Fe_3O_4/导电高分子复合材料的合成与防腐防蜡性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道腐蚀和结蜡是长期以来制约油气管道集输安全性和输送效率的两个重要因素。管道发生腐蚀破坏,轻则造成原油泄漏,重则引发爆炸等安全事故;而因管道结蜡,在集输过程中需要定期进行清蜡作业,严重影响管道输送效率的提高,能否将二者结合,制备一种兼具防腐和防蜡性能的多功能管道内涂层材料?本文作了大胆的探索,制备了Fe304/导电高分子复合材料,将其加入到醇酸树脂清漆中,得到一种复合涂层,并考察了这种复合涂层的防腐和防蜡性能,证明这种复合涂层用于管道内涂层具有可行性。具体研究工作包括:
     (1)以FeCl3和FeSO4为铁源,以NH3-H20和N2H4·H20为沉淀剂体系,通过共沉淀法合成了Fe304,确定最佳合成条件为Fe3+:Fe2+=1.75:1,反应温度70℃。XRD和FT-IR分析表明产物纯净,具有典型的反尖晶石结构,晶粒尺寸10nm左右,振动样品磁强计(VSM)分析表明其单位质量的饱和磁场强度为61.143emu/g。对Fe304进行了表明修饰研究,结果表明十二烷基苯磺酸钠(SDBS)具有良好的修饰效果,修饰后的Fe3O4水溶液均匀分散不分层,激光粒度仪分析表明SDBS对Fe304的粒径有显著的调控作用,结合红外和Zeta电位分析,认为这是因为SDBS与Fe304形成了O—0共价键作用。
     (2)在已合成Fe304的基础上制备了Fe3O4/PTH (PTH,聚噻吩)复合材料,并对其进行了Raman, FT-IR, EDS, TEM, Zeta和TG-SDTA分析,结果表明噻吩单体在Fe304表面成功聚合成聚噻吩,得到的复合材料具有明显的核壳结构,核相为Fe3O4,粒径约为14nm;壳相为PTH,厚度约为3~4nm。将Fe3O4/PTH复合材料加入到醇酸树脂清漆中得到复合涂层,加速腐蚀实验和静态防蜡实验结果表明当Fe304/PTH复合材料的质量百分量在0.8-1%时,涂层兼有良好的防腐和防蜡性能,附着力和漆膜冲击力测试结果表明Fe304/PTH复合材料的加入对涂层附着力没有影响,抗冲击强度稍有降低。
     (3)为提高防蜡性能,对Fe304进行了Ni掺杂研究,制备了Ni doped Fe3O4/PTH复合材料,XPS分析表明在该复合材料中Ni元素的掺杂量为0.8%,VSM分析表明该复合材料的单位质量饱和磁场强度为73.456emu/g,较未掺杂的纯Fe304提高了20.14%。将固体石蜡溶解在液体石蜡中模拟原油结蜡过程,设计了模拟结蜡试验,用旋转黏度计测定了20%固体石蜡的液体石蜡溶液的析蜡点为40℃。在析蜡点温度,将涂有涂层的试片放入其中,反复测定其增重量,结果表明清漆涂层的平均增重量为0.0891g,加入了Fe304复合涂层的平均增重量为0.0803g,加入了Ni doped Fe3O4/PTH的复合涂层的平均增重量为0.0743g,增重量即试片表面的石蜡附着量,由此判断加入了Ni dopedFe3O4/PTH的复合涂层表面石蜡附着量最小,具有最佳的防蜡效果。
     (4)为验证Ni doped Fe3O4/PTH复合材料防腐蚀的有效性,选择与目前已经市场化应用的防腐蚀材料聚苯胺(PANI)进行对比,制备了Ni doped Fe3O4/PANI复合材料,电化学阻抗(EIS)测试结果表明Ni doped Fe3O4/PTH复合材料的防腐蚀性能与Ni doped Fe3O4/PANI复合材料相当。
The corrosion and paraffin deposition of the pipeline were two important factors which restricted the security and efficiency of gas and oil transportation. Corrosion damages in pipeline caused crude oil leakage even explosions and the paraffin deposition required to remove regularly, both seriously affected the transportation efficiency. Can we prepare a kind of multifunctional internal coating which had the functions of anticorrosion paraffin controlling? A bold exploration was done in this paper. A composite of Fe3O4 and conducting polymers was synthesized and added into alkyd varnish to form a composite coating. After investigated the anticorrosion and paraffin controlling performance, this composite coating was demonstrated to be feasible for internal coating of pipelines. Specific researches were list as follows:
     (1) Fe3O4 was synthesized by co-precipitation method, using the FeCl3 and FeSO4 as iron sources, NH3·H2O and N2H4·H2O as precipitant system. The optimal condition were obtained, mole ratio of Fe3+:Fe2+was 1.75:1, reaction temperature was 70℃. FT-IR and XRD analysis showed that the product was pure and had typical anti-spinel structure with grain size of about 10nm. Vibrating sample magnetometer (VSM) analysis showed that the saturation magnetic field intensity per unit mass was 61.143emu/g. The modification of Fe3O4 showed that sodium dodecylbenzene sulfonate (SDBS) had a good modification effect, and the modified Fe3O4 aqueous solution dispersed well and was not hierarchical. The investigation of laser particle size analyzer showed that SDBS had significant regulatory effect to the particle size of Fe3O4, combined with FT-IR and Zeta potential analysis, it could figure out that the reason was O-O covalent bond between SDBS and Fe3O4.
