPE 35351.
    [26] R.S.Seright. Washout of Cr(III)-Acetate-HPAM gels from fractures[J]. SPE80200.
    [27] R.S.Seright. Gel dehydration during extrusion through fractures[J]. SPE39957.
    [28] R.S.Seright, R.Lee. Gel treatments for reducing channeling through naturally fractured reservoirs[J]. SPE39802.
    [29] R.S.Seright. Mechanism for gel propagation through fractures[J]. SPE55628.
    [30] A.Stavland, K.I.Andersen, et al. How to apply a blocking gel system for bullhead selecti- ve water shutoff from laboratory to field[J]. SPE99729 (April 2008), 22-26.
    [31] A.Stavland, S.Nilsson. Segregated flow is the governing mechanism of disproportionate permeability reduction in water and gas shutoff[C]. SPE71510, 2001.
    [32] A.Stavland, S.Nilsson. Emulgert gel[P]. No310581.1999.
    [33] A.Stavland, N.H.Giske. Qualification of H2 zero as DPR gel system[C]. February 2004.
    [34] A.Zaitoun, T.Pichery. A successful of polymer treatment for water coning abatement in gas storage reservoir[C]. SPE71525, 2001.
    [35] A.Zaitoun, N.Kohler, M.A.Montemurro. Control of water influx in heavy-oil horizontal wells[J]. SPE24661.
    [36] A.Zaitoun, N.Kohler, P.Coffin. Synergistic effects in the polymer treatment of producing wells[J]. SPE20686.
    [37] A.Zaitoun, N.Kohler. The role of adsorption in polymer propagation through reservoir rocks[J]. SPE16274.
    [38] Gino Di Lullo, Phil Rae, James Curtis. New insight into water control-A review of the state Of The Art-Part II[J]. SPE79012 (November 2002), 1-9.
    [39] M.Ranjbar, T.U.Clausthal, P.Czolbe, et al. Comparative laboratory selection and field testing of polymers for selective control of water production in gas wells[C]. SPE28984, 1995.
    [40] Ricardo C.B.de Melo, S.Aboud.Ricardo. Over 100 conformace fracturing operations in Brazil: results and improvements[J]. SPE113624(June 2008), 1-8.
    [41] Scott G.Nelson, Leonard J.Kalfayan, William M.Rittenberry. The applicaton of a new and unique relative permeability modifier in selectively producing water production[J]. SPE84511, 2003.
    [42] B.R.Reddy, Larry Eoff, E.Dwyann Dalrymple,et al. Natural polymer-based compositon designed for use in conformance gel system[C]. SPE84510 (October 2003), 5-8.
    [43] Larry Eoff, Dwyann Dalrymple, B.R.Reddy. Development of associative polymer technology for acid diversion in sandstone and carbonate lithology[J]. SPE89413, 2005.
    [44] Larry Eoff. Structure and process optimization for the use of a polymeric relative permeability modifier in conformance control[J]. SPE64985 (February 2001), 13-16.
    [45] E.D.Dalrymple. Studies of a relative permeability modifier treatment performed using m- ultitap flow cells[J]. SPE59346 (April 2000), 3-5.
    [46] Larry Eoff. Development of a hydrophobically modified water soluble polymer as a sele- ctive bullhead system for water production problems[J]. SPE80206 (February 2003), 5-7.
    [47] D.Lijian, W.Biao. Hydrophobically associating terpolymer and its complex with a stabili- zer in brine for enhanced oil recovery[J]. SPE29007, 14-17.
    [48] A.Audibert-Hayet. Novel hydrophobically modified natural polymers for non-damaging fluids[C]. SPE56965, 7-9.
    [49] J.Liang, R.S.Seright. Wall-Effect/Gel-Droplet model of disproportionate permeability re- duction[J]. SPE59344, 268-272.
    [50] J.Liang, H.Sun, R.S.Seright. Why do gels reduce water permeability more than oil perm- eability[J]. SPE27829.
    [51] R.S.Seright. Impact of permeability and lithology on gel performance[J]. SPE2410.
    [52] A.Zaitoun, Bossie-Codreanu D, Denys K. Water shutoff by relative permeability modifie- rs: lessons from several field applications[J]. SPE56740.
    [53] P.Zitha, G.Chauveteau, A.Zaitoun. Permeability dependent propagation of polyacrylamid- es under near-wellbore flow conditions[J]. SPE28955.
