Cu系催化剂在乙醇氨化合成乙腈反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙腈是重要的石油化工产品,它在石油化工中常作为丁二烯、异戊二烯馏分的抽提剂;是重要的医药、农药、染料以及合成香料的原料或中间体,也可作为分析试剂用于高效液相色谱分析。目前工业上生产乙腈是从丙烯氨氧化合成丙烯腈的副产品中分离出来的,受各种条件的限制,已经不能满足当今的市场需求,因此,开发一种以乙腈为目的产物的生产工艺是解决市场对乙腈不断增长需求的关键。
     将Cu系催化剂应用于乙醇氨化合成乙腈反应中,采用气相色谱质谱联用和红外光谱对反应产物进行了系统定性分析,对催化剂中各组分的作用进行了研究。针对Cu/γ-Al_2O_3而言,Cu作为活性中心起脱氢作用,载体γ-Al_2O_3不仅起分散活性组分的作用而且还要发挥良好的脱水性能。
     在此基础上,本研究考察了CuO不同制备方法以及负载量、载体性质和助剂Zn元素的加入等因素对催化性能的影响,结合XRF、XRD、TPR、CO吸附等主要表征手段,实验结果表明,共沉淀法和浸渍法制备的Cu系催化剂,应用于乙醇氨化合成乙腈反应中都有着良好的催化性能,适宜的Cu负载量因制备方法不同,Cu物种也因负载量的变化而不同,但是在低Cu负载量情况下催化剂皆因稳定性问题而效果不佳;Zn元素助剂在催化剂中以尖晶石结构ZnAl2O4存在,它的添加起到了稳定活性中心Cu物种的作用,尤其是针对高负载量的Cu系催化剂作用更为突出;载体的酸碱性对产物分布有着直接的影响。
     通过共沉淀法制备出工业催化剂DYC-1,考察了反应温度、反应空速、氨醇摩尔比等条件对催化性能的影响,找到了适宜反应条件:在反应温度为290℃,反应空速为1.0h-1,氨醇摩尔比为7的条件下,乙醇转化率可达99.9%,乙腈收率为93.5%。
Acetonitrile is an important petrochemical product. It is widely used as extraction solvents for butyldiene and isoprene in the petrochemical industry, an important raw material and intermediate for the synthesis of medicine, pesticide, dye and perfume, and is also used as analytical reagent in HPLC analysis. Acetonitrile is generally extracted from the byproduct of the acrylonitrile synthesis by propene ammoxidation and the process with various restrictions can not meet today’s industrial needs. Therefore, it is necessary to develop a new process to produce acetonitrile as objective product for the increasing demand.
     The products of acetonitrile synthesis on copper catalysts by ethanol ammoniation are determined by gas chromatography-mass spectrometry and IR, and the function of each component of catalysts is studied. As far as Cu/γ-Al_2O_3 is concerned, the results show that dehydrogenation of enthanol mainly takes place on copper, andγ-Al_2O_3 not only play the carrier of active components but also should have good dewatering properties.
     The effects of different preparation methods of CuO, CuO loading amount, properties of carrier and the addition of Zn element as aids on the catalytic properties are investigated. with the aid of the main charaterization methods such as XRF, XRD, TPR, CO absorption, it is found that the copper catalysts prepared with co-precipitation and impregnation have good catalytic properties for the reaction. The most suitable CuO loading amount is varied with the preparation methods, the type of Cu species is varied with CuO loading amount. But catalytic performances of catalysts with low CuO loading amount, no matter what preparation method, are not ideal becase of the stability of copper. The addition of Zn element with spinel structure (ZnAl2O4) improves the stability of catalyst by stabilising copper, it is more obvious for catalysts with high Cu loading amount. The acid-base properties of carrier are closely related to product distribution.
     Catalyst DYC-1 is commercially produced by co-precipitation method. On the basis of this, the effects of reaction temperature, ethanol WHSV, ammonia alcohol mole ratio on catalytic properties are investigated. The optimal reaction conditions are found: reaction temperature of 290℃, WHSV of 1.0h-1, ammonia alcohol mole ratio of 7:1, ethanol conversion and yield of acetonitrile are respectively 99.9%, 93.5% in the conditions.