     (2) Base on the synthesized Fe3O4, the composite of Fe3O4 and PTH (polythiophene) was prepared and investigated with Raman, FT-IR, EDS, TEM, Zeta and TG-SDTA. The results showed that the thiophene was successfully polymerized on the surface of Fe3O4 and the resulting composite was in the nature of core shell structure, in which the core was Fe3O4 with particle size of 14nm and the shell was PTH with thickness of 3-4nm. The composite coating was obtained with the Fe3O4/PTH composite added into alkyd varnish. Accelerated corrosion test and static paraffin control test showed that the composite coating had good performances of anticorrosion and paraffin controlling, when the mass ratio of Fe3O4/PTH composite was 0.8-1%, and the Paint adhesion and impact test results showed that the added Fe3O4/PTH composite had no influence to the adhesion, while the impact strength decreased slightly.
     (3) In order to increase the paraffin control performance, the Fe3O4 was doped with Ni and formed Ni doped Fe3O4/PTH composite. XPS analysis showed that the doped content was 0.8%in the composite. VSM analysis showed that the saturation magnetic field intensity per unit mass of the composite was 73.456emu/g, increased 20.14%compared with the undoped Fe3O4. To simulate the paraffin deposition, the solid paraffin was dissolved into the liquid paraffin, and the wax precipitation point was 40℃determined by rotational viscometer when the mass ratio of solid paraffin was 20%. At the temperature of wax precipitation point, the test plate coated with composite coating was immersed into, pulled out and weighted the weight increments again and again. The results showed that the average weight increment of alkyd varnish was 89.1mg, and that of composite coating added with Fe3O4 was 80.3mg and that of composite coating added with Ni doped Fe3O4/PTH was 74.3mg, indicating the composite coating added with Ni doped Fe3O4/PTH had the best paraffin controlling performance because the weight increments were the paraffin deposited on the test plates.
     (4) To verify the anticorrosion effectiveness of Ni doped Fe3O4/PTH composite, the comparison was carried out to the market applicated ployaniline (PANI). So the Ni doped Fe3O4/PANI composite was prepared. The electrochemical impedance spectroscopy (EIS) showed that the anticorrosion performance of Ni doped Fe3O4/PTH was comparable to the Ni doped Fe3O4/PANI.
引文
[1]National Transportation Statistics, U.S.A, Bureau of Transportation Statistics, Department of Transportation,2007
    [2]严大凡,翁永基,董绍华.油气长输管道风险评价与完整性管理.北京:化学工业出版社,2005
    [3]郎需庆,赵志勇,宫宏,刘全桢.油气管道事故统计分析与安全运行对策.安全、健康和环境,2006年10期
    [4]SHIRAKAWA H, LOUIS E J, MACDIARMID A Q et al. Synthesis of Electrically Conducting Organic Polymers:Halogen Derivatives of Polyacetylene, (CH)x. J. Chem. Soc, Chem. Commun.,1977:578-560.
