湿H_2S环境下防喷器用钢应力腐蚀分析及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
防喷器属于大型厚壁压力设备,是油气井生产十分重要的安全设备,它的工作可靠性取决于设备本身的可靠性和系统的可靠性。防喷器的失效是多方面原因造成的,任何一种方式的失效都将引起巨大的井喷风险,造成不可估量的损失。随着石油天然气勘探开发的发展,油气开采面临的环境越来越恶劣,井中含有二氧化碳、硫化氢、盐等对防喷器所造成严重的应力腐蚀,使得湿硫化氢环境引起的应力腐蚀问题日益突出。对湿硫化氢环境中应力腐蚀开裂的相关问题,国内外许多学者已开展了大量的研究工作,并取得了一定的研究成果。由于应力腐蚀影响因素具有多样化的特点,对应力腐蚀机理的各种认识和采用的试验技术均带有一定的局限性,所以还存在许多问题值得深入研究和探讨,尤其针对防喷器用钢的应力腐蚀机理的研究还比较有限。
     本文在分析评述国内外相关研究现状及存在问题的基础上,重点对湿硫化氢环境下防喷器用钢(ZG35CrMo钢和ZG25CrNiMo钢)腐蚀性能影响的主要因素进行了分析。包括缺陷组织的影响、环境因素(硫化氢浓度、pH值、氯离子浓度和应力大小等)的影响、材料内部残余应力的影响等,并建立了防喷器应力分布物理模型,得到了如下重要的研究结果:
     1)从有限元分析和实际的应力测试综合来看,闸板防喷器的应力集中地方出现在几何形状变化处,即防喷器壳体和法兰相连的颈部、壳体内表面的垂直通孔与闸板腔室孔相贯圆角处。这些地方由于防喷器截面尺寸突然变化,引起应力局部增大,导致应力集中。由于这些结构处存在应力集中的问题,从而削弱了防喷器壳体的强度,降低了承载能力;当载荷增加时,应力集中部位将首先达到屈服极限,发生小范围内的局部塑性变形,这种反复的,局部的塑性变形,在一定时间内将导致裂纹的产生和扩展,最后破坏防喷器壳体整体结构。
     2)在试验所采用的湿硫化氢环境中,ZG35CrMo钢应力腐蚀敏感性指数F(A)随H2S浓度、pH值和Cl-浓度变化的逐步回归结果显示:H2S浓度对ZG35CrMo钢应力腐蚀敏感性指数F(A)影响最为显著;Cl-浓度与F(A)之间没有显著的相关关系;pH值和H2S浓度将对F(A)产生相互影响;随着H2S浓度的升高,ZG35CrMo钢应力腐蚀敏感性指数呈逐渐增大趋势;在相同的H2S浓度下,ZG35CrMo钢应力腐蚀敏感性指数随着pH值的提高而降低。
     3)在试验所采用的湿硫化氢环境中,ZG25CrNiMo钢应力腐蚀敏感性指数F(A)随H2S浓度、pH值和Cl-浓度变化的逐步回归结果显示:H2S浓度对ZG25CrNiMo钢应力腐蚀敏感性指数F(A)影响最为显著;Cl-浓度与F(A)之间没有显著的相关关系;pH值和H2S浓度将对F(A)产生相互影响;随着H2S浓度的升高,ZG25CrNiMo钢应力腐蚀敏感性指数呈逐渐增大趋势;在相同的H2S浓度下,ZG25CrNiMo钢应力腐蚀敏感性指数随着pH值的提高而降低。
     4)在试验所采用的湿硫化氢环境中,ZG35CrMo钢腐蚀速率随H2S浓度、Cl-浓度、pH值和应力值变化的逐步回归结果显示:Cl-浓度对ZG35CrMo钢腐蚀速率影响最为显著;pH值与腐蚀速率之间没有显著的相关关系;Cl-浓度、H2S浓度和应力值将对腐蚀速率产生相互影响;在相同的H2S浓度和应力值下,随着Cl-浓度的提高,ZG35CrMo钢腐蚀速率呈逐渐增大趋势;在相同的Cl-浓度和H2S浓度下,ZG35CrMo钢腐蚀速率随着应力值的提高而增大。在相同的应力值和Cl-浓度下,随着H2S浓度的提高,ZG35CrMo钢腐蚀速率呈逐渐增大趋势。
     5)在试验所采用的湿硫化氢环境中,ZG25CrNiMo钢腐蚀速率随H2S浓度、Cl-浓度、pH值和应力值变化的逐步回归结果显示:Cl-浓度对ZG25CrNiMo钢腐蚀速率影响最为显著;pH值与腐蚀速率之间没有显著的相关关系;Cl-浓度、H2S浓度和应力值将对腐蚀速率产生相互影响;在相同的H2S浓度和Cl-浓度下,ZG25CrNiMo钢腐蚀速率随着应力值的提高而增大;在相同的应力值和Cl-浓度下,随着H2S浓度的提高,ZG25CrNiMo钢腐蚀速率呈逐渐增大趋势;在相同的应力值和H2S浓度下,ZG25CrNiMo钢腐蚀速率随着Cl-浓度的提高而增大。
     6)比较ZG35CrMo钢和ZG25CrNiMo钢的SSRT试验和失重试验结果发现,ZG35CrMo钢的应力腐蚀敏感性和腐蚀速率均高于ZG25CrNiMo钢。其原因是由于ZG35CrMo钢的强度和硬度均高于ZG25CrNiMo钢。验证了钢材的强度级别越高,对应力腐蚀越敏感规律。
     7)带有缺陷组织的ZG25CrNiMo钢的敏感性指数和腐蚀速率均大于正常组织的敏感性指数。其原因包括以下几个方面:屈氏体和上贝氏体组织存在较大的内应力,且晶格在热力学上处于不平衡状态,易于发生湿硫化氢应力腐蚀;同时其内部存在大量粗大且密集的显微夹杂物等缺陷,导致氢原子扩散速率加快,加速了湿硫化氢应力腐蚀。
     8)比较存在残余压应力部位和存在残余拉应力部位的电化学试验结果发现:残余拉应力增大了腐蚀速率。这是因为试样弯曲发生冷变形,材料的微观结构发生了变化,如增加了滑移台阶、空位密度和位错密度,从能量的角度来分析,这些缺陷存在的位置,均处于不平衡状态,能量比较高,都是氢易聚集的地方,而残余拉应力更有利于氢扩散。