    [54] A.Zaitoun, G..Chauveteau. Effect of pore structure and residual oil on polymer bridging adsorption[J]. SPE39674.
    [55] A.Zaitoun, G.Chauveteau. Adsorption of pore structure and residual oil on polymer bridging adsorption[J]. SPE39674.
    [56] S.Nilsson, A.Stavland, H.C.Jonsbraten. Mechanistic study of disproportionate permeabi- lity reduction[J]. SPE39635 (April 1998), 19-22.
    [57] A.Zaitoun, H.Bertin. Two-phase flow property modifications by polymer adsorption[J]. SPE39631( April 1998), 19-22.
    [58] H.H.Al-Sharji, C.A.Grattoni, R.A.Dawe, et al. Disproportionate permeability reduction due to polymer absorption entanglement[C]. SPE68972, 2001.
    [59] C.A.Grattoni, X.D.Jing, R.W.Zimmerman. Disproportionate permeability reduction when a silicate gel is formed in-situ to control water production[J]. SPE69534, 2001.
    [60] C.A.Grattoni, P.F.Luckham, X.D.Jing, et al. Polymers as relative permeability modifiers: adsorption and the dynamic formation of thick polyacrylamide layers[J]. Journal of Petroleum Science and Engineering, 2004, 45:233-245.
    [61] C.A.Grattoni, H.H.Al-Sharji, R.A.Dawe, R.W.Zimmerman. Segregated pathways mech- anism for oil and water flow through silica gels formed from an oil-based gelant[J]. Journal of Petroleum Science and Engineering, 2002, 35:183-190.
    [62] H.H.Al-Sharji, C.A.Grattoni, R.A.Dawe, et al. Flow of oil and water through elastic polymer gels[J]. Oil and Gas Science and Technology (IFP Revue), 2001, 56:145-152.
    [63] R.B.Needham, C.B.Threlkeld, J.W.Gall. Control of water mobility using polymer and multivalent cations[C]. SPE4747.
    [64]黎钢,徐进,毛国梁,等.水溶性酚醛树脂作为水基聚合物凝胶交联剂的研究[J].油田化学, 2000,17(4):310-313.
    [65]林梅钦,李明远,彭勃,等.聚丙烯酰胺/柠檬酸铝胶态分散凝胶性质的研究[J].高分子学报,1999(5):606-611.
    [66]田秉晖,高分子聚AM的合成及絮凝效果研究[J].甘肃环境研究与监测,2001,14(3):142-143.
    [67]张跃军,二甲基二烯丙基氯化胺与丙烯酰胺共聚物的研究进展[J] .精细化工,2002, 19(9):521-527.
    [68]马希晨,邰玉蕾.S-DMDAAC-AM强阳离子型天然高分子絮凝剂的合成[J].精细石油化工,2002,2:13-16.
    [69]徐溢.高分子合成助剂[M].北京:化学工业出版社,2002:277-279.
    [70] Ji Hongjian, Sun Zhanwei, Zhang Wanxi, et al. Aqueous polymerization of acrylamide the preparation of water-soluble polyacrylamide with high molecular weight using Na2CO3[J]. Acta Polymerica Sinica, 1994(5):559-564.
    [71] Stefan P Niculescu. Artificial neural networks and genetic algorithms in QSAR[J]. Journ- al of Molecular Structure(Theochem), 2003, 622:71-83.
    [72] Deng L D, Zhai Y L, Lin X N, et al. Investigation on properties of re-dispersible cationic hydrogel nanoparticles[J]. Macromolecular Nanotechnology, 2008, 44:978-986.
    [73] Dai F Y, Sun P, Liu Y J, et al. Redox-cleavable star cationic PDMAEMA by arm-first approach of ATRP as a nonviral vector for gene delivery[J]. Biomaterials, 2010, 3(31): 559-569.
    [74]戴彩丽,赵福麟,海热提,等.基于溶剂置换法的冻胶堵剂选择性试验[J].中国石油大学学报(自然科学版),2008,32(4):73-75.
    [75] Vazquez O, Singleton M, Sorbie K S, et al. Sensitivity study on the main factors affectinga polymeric RPM treatment in the near-wellbore region of a mature oil-producing well. SPE International Symposium on Oilfield Chemistry, 28 February-2 March 2007, Houston, Texas. SPE106012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700