    [5]HEEGER A J. Semiconducting and Metallic Polymers:The Fourth Generation of Polymeric Materials (Nobel Lecture). Angew. Chem. Int. Ed.,2001,40:2591-2611.
    [6]MACDIARMID A G. "Synthetic Metals":A Novel Role for Organic Polymers (Nobel Lecture). Angew. Chem. Int. Ed.,2001,40:2581-2590.
    [7]SHIRAKAWA H. The Discovery of Polyacetylene Film:The Dawning of an Era of Conducting Polymers (Nobel Lecture). Angew. Chem. Int. Ed.,2001,40:2574-2580.
    [8]王国建,王德海,邱军,赵立群.功能高分子材料.上海:华东理工大学出版社,2006
    [9]万梅香.微纳米结构的导电聚合物.北京:清华大学出版社,2008.
    [10]MACDIARMID A G, EPSTEIN A J. Polyanilines:A Novel Class of Conducting Polymers. Faraday Discuss. Chem.Soc.,1989,88:317-332
    [11]BURROUGHES J H, BRADLEY D D C, BROWN A R, et al. Light-Emitting-Diodes Based on Conjugated Polymers. Nature,1990,347:539-541
    [12]任丽,陈晓凤,马建江.电化学法聚吡咯膜作锂二次电池正极的电池性能.高分子材料科学与工程,2010年01期
    [13]甘礼华,赵丽,朱大章,刘明贤,陈龙武.基于聚噻吩衍生物的异质结薄膜太阳能电池.膜科学与技术,30卷,第2期,2010
    [14]王杨勇,张柏宇,王景平.本征型导电高分子电磁干扰屏蔽材料研究进展.兵器材料科学与工程,2004,27(3):54~60
    [15]蒋永锋,郭兴伍,翟春泉,丁文江.导电高分子在金属防腐领域的研究进展.功能高分子学报,15卷,第4期,2002
    [16]David W. DeBerry. Modification of the Electrochemical and Corrosion Behavior of Stainless Steels with an Electroactive Coating. J. Electrochem. Soc., Volume 132, Issue 5, pp. 1022-1026,1985
    [17]Wessling B. Passivation of metals by coating with polyaniline:corrosion potential shift and morphological changes. Advanced Materials,6:226-228,1994
    [18]Andrea Kalendova,Irina Sapurina, Jaroslav Stejskal, David Vesely. Anticorrosion properties of polyaniline-coated pigments in organic coatings. Corrosion Science 50 (2008) 3549-3560
    [19]J. Brodinova, J. Stejskalb, A. Kalendova. Investigation of ferrites properties with polyaniline layer in anticorrosive coatings. Journal of Physics and Chemistry of Solids 68 (2007)1091-1095
    [20]Andrea Kalendova, David Vesely, Jaroslav Stejskal, Miroslava Trchova. Anticorrosion properties of inorganic pigments surface-modified with a polyaniline phosphate layer. Progress in Organic Coatings 63 (2008) 209-221
    [21]Andrea Kalendova, Irina Sapurina, Jaroslav Stejskal, David Vesely. Anticorrosion properties of polyaniline-coated pigments in organic coatings. Corros Sci 50:3549-3560, 2008
    [22]Andrea Kalendova, David Vesely, Jaroslav Stejskal, Miroslava Trchova. Anticorrosion properties of inorganic pigments surface-modified with a polyaniline phosphate layer. Prog Org Coat 63:209-221,2008
    [23]B.A. Bhanvase, S.H. Sonawane. New approach for simultaneous enhancement of anticorrosive and mechanical properties of coatings:Application of water repellent nano CaCO3-PANI emulsion nanocomposite in alkyd resin. Chemical Engineering Journal,156 (2010) 177-183
    [24]井新利,王杨勇.一种聚苯胺防腐涂料的制备工艺.CN1358812,2002
    [25]井新利,王杨勇,强军锋.聚苯胺防腐涂料的制备工艺.CN1401718,2003
    [26]李季,刘健,吕金龙,王献红.一种聚苯胺防腐脂及其制备方法.CN1441039,2003
    [27]王树国,何秦,司士辉.聚苯胺/Si02复合粒子的制备及其防腐性能.精细化工,第26卷第8期,2009
    [28]何秦,司士辉,梁丰,赵坤.二氧化锰氧化法合成聚苯胺/二氧化硅复合粒子用于防腐涂料的研究.涂料工业,第39卷第2期,2009
    [29]陈为军,张德田,滕蕾,王明辉,石元昌.一种水性聚吡咯防腐涂料及其制备方法.CN101851459A,2010
    [30]Martins J I, et al. Elect rosynt hesis of homogeneous and adherent polypyrrole coatings on iron and steel elect rodes by using a new elect rochemical procedure. Synt hetic Metals, 2002,129 (3):2212228.