Blowout preventers are very important large, thick-walled pressure equipment used for oil and gas production. The working reliability of a blowout preventer depends on its proper reliability and system reliability. Preventer failures may result from multiple causes, any of which may trigger enormous blowout risks and lead to inestimable losses. As oil and gas exploration and exploitation develops, the oil & gas production industry has to face more and more rugged production environments. The increasingly serious problem of stress corrosion of blowout preventers by CO2, H2S and salts in oil and gas wells has attracted increasing attention to the problem, especially in the case of wet H2S environments. Both domestic and foreign scholars have been carrying out large-scale research on the problem of stress corrosion cracking in wet H2S environments, and up to now, certain achievements have been made. As factors of stress corrosion are diversified and there are certain limits to researches on the cracking corrosion mechanism and the testing technology adopted, there are still many unknown fields requiring further research and approach, especially the research on the stress corrosion mechanism of steels used for preventer construction.
     Based on an analysis and presentation of the status quo of and existing problems with the relevant research both at home and abroad, this article analyzes the main factors affecting the corrosion-resistant performance of steels (ZG35CrMo steel and ZG25CrNiMo steel) used for preventers for wet H2S applications from the angle of universal application. These factors include defective structure, environment (H2S concentration, pH value, Cl- concentration and stress level) and residual stress within materials. Also, a preventer stress distribution model is established to make the following important research achievements:
     1) The results of the finite element analysis and the actual stress tests show that the stress in a ram preventer is most concentrated where the geometrical shape changes, i.e. the place of the preventer shell and the flange hub, the rounded corner where the vertical through-hole in the shell internal surface joins the ram chamber hole. These are places where the sectional dimensions of the preventer are likely to change suddenly and cause local increases/concentrated stress. Concentrated stress in these structural parts tends to deteriorate the strength of the preventer shell and reduce pressure-resistance capacity. When the pressure load increases suddenly, the parts where the stress is the most concentrated will be the first to reach the yielding limit, and local plastic deformations will occur within a small scope. This type of repeated local plastic deformation will lead to cracks that will ultimately spread over time and damage the integral structure of the preventer shell.