引文
[1]李忠杰.高纯乙腈精制工艺技术开发与应用[J].石油化工,2001,30(10):7~11
    [2]吴长钦.乙腈的提纯与应用[J].1994,(4):12~16
    [3]张靖.乙腈的综合利用[J].精细石油化工,1996,(4):11~14
    [4]杨君毫.乙腈的利用[J].江苏化工,1993,2(4):1~4
    [5] Carols.Read等著.乙腈的供需评估[M].邓万全译.1994,2
    [6]廖波,雷志刚,周荣琪等.含水乙腈萃取精馏分离丙烷/丙烯的新工艺[J].清化大学学报,2000,40(10):51~53
    [7]陈诵英,王琴,许东升.石化技术与应用[J],2001,9(5):293~296
    [8]李雅丽.丙烯腈副产乙腈的开发利用[J].石油化工,1998,27(5):367~370
    [9]周学永.盐酸乙脒合成工艺研究进展[J].化工生产与技术,2005,12(6):46~47
    [10]张婧,周振瀛.乙腈的综合利用[J].精细石油化工,1996,(4):47~49
    [11]吴伟龙,陈水林.乙腈生产及其在工业上的主要利用[J].山东化工,2003,2(6):26~27
    [12] HardtPeter. Process for the catalytic production of 2-substituted pyridines[P]. US: 4212978, 1980
    [13]陈英奇,戴立言,杨能渭.2-甲基吡啶气相催化氧化合成2-吡啶甲醛的研究[J].高校化学工程学报,2002,16(4):436~440
    [14] Leitics L, Shimanskaya M V. Vapor-phase oxidation of methylpyridines to pyridinecarb oxaldehyde[J]. KhimGetero Soedim, 1967, (3):507-511
    [15] Singh B C, Nayak P L, PoutM K. Kinetics ofoxidationof a-picoline by cerium(Ⅵ) in acetic acid[J]. Indian JChem, 1974, 12(4):421-422
    [16] Glubokovskikh L K, Kan I I, Suvorov B V. Oxidativereactions of 2,6-lutidine odfused vanadium pentoxide[J]. SerKhim, 1980, (5):51-54
    [17]王律先.我国农业工业概况及发展趋势[J].现代化工,2000,20(2):1~6
    [18] Dio, Susan. HCN from crude aceto[P]. US: 4981670, 1991
    [19] W illiams, Eric L. Process for the preparation of thioacet-amide[P]. US: 5284974, 1994
    [20]于朝生,林赣,潘成军等.反式肉桂腈的快速合成[J].日用化学工业,2007,37(6):413~416
    [21]孙玉声.丙烯腈生产及副产品综合利用技术途径[J].兰化科技,1995,13(1):53~56.
    [22] OlivéG, OlivéS. Process for preparing acetonitrile[P]. US: 4179462, 1979
    [23] Fierce W L, Lake C, Sandner W J. Preparation of acetonitrile[P]. US: 2802020, 1957
    [24] KrebaumL J. Preparation of acetonitrile[P]. US: 3129241, 1964
    [25] Fierce W L, Lake C, Sandner W J. Preparation of nitriles by catalyzedreaction of alkynes with hydrogen cyanide or cyanogens[P]. US: 3056826, 1962
    [26] Fierce W L, Lake C, Sandner W J. Preparation of aliphatic nitriles bycatalyzed reaction ofhydrocarbons with cyanogen or hydrogen cyanide[P]. US: 3057906, 1962
    [27] Li Yuejin, Armor J N. Ammoxidation of ethane to acetonitrile:Ⅳ.Sub-stantial differences between Y and dealuminated Y zeolite[J]. ApplCatal A, 1999, 183(1):107-120
    [28]匡洞庭,黄付岭等.乙腈合成新工艺简述[J ].油气田地面工程,2004,23(5):54
    [29] Galanov S I, Sidorova O I, Kurina L N, Golovko A K. Catalytic synthesis of acetonitrile[J]. Kataliz v Promyshlennosti, 2004, (Suppl):27-32
    [30] Galanov S I, Sidorova O I, Kurina L N, Golovko A K. Catalytic synthesis of acetonitrile by ammonolysis of acetic acid[J]. Neftekhimiya, 2003, 43(4):313-316
    [31] Galanov S I, Sidorova O I, Golovko A K, Philimonov V D, Kurina L N, Rozhdestvenskiy E A. Catalytic synthesis of acetonitrile by ammonolysis of acetic acid[J]. Eurasian Chemico-Technological Journal, 2001, 3(3):173-178