    [31]Tuken T, YaziciB, Erbil M. The corrosion behaviour of polypyrrole coating synt hesized in phenylphosphonic acid solution. Applied Surface Science,2006,252 (6):231122318.
    [32]Bazzaoui M et al. Sweet aqueous solution for electrochemical synthesis of polypyrrole part 1B:On copper and it s alloys. Elect rochimica Acta,2007,52 (11):356823581.
    [33]Malik M A, et al. Protective properties of hexacyanoferrate containing polypyrrole films on stainless steel. Corrosion Science,2005,47 (3):7712783.
    [34]Paliwoda-Porebska G, et al. On the development of polypyrrole coatings with self-healing properties for iron corrosion protection. Corrosion Science,2005,47 (12):321623233.
    [35]刘勇平,刘长久,吕慧丹.导电高分子聚吡咯在防腐领域的研究进展.化工新型材料,第35卷第10期,2007
    [36]Tuken T, Yazici B, Erbil M. The use of polythiophene for mild steel protection. Progess in Organic coatings,2004,51:205-212
    [37]Xin-Gui Li, Ji Li, Qing-Kai Meng, Mei-Rong Huang. Interfacial Synthesis and Widely Controllable Conductivity of Polythiophene Microparticles. J. Phys. Chem. B,113 (29), pp 9718-9727 (2009)
    [38]Xin-Gui Li, Ji Li, Mei-Rong Huang Facile. Optimal Synthesis of Inherently Electroconductive Polythiophene Nanoparticles. Chemistry-A European Journal, Volume 15, Issue 26, pages 6446-6455(2009)
    [39]陈大钧,陈馥等.油气田应用化学.北京:石油工业出版社2006,317-349
    [40]黄春芳.原油管道输送技术.北京:中国石化出版社,2003,547-559
    [41]陈佳莹.原油磁化防结蜡技术的研究.哈尔滨工业大学工学硕士学位论文,2006
    [42]唐加礼,李秀丽.油井磁防蜡技术.石油钻采工艺,1986年第5期
    [43]汪仲清.磁防蜡技术机理初探.油田地面工程,第11期第5卷,1992
    [44]Nguyen Phuong Tung, SPE, and Nguyen Van Vuong, and Bui Quang Khanh Long, and Ngo Quang Vinh, and Pham Viet Hung, Institute of Materials Science-Vietnam NCNS, and Vu Tam Hue, Petro Vietnam, and Le Dinh Hoe, Vietsov Petro. Studying the Mechanism of Magnetic Field Influence on Paraffin Crude Oil Viscosity and Wax Deposition Reductions. SPE 68749,2001
    [45]马秀波,周开学.磁处理对原油结蜡影响的机理分析.油气储运,23(4)35~39,2004
    [46]Wang Biao, Dong Lijian. Paraffin Characteristics of Waxy Crude Oils in China and the Methods of Paraffin Rermval and Inhibitim. SPE 29954 (1995)
    [47]Sergio N. Bordalo, Rafael C. Oliveira, Uincamp. Experimental Study of Oil/Water Flow with Paraffin Precipitation in Subsea Pipelines. SPE 110810(2007)
    [48]林彬、林宝章.长输管道内壁防腐涂层技术与经济分析.炼油设计,1996年,第26期第6卷;
    [49]刘纯广,行登恺.埋地高温稠油集输管道内防腐研究.油气储运,1996,第15卷第8期;
    [50]夏志,梁静华等.原油输送管道内涂层防结蜡问题研究.油气储运,2005,24(6)28-3;
    [51]张红兵,刘志林,郑云萍,崔斌.管道内涂层涂敷技术及其应用.腐蚀科学与防护技术,第15卷第2期,2003年3月;
    [52]周入刚,吴清海,刘金祯,魏连清,褚洪金,叶勇华.石油管道内涂层离心喷涂工艺技术探讨.石油机械,2009年10期
    [53]刘郁葱,曾涛.管道内涂层双组分涂料分输涂敷技术研究.化学工业与工程技术,2005年04期
    [54]张红兵,刘志林,郑云萍,崔斌.管道内涂层涂敷技术及其应用.腐蚀科学与防护技术,2003年02期
    [55]王文.胜利油田集输管道腐蚀控制技术应用现状.石油工程建设,2001年12月第6期;
    [56]赵朝辉,姚素薇.纳米Fe304磁性颗粒的制备及应用现状.化工进展,2005,24(8):865-868.