     2) In the wet H2S environment designed for the experiment, the stepwise regression analysis of the stress corrosion susceptibility index F(A) of ZG35CrMo steel shows that H2S concentration affects the stress corrosion susceptibility index F(A) of ZG35CrMo steel most remarkably; Cl- concentration has no significant correlation with; pH value and H2S concentration will have an interaction on F(A); as H2S concentration increases, the stress corrosion susceptibility index of ZG35CrMo steel gradually steps up; under the same H2S concentration, the stress corrosion susceptibility index of ZG35CrMo steel gradually steps downs as pH value increases.
     3) In the wet H2S environment designed for the experiment, the stepwise regression analysis of the stress corrosion susceptibility index F(A) of ZG25CrNiMo steel shows that H2S concentration affects the stress corrosion susceptibility index F(A) of ZG35CrMo steel most remarkably; Cl- concentration has no significant correlation with F(A); pH value and H2S concentration will have an interaction on F(A); as H2S concentration increases, the stress corrosion susceptibility index of ZG25CrNiMo steel gradually steps up; under the same H2S concentration, the stress corrosion susceptibility index of ZG25CrNiMo steel gradually steps downs as pH value increases.
     4) In the wet H2S environment designed for the experiment, the stepwise regression analysis of ZG35CrMo steel shows that Cl- concentration affects the corrosion rate most remarkably; pH value has no significant correlation with the corrosion rate; Cl- concentration, H2S concentration and stress level will have an interaction on the corrosion rate; under the same H2S concentration and stress level, as Cl- concentration increases, the corrosion rate of ZG35CrMo steel steps up gradually; under the same Cl- concentration and H2S concentration, the corrosion rate of ZG35CrMo steel gradually steps up as stress level increases; under the same stress level and Cl- concentration, as H2S concentration increases, the corrosion rate of ZG35CrMo steel steps up gradually.
     5) In the wet H2S environment designed for the experiment, the stepwise regression analysis of ZG25CrNiMo steel shows that Cl- concentration affects the corrosion rate most remarkably; pH value has no significant correlation with the corrosion rate; Cl- concentration, H2S concentration and stress level will have an interaction on the corrosion rate; under the same H2S concentration and Cl- concentration, as stress value increases, the corrosion rate of ZG25CrNiMo steel steps up gradually; under the same stress level and Cl- concentration, as H2S concentration increases, the corrosion rate of ZG25CrNiMo steel gradually steps up as stress level increases; under the same stress level and H2S concentration, as Cl- concentration increases, the corrosion rate of ZG25CrNiMo steel steps up gradually.
     6) The comparison of slow strain rate testing (SSRT) and weight loss testing results shows that both the stress corrosion susceptibility index and the corrosion rate of ZG35CrMo steel are higher than those of ZG25CrNiMo steel, due to the fact that the strength and hardness of ZG35CrMo steel are higher than those of ZG25CrNiMo steel. The higher the strength of a steel is, the more susceptible to stress corrosion the steel is.
     7) ZG25CrNiMo steel with a defective structure has a stress corrosion susceptibility index and a corrosion rate higher than those of ZG25CrNiMo steel with a normal structure. This may be attributed to the following reasons:Troostite and upper bainite have a relatively big internal stress. Thermodynamically, their crystalline lattices are in a state of unbalance and are therefore are susceptible to wet H2S stress corrosion. Meanwhile, the presence of numerous defects in troostite. and upper bainite, such as coarse and densely distributed microscopic impurities and loose substances, will accelerate the diffusion of hydrogen atoms and wet H2S stress corrosion.
     8) A comparison of the electrochemical testing results of parts where there are residual compressive strength and residual tensile stress shows that the residual residua stress may increase the corrosion rate. This is because the testing sample develops cold deformation caused by bending. Therefore, the microscopic structure of the material has changed, i.e. increases in slip step, vacancy density and dislocation density. From the angle of energy, these defects are in a state of unbalance and are located where hydrogen tends to accumulate and there is high energy. Moreover, the residual tensile stress contributes to the likeliness of hydrogen diffusion.
引文
[1]张旺峰,朱金华.抗H2S石油专用管材的成分优化[J].机械工程材料,1999,23(1)
    [2]谢香山.高性能油井管的发展及其前景[J].上海金属,2000,22(3).