    [32] Kulkarni Shivanand Janardan, Nagaiah Komu, Subrahmanyam Machiraju, Rao Venkata Rama. Improved process for preparation of nitriles from carboxylic acids using zeolite-type catalyst[P]. IN: 187529, 2002
    [33] Kulkarni S J, Rao R Ramachandra, Subrahmanyam M, Rao A V Rama. Ammoxidation of ethanol to acetonitrile over molecular sieves[J]. Journal of the Chemical Society. Chemical Communications, 1994, (3):273
    [34]吴粮华,赵乐,汪国军.氨氧化生产乙腈的流化床催化剂[P].CN:1765879A,2006
    [35]张华堂,张英男,陈静.乙醇氨氧化法合成高纯度乙腈方法[P].CN:1440963,2003
    [36] Potaraju R, Milind Vishnu J. Process for production of acetonitrile[P]. EP: 0206632, 1986
    [37] Zhang Y N, Zhang Y C, Cheng F, et al. Amination of ethanol to acetonitrile over Ni-dopedCo/γ-Al2O3 catalyst[J]. Catalysis Communications, 2009, (10):1454-1458
    [38] Roger J Card, Joseph L Schmitt. Gas-Phase Synthesis of Nitriles[J]. Journal of organic chemistry, 1981, (46):754-757
    [39] Roger J Card, Joseph L Schmitt. Catalysts for selective preparation of amines or nitriles from alkanols[P]. US: 4654440, 1987
    [40]潘伟雄.用于乙醇与氨合成乙腈的催化剂[P].CN:1062303A,1992
    [41] Chinchen G C, Waugh K C, Whan D A. The activity and state of the copper surface in methanol synthesis catalysts[J]. Appl Catal, 1986, 25(1-2):101-107
    [42] Fleisch T H, Mieville M L. Studies on the chemical state of Cu during methanol synthesis[J]. J Catal, 1984, 90(1):165-172
    [43] Robinson W RAM, Mol J C. Copper surface area and activity in CO/H2/CO2 of Cu/ZnO/Al2O3 methanol synthesis catalysts[J]. Appl Catal, 1990, 63(1):165-179
    [44] Robinson W RAM, Mol J C. Structure and actovity in CO/H2 of Cu/ZnO/Al2O3 methanol synthesis catalysts[J]. Appl Catal, 1990, 60(1):61-72
    [45] Mehta S, Simmons G W, Klier K, Herman R G. Catalysts synthesis of methanol fromCO/H2:Ⅱ.Electron microscopy (TEM,STEM,microdiffraceion, and energy dispersive analysis)of the Cu/ZnO and Cu/ZnO/Cr2O3 catalysts[J]. J Catal, 1979, 57(3):339-360
    [46] Bulko J B, Herman R G, Klier K, Simmons G W. Optical propertres and electronic interactions of microcrystalline Cu/Zn catalysts[J]. J Phys Chem, 1979, 83(24):3118-3126
    [47] Fujitani T, Nakamura J. The chemical modification seen in the Cu/ZnO methankl synthesis catalysts[J]. Appl Catal A, 2000, 191(1-2):111-129
    [48]赵九生,时其吕,马福善,康慧敏.催化剂生产原理[M].北京:科学出版社,1986,241
    [49] Chen H B, Liao D W, Yu L J, Lin Y J, Yi J, Zhang H B, Tsai K R. Influence of trivalent metal ions on the surface structure of a copper-based catalyst for methanol synthesis[J]. Appl Surf Sci, 1999, 147(1):85-93
    [50] Sengupta G, Sharma R K, Sharma B, Mishra K K, Kundu M L, Sanyal R M, Dutta B. Effect of incorporporation of Al3+ ion on the structure of Cu-Zn coprecipitate[J]. J Solid State Chem, 1995, 115(1):204-207
    [51]肖长义.低压合成甲醇催化剂中尖晶石结构的研究[J].天然气化工,1990,(1):22~25
    [52] Chen H Y, Lau S P, Chen L, Lin J, Huan C H A, Tan K L, Pan J S. Synergism between Cu and Zn sites in Cu/Zn catalyts for metahanol syntesis[J]. Appl Surf Sci, 1999, 152(3-4):193-199