    [57]Ruoyu Honga, Jianhua Li, Jian Wang, Hongzhong Li. Comparison of schemes for preparing magnetic Fe3O4 nanoparticles. China Particuology 5 (2007) 186-191
    [58]Hironori Iida, Kosuke Takayanagi, Takuya Nakanishi, Tetsuya Osaka. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. Journal of Colloid and Interface Science 314 (2007) 274-280
    [59]JianHua Meng, GuiQin Yang, LeMei Yan, XiuYu Wang. Synthesis and characterization of magnetic nanometer pigment Fe3O4. Dyes and Pigments 66 (2005) 109-113
    [60]Maria Mikhaylova, Do Kyung Kim, Natalia Bobrysheva, Mikhail Osmolowsky, Valentin Semenov, Thomas Tsakalakos, and Mamoun Muhammed. Superparamagnetism of Magnetite Nanoparticles:Dependence on Surface Modification. Langmuir 2004,20,2472-2477
    [61]Shufeng Si, Chunhui Li, Xun Wang, Dapeng Yu, Qing Peng, and Yadong Li. Magnetic Monodisperse Fe3O4 Nanoparticles. CRYSTAL GROWTH& DESIGN 2005 VOL.5, NO.2 391-393
    [62]Haiou Qu, Daniela Caruntu, Hongxue Liu, and Charles J. O'Connor. Water-Dispersible Iron Oxide Magnetic Nanoparticles with Versatile Surface Functionalities. Langmuir 2011,27, 2271-2278
    [63]Hyoung-Ho Lee, Shoichi Yamaoka, Norihiro Murayama, Junji Shibata. Dispersion of Fe3O4 suspensions using sodium dodecylbenzene sulphonate as dispersant. Materials Letters 61(2007)3974-3977
    [64]R.Y. Hong, J.H. Li, X. Cao, S.Z. Zhang, G.Q. Di, H.Z. Li, D.G. Wei. On the Fe3O4/Mn1-xZnxFe2O4 core/shell magnetic nanoparticles. J Alloys Compd 2009,480: 947-953
    [65]Ping Xu, Xijiang Han, Hongtao Zhao, Zhihua Liang, Jinfu Wang. Effect of stoichiometry on the phase formation and magnetic properties of BaFe12O19 nanoparticles by reverse micelle technique. Materials Letters 62 (2008) 1305-1308
    [66]Ugur Topal. Evolution of Structural and Magnetic Properties of BaFe12O19 with B2O3 Addition. CHIN. PHYS. LETT. Vol.27, No.11 (2010) 117503
    [67]Jun Wang, Qianwang Chen, Shan Che. Magnetic properties in BaFe12O19 nanoparticles prepared under a magnetic field. Journal of Magnetism and Magnetic Materials 280 (2004) 281-286
    [68]Ching-Chih Chang, Yi-Chuan Chenb,, Gaw-Pying Wang, Chyi-Ching Hwang and Cyuan-Cing Yeh. Synthesis of Nanocrystalline SrFe12O19 Particles Doped with SrTiO3 via Combustion Synthesis for Microwave Absorption Applications. Journal of the Chinese Chemical Society,2010,57,976-981
    [69]翁诗甫.傅里叶变换红外光谱分析(第二版).北京:化学工业出版社,2010
    [70]孟令之,龚淑玲,何永炳.有机波谱分析.武汉:武汉大学出版社,2009
    [71]王斌,赵红坤.草酸钾一过氧化氢加合物的合成及结构表征.德州学院学报,第24卷第6期2008年12月,63-64