    [3]王文明,彭存岭.机械设备湿硫化氢腐蚀机理研究,金属学与金属工艺,195-196。
    [4]李欣,张毅,张汝忻.我国油井管需求量、生产能力及价格综合分析[J].钢管,2000,29(1)
    [5]黄仁兵.近年来油气井缓蚀剂发展的新技术[J].石油与天然气化工,1998,27(4)
    [6]姚晓.CO2对油气井管材腐蚀的预测及防护[J].石油钻采工艺,1998,20(3).
    [7]李明,李晓刚,陈华.在湿H2S环境中金属腐蚀行为和机理研究概述.腐蚀科学与防护技术,2005,17(2): 107-111.
    [8]焦卫东,张耀宗,张清.CO2/H2S对油气管材的腐蚀规律.化工机械,2003,30(4):250-253.
    [9]程涛.H2S及其产物对天然气管道内壁的危害与控制.重庆石油高等专科学校学报,2000,2(3):17-19.
    [10]Vedage H, Ramanarayanan T A, Mumford J D et al. Electrochemical Growth of Iron Sulfide films in H2S-Saturated Chloride Media. Corrosion,1993,49(2):114-121.
    [11]Wu Y M. Applying Process Modeling to Screen Refining Equipment for Wet Hydrogen Sulfide Service. Cerrosion,1998,54(2):169-173.
    [12]Kimura Metal. Sulfide Stress Cracking of Line Pipe. Corrosion,1989,45(4): 340-346.
    [13]Hugang H H, Tsai W T, Lee J T. Electrochemical Behavior of A516 Carbon Steel in Solutions Containing Hydrogen Sulfide, Corrosion,1996,52(9):708.
    [14]许文妍,付继成,孙炜等.抗硫化氢应力腐蚀石油套管系列产品的开发与应用.第二届石油石化工业用材研究会论文集,成都,2001:91-97.
    [15]施青,殷光虹,孙元宁等.抗硫无缝管线管用钢的研究.第二届石油石化工业用材研究会论文集,成都,2001: 76-80
    [16]郭金宝,程以环,孙元宁等.宝钢抗硫系列油管的研制.第二届石油石化工业用材研究会论文集,成都,2001: 71-75.
    [17]Kurth, R.E., Leis, B.N., Probabilistic modeling of stress-corrosion cracking:Part one-model development, American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP 386, (1999), Sponsored by:ASME,3-12.
    [18]Leis, B.N., Kurth, R.E., Probabilistic modeling of stress-corrosion cracking:Part two-validation and implications for control, American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP 386, (1999), Sponsored by:ASME, 13-23.
    [19]Rhodes, P.R., Environment-assisted cracking of corrosion-resistant alloys in oil and gas production environments:A review, Corrosion, (2001), Vol.57, No.11,23-966.
    [20]Pargeter, Richard, J., Review of the concept of mildly sour environments, Proceedings of the International Pipeline Conference, IPC Vol.1, (1998), Sponsored by:ASME, 447-457.
    [21]Juncai FAN, Computer Modeling of SCC in Gas Pipe Steel and Hydraulic Fracture in Stratified Polo-elastic Media, PH.D. dissertation, University of Illinois at Chicago, (2001).
    [22]Bing ZHANG, Understanding and Modeling of Stress Corrosion Cracking in High Pressure Piping Steel, PH.D. dissertation, University of Illinois of Chicago, (2001).
    [23]Albarran,J.L., Lopez,H.F., Martinez,L., Crack growth in a welded microalloyed steel under sulfide stress cracking conditions, Journal of Materials Engineering and Performance, (1998), Vol.7, No.6, ASM International,777-783.
    [24]Chu Wuyang, Qiao Lijie, Wang Yanbin, Relationship among parameters evaluating stress corrosion cracking, Journal of Materials Science and Technology, (2000), Vol.16, No.5,504-508.
    [25]方智,张琳,吴荫顺,朱日彰,304不锈钢在室温HCl+NaCl溶液中的应力腐蚀机理,腐蚀科学与防护技术,(1995), Vol.7,No.1,p42-46
    [26]左禹,张树霞,1Cr18Ni9Ti不锈钢在硫化氢溶液中的台阶状应力腐蚀,北京化工学院学报(自然科学版),1994,21(4):59-64.
    [27]L.W.Tsay, Y.C.Chen, S.L.LChan, Sulfide stress corrosion cracking and fatigue crack growth of welded TMCP API 5L X65 pipe-line steel, International Journal of Fatigue,2001, 23:103-113.