    [53] Shishidoa T, Yamamotob Y, Moriokac H, Takehira K, Takehira K. Active Cu/ZnO and Cu/ZnO/Al2O3 catalyts prepared by homogeneous precipitation method in steam reforming of methanol[J]. Appl Catal A, 2004, 263(2):249-253
    [54] Agrell J, Hasselbo K, Jaras S, Boutonnet M. Preparation and characterisation of Cu/ZnO and Pd/ZnO catalyts for partial oxidation of methanol. Control of catalyst surface area and particle size using microemulsion technique[J]. Stud Surf Sci Catal, 2000, 130(2):1073-1078
    [55]朱炳成等.催化反应工程[M].北京:中国石化出版社,2000,83
    [56]李承烈等.催化剂失活[M].北京:化学工业出版社,1989,158~159
    [57] Turco M, Bagnasco G, Costantino U. Production of hydrogen from oxidative steam reforming of methanol: I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor[J]. J. Catal, 2004, (228):43-55
    [58] Dandekar A, Baker R T K, Vannice M A. Carbon-Supported Copper Catalysts: I. Characterization[J]. J. Catal 1999, (183):131-154
    [59] Martin Hartmann, Sandrine Racouchot, Christian Bischof. Characterization of copp-er and zinc containing MCM-41 and MCM-48 mesoporous molecular sieves by temperature programmed reduction and carbon monoxide adsorption[J]. Microporous and Mesoporous Materials, 1999, (27):309-320
    [60] Y F Hu, X S Wang, X W Guo, et al. Hydrothermal synthesis of pure ZSM-22 under mildconditions[J]. Catal Lett, 2005, (100): 59
    [61] C Davi. Electronic encyclopedia of reagents for organic synthesis[M]. New York: John Wiley & Sons, 2006
    [62] Sivaraj C H, Kantarao P. Characterization of copper/alumina catalysts prepared bydeposition precipitation using urea hydrolysis:I.Nitrous Oxide Decomposition and Reaction of Ethanol[J]. Appled Catal, 1988, (45):103-114
    [63] Marino F J, Cerrella E G, Duhalde S. Int J. Hydrogen from steam reforming of ethanol. characterization and performance of copper-nickel supported catalysts[J]. Hydrogen Energy, 1998, (23):1095-1101
    [64] Zheng Liu, Michael D Amiridis, Yi Chen. Characterization of CuO supported on tetragonal ZrO2 Catalysts for N2O decomposition to N2[J]. J.Phys.Chem.B, 2005, (109):1251-1255
    [65]吉定豪,刘钢,贾明君等.溶胶-凝胶和浸渍法制备的铜催化剂在仲丁醇脱氢反应中的研究[J].高等化学学报,2007,28(8):1543~1546
    [66] CH Sivaraj, P Kantarao. Characterization of copper/alumina catalysts prepared by deposition precipitation using urea hydrolysis I. nitrous oxide decomposition and reaction of ethanol[J]. Applied Catalysis, 1988, (45):103-114
    [67]闵恩泽.工业催化剂的研制与开发[M].北京:中国石化出版社,1997,69
    [68]方书农,林培琰,伏义路.CuO/Al2O3催化剂铜物种的分散状态研究[J].分子催化,1994,8(2):86~90
    [69] Martyn V.Twigg, Michael S.Spencer. Deactivation of supported copper metal catalysts for hydrogenation reactions[J]. Applied Catalysis A General, 2001, (212):161-167
    [70]杨树武,周卓华.Cu/ZnO/Al2O3/ZrO2催化剂上乙醇脱氢合成乙酸乙酯,Ⅰ.催化反应性能及机理[J].催化学报,1996,17(1):5~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700