    [72]Francis R. Dollish, William G. Fateley, Freeman F. Bentley. Characteristic Raman frequencies of organic compounds. Wiley, New York,1974
    [73]WANG Hong Min, TANG Guo Qiang, JIN Sheng Song, BIAN Cheng Xiang, HAN Fei Fei, LIANG Dan, XU Xue Cheng. Efect of the Preparation Condition on the Structure and Conductive Properties of Polythiophene. ACTACH1MICA SINICA 65,200721: 2454-2458
    [74]Aysegul Uygun, Orhan Turkoglu, Songul Sen, Ersay Ersoy, Ayse Gul Yavuz, Gokhan Guven Batir. The electrical conductivity properties of polythiophene/TiO2 nanocomposites prepared in the presence of surfactants. Current Applied Physics 9:866-871,2009
    [75]张玉亭,吕彤.胶体与界面化学.中国纺织工业出版社,2008
    [76]Andrea Kalendova, Irina Sapurina, Jaroslav Stejskal, David Vesely. Anticorrosion properties of polyaniline-coated pigments in organic coatings. Corros Sci 50:3549-3560 2008
    [77]J. MA, Y. JI, M. TIAN. Preparation and characterization of La-and Ni-doped magnetite nanoparticles. Materials Science-Poland, Vol.27, No.4/1, (2009)
    [78]D. Tripathy and A. O. Adeyeye, C. B. Boothroyd and S. Shannigrahi. Microstructure and magnetotransport properties of Cu doped Fe3O4 films. JOURNAL OF APPLIED PHYSICS 103,07F701,(2008)
    [79]XueWang, Chen Guo Hu, Yi Xi, Chuan Hui Xia, Xiao Shan He. Al-doped Fe3O4 Nanoparticles and Their Magnetic Properties. J Supercond Nov Magn (2010) 23:909-911
    [80]D. Tripathy, A.O. Adeyeye, S.N. Piramanayagam, C.S. Mah, Xingyu Gao, A.T.S. Wee. Effect of cobalt doping concentration on the structural and magnetic properties of Fe3O4. Thin Solid Films 505 (2006) 45-49
    [81]Yuan Pu, Xia Tao, Xiaofei Zeng, YuanLe, Jian-Feng Chen, Synthesis of Co-Cu-Zndoped Fe3O4 nanoparticles with tunable morphology and magnetic properties. Journal of Magnetism and Magnetic Materials,322 (2010) 1985-1990
    [82]LIU Xing-Chen, DANG Yong-Qiang, WU Yu-Qing. A Convenient Method to Synthesize Surface Amino-Coated Superparamagnetic Fe3O4 Nanoparticles. Acta Phys.-Chim. Sin.2010, 26(3):789-794
    [83]Mansfeld F. Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings, Journal of Applied Electrochemical.1995,25 (3):187
    [84]Bonora P L, Deflorian F, Fedrizzi L. Electrochemical impedance spectroscopy as a tool for investigating under paint corrosion. Electrochimica Acta.1996,41:1073
    [85]张鉴清,曹楚南,电化学阻抗谱方法研究评价有机涂层.腐蚀与防护,1998,19(3):99-104
    [86]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.
    [87]吴剑锋,王结良,吕涛,王兆军.苏海涛电化学阻抗谱研究三种涂层体系的耐蚀性.腐蚀与防护.第31卷第10期2010年,760-762
    [88]莫尊理,冯超,赵仲丽,王君,郭瑞斌.非均相超声法制备纤维素/聚苯胺导电复合材料及其导电性能研究.功能材料,2010,2(41),311-317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700