    [28]褚武扬,乔利杰,高克玮,阳极溶解型应力腐蚀,科学通报,2000,45(24):2581-2588.
    [29]D.Delafosse, T.Magnin, Hydrogen induced plasticity in stress corrosion cracking of engineering systems, Engineering Fracture Mechanics, (2001),68:693-729.
    [30]乔利杰,王燕斌,褚武扬,应力腐蚀机理,科学出版社,(1993).
    [31]Waard C. D,Millian D. E. Carbonic Acid Corrosion of steel[J].Corrosion,1975, 31(5):131.
    [32]Ogundele G. I,WhiteW.E. Some observation on corrosion of carbon steel in aqueous envitonments containing carbon dioxide[J]. Corrosion.1986,42(42):71-76.
    [33]Schmit G. FundamentalAspects of CO2 Corrosion of Steel[J]. Corrosin of stee.l Corrosion/83, paper No.43, NACE,Houston,1983.
    [34]Xia Z, Chou K. C, Smialowska Z. S. Pitting Corrosion of Carbon Steel in CO2-containing NaCl Brine[J]. Corrosion,1989,45(8):636.
    [35]Shibuya, Teruo, Misawa, Toshihei, Transition from HIC to SSCC typecracking of carbon steel with increase of applied stresses in hydrogen sulfide solutions. Corrosion Engineering,1996,45(11):654-661.
    [36]American Society of Mechanical Engineers, eviceability of Petroleum, Process and Power Equipment. Pressure Vessels and Piping Division (Publication) PVP,1992,239, Sponsored by:ASME, Pressure Vessels & Piping Div; Materials Properties Council Publ by ASME 285,0277-027X.
    [37]CoIe,I.S., Andenna, C., Assessment of a micro-mechanic model of hydrogen-induced stress corrosion cracking, based on a study of an X65 line pipe steel, Fatigue and Fracture of Engineering Materials& Structures,1994,17(3):265-275.
    [38]Ravi, K., Ramaswamy, V., Namboodhiri, T.K.G., Effect of molybdenum on the resistance to H2S of high sulpHur microalloyed steels, Materials Science & Engineering A: Structural Materials:Properties, Microstructure and Processing,1993, A169 (1-2):111-118.
    [39]Burk, J.D., Hydrogen-induced cracking in surface production systems:mechanism, inspection, repair, and prevention, SPE Production & Facilities, Society of Petroleum Engineers (SPE),1996,11(1):49-53.
    [40]Asahi, H., Ueno, M., Yonezawa, T., Prediction of sulfide stress cracking in high-strength tubulars, Corrosion, Natl Assoc of Corrosion Engineers,1994,50(7):537-545.
    [41]周计明.油管钢在含CO2/H2S高温高压水介质中的腐蚀行为及防护技术的作用[D].西北工业大学硕士学位论文,2002,21-40.
    [42]任呈强.N80油管钢在含CO2/H2S高温高压两相介质中的电化学行为及缓蚀机理研究[D].西北工业大学硕士学位论文,2003,29-55.
    [43]Schofied,Michael J., Bradshaw,Roy, Cottis,R.A., Stress corrosion cracking of duplex stainless steel weldments in sour conditions, Materials Performance,1996,35(4): 65-70.
    [44]D.A.Meyn, P.S.Pao, Slow strain rate testing of precacked titanium alloys in salt water and inert environment, Slow strain rate testing for the evaluation of environmentally induced cracking:research and engineering applications, ASTM STP1210, Russell D.Kane, Editor, PHiladepHia,1993,158-169.
    [45]Erilsson,H., Berhandsson,S., Applicability of duplex stainless steels in sour environments, Corrosion,1991,47(9):719-727.
    [46]J.A.Beavers, GH.Koch, Limitations of slow strain rate testing technique, slow strain rate testing for the evaluation of environmentally induced cracking:research and engineering applications, ASTM STP1210, Russell D.Kane, Editor, PHiladepHia,1993,22-39.
    [47]R.D.Kane, S.M.Wilhelm, Status of standardization activities on slow strain rate testing techniques, slow strain rate testing for the evaluation of environmentally induced cracking:research and engineering applications, ASTM STP1210, Russell D.Kane, Editor, PHiladepHia, (1993), p40-47.
    [48]Zhang Xueyuan, Duyuanlong, Relationship between susceptibility to embrittlement and hydrogen permeation current for UNS G10190 steel in 5%NaCl solution containing H2S, British Corrosion Journal,1998,33(4):292-296.
    [49]Ahluwalia, Harkirat S., Problems associated with slow strain rate quality assurance testing of nickel-base corrosion resistant alloy tubulars in hydrogen sulfide environments, Slow strain rate testing for the evaluation of environmentally induced cracking:research and engineering applications, ASTM STP1210, Russell D.Kane, Editor, PHiladepHia, (1993), p225-239.
    [50]Ikeda, Akio, Ueda, Masakatsu, Okamoto, Hiroshi, Role of slow strain rate testing on evaluation of corrosion resistant alloys for hostile hot sour gas production, Slow strain rate testing for the evaluation of environmentally induced cracking:research and engineering applications, ASTM STP 1210, Russell D.Kane, Editor, PHiladepHia, (1993), p240-262.
    [51]Muizhnek, I. A., Accelerated corrosion cracking tests of steels in active-passive loading, Soviet Materials Science (English Translation of Fiziko-Khimicheskaya Mekhanika Materialav),1990,26(2):168-171.
    [52]J.H.Payer, W.E.Berry, R.N.Parkins, Application of slow strain-rate technique to stress corrosion cracking of piping steel, Stress corrosion cracking:slow strain rate technique, ASTM STP665, G. M.Ugiansky and J.H. Payer, Eds., American Society for Testing and Materials, PHiladepHia,1979,222-234.
    [53]Weng Chengchiang, Chen Ronting, Acoustic emission characterization of steel in H2S solution subjected to tensile load, Zhongguo Gongchen Xuekan/Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A,1993, 16(4):489-498.
    [54 Jonas, Otakar, Molecular modeling of corrosive environments in cracks, ASTM Special Technical Publication, (1997), Vol.12, No.98, Sponsored by:ASTM, p 182-196
    [55]王燕斌,褚武扬,肖纪美,氢致解理断裂机理,中国科学A辑,1989,10:1065-1073.
    [56]肖纪美,应力作用下的金属腐蚀,北京:化学工业出版社,(1990).
    [57]K Videm, A Dugstad.Effect of Flow Rate, pH, Fe2+, Concentration and Steel Quality on the CO2 Corrosion of Carbon Steels.CORROSION,1987, Moscone Center/San Francisco, California,42.
    [58]赵平.H2S腐蚀的影响因素(Ⅱ).全面腐蚀控制,2002,16(3):8-9.
    [59]郦建立.炼油工业中H2S的腐蚀.腐蚀科学与防护技术,2000,12(6):346-349.
    [60]胡鹏飞,文九巴,张伟.稀土镧对热浸渗铝钢耐H2S腐蚀性能的影响.中国表面工程,2005,18(4):34-36.
    [61]张勇,王家辉,石化设备湿硫化氢应力腐蚀失效及其防护,石油工程建设,1995,6:11~14.
    [62]赵明纯,单以银,李玉海,杨柯,显微组织对管线钢硫化物应力腐蚀开裂的影响,金属学报,2001,37(1):1087~1092.
    [63]薛锦,应力腐蚀与环境氢脆,西安交通大学出版社,1991.
    [64]马继国,压力容器抗应力腐蚀设计的讨论,化工设备与管道,2000,37(6):48-53.
    [65]张万贞.湿H2S环境中金属材料腐蚀的研究.石油化工腐蚀与防护,2006,23(3): 22-25
    [66]张万贞,余百年,赵明.热浸锌处理对低合金高强度钢抗H2S腐蚀性能的影响 [J].石油化工腐蚀与防护,1997,14(3):51-52,56
    [67]蒲海山.抗H2S应力腐蚀钻材用新钢种“pu-1”可焊接性的研究[J].钢铁研究,1998,(5):36-39.
    [68]白真权,李鹤林,刘道新,王献肪.模拟油田C02/H2S环境中N80钢的腐蚀及影响因素研究.材料保护,2003,36(4):28-30.
    [69]张清,李全安,文九巴,白真权.H2S分压对油管钢C02/H2S腐蚀的影响.腐蚀科学与防护技术,2004,16(6):395-397.
    [70]Ma Houyi, Cheng Xiaoliang, Li Guiqiu, et al. The Influence of Hydrogen Sulfide on Corosion of Iron under Different Conditions.Corosion,2000(42),1669-1683.
    [71]张清,李全安,文九巴,尹树峰,白真权.CO2/H2S对油气管材的腐蚀规律及研究进展.腐蚀与防护,2003,24(7):227-281.
    [72]化工部化工机械研究院,腐蚀与防护手册—化工生产装置的腐蚀与防护分册.北京:化学工业出版社,1991.
    [73]A. GWikjord,T.E.Rummery,F.E.Doern,D.GOwen Corros. Science 1980,20:651
    [74]W. H. Thomason Corrosion/78,1978, paaper No.41.
    [75]中国腐蚀与防护学会主编,腐蚀科学与防腐蚀工程技术新进展,北京:化学工业出版社,1999,10.
    [76]赵平,安成强.H2S腐蚀的影响因素(Ⅰ).全面腐蚀控制,2002,16(2):5-6,29.
    [77]张清,李全安,文九巴,白真权.温度对油管钢CO2/H2S腐蚀速率的影响.材料保护,2004,37(4):38-39.
    [78]吴荫顺,金属腐蚀研究方法,冶金工业出版社,北京,(1993).
    [79]F.H.Meyer,O.L.rihhs et al,Corrosion,1958,14:109t
    [80]Danald,W.Shannon,J.E.Boggs.Corrosion,1959,15:299t
    [81]阎丽静.博士学位论文,中国科学院金属腐蚀与防护研究所,1999.6.
    [82]郑文龙,于青.钢的环境敏感断裂[M].北京:化学工业出版社,1988:97.
    [83]姚京,褚武扬,肖纪美,压应力导致不锈钢的应力腐蚀,金属学报,1983,19(5):445-449.
    [84]陈秋雄,周卫.城市燃气管道安全评估中的腐蚀性评价[J].煤气与热力,2004,24(8):423-426.
    [85]阮国祥.燃气钢管的腐蚀与保护[J].上海煤气,1999,12(3):43-46.
    [86]孙宝泉,徐治明,蔡庆俊等.套管柱在高压工艺条件下的受力及保护浅析[J].石油机械,1995,23(3).
    [87]杨印臣.地下管道和储罐管理维护实用技术[M].广州:华南理工大学出版社,2005.
    [88]张选良,王昕.脱硫塔腐蚀机理探讨及对策[J].西部煤化工,2009,1:35~38.
    [89]张清,李萍,白真权.不同CO2/H2S分压下油管钢腐蚀速率预测模型.焊管,2006,29(1):39-41.
    [90]黄雪松,姜秀萍,刘强.油田集输管道介质多相流腐蚀数学模型研究[J].油气储运,2007,26(3): 25-28.
    [91]李全安,张清,文九巴等.CO2对油气管材的腐蚀规律及预测防护[J].腐蚀科学与防护技术,2004,16(6):381.
    [92]王维宗,贾鹏林,许适群.湿硫化氢环境中腐蚀失效分析[J].石油化工设备技术,2001,22(3):15.
    [93]应道宴.液化石油气球罐的硫化物应力腐蚀破裂[J].腐蚀与防护,1983,2:22.
    [94]于英姿,米秋占,段贵华.输气管道的硫化物应力腐蚀分析[J].油气储运,2000,19(8): 37.
    [95]柳曾典.湿硫化氢环境用低合金高强度钢[J].石油化工设备技术,1998,19(5):57.
    [96]R.D.Kane, S.M.Wilhelm, Status of standardization activities on slow strain rate testing techniques, slow strain rate testing for the evaluation of environmentally induced cracking:research and engineering applications, ASTM STP1210, Russell D.Kane, Editor, PHiladepHia, (1993), p40-47.
    [97]J.H.Payer, W.E.Berry, R.N.Parkins, Application of slow strain-rate technique to stress corrosion cracking of piping steel, Stress corrosion cracking:slow strain rate technique, ASTM STP665, G. M.Ugiansky and J.H. Payer, Eds., American Society for Testing and Materials, PHiladepHia,1979,222-234.
    [98]方开泰,均匀设计与均匀设计表,科学出版社,北京,1994.
    [99]张允真等,弹性力学及其有限元法,北京:中国铁道出版社,1983.
    [100]赵经文等,结构有限元分析、哈尔滨:哈尔滨工业大学出版社,1988,4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700