不同井深用膨胀筛管基管材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了膨胀筛管的组成、膨胀工艺、膨胀工具及材料的选择等问题,并针对不同井深选择了三种材料作为膨胀筛管基管进行实验,实验包括金相分析、力学性能分析、断口形貌分析、腐蚀电化学分析及有限元分析。
     实验研究表明在室温条件下,15CrMo钢、316L不锈钢和21Cr5Mn24Al2Si钢的塑性都能满足制备膨胀筛管基管的最基本要求,但在不同的井下温度场条件下表现出不同的结果。即,三种膨胀筛管基管材料的力学性能都不同程度地受到井下温度场的影响。15CrMo钢的抗拉强度(Rm)、屈服强度(Reh)和延伸率(A)受井下温度场的影响情况不同,随着温度的升高,抗拉强度(Rm)和屈服强度(Reh)都略有升高,而延伸率(A)且以较大的幅度下降;316L不锈钢和21Cr5Mn24Al2Si钢的抗拉强度(Rm)、屈服强度(Reh)和延伸率(A)受井下温度场的影响较大,随着温度的升高,抗拉强度(Rm)、屈服强度(Reh)和延伸率(A)的下降幅度都较大。三种材料中,316L不锈钢最耐腐蚀,21Cr5Mn24Al2Si钢次之,15CrMo钢的耐腐蚀性最差。有限元分析计算结果中,15CrMo钢、316L不锈钢和21Cr5Mn24Al2Si钢在不同膨胀率下膨胀后的等效应力分布相类似,最大值相差不大,其主要分布在割缝尖端的附近;温度和膨胀率对15CrMo钢膨胀时和膨胀后的性能影响较小,膨胀率对316L不锈钢和21Cr5Mn24Al2Si钢膨胀时和膨胀后的性能影响较小,而温度对其影响较大;有限元分析的计算结果是实验室实验结果的90%,所以有限元分析的计算结果是可靠的,能对现场施工起到指导意义。
     最后,通过实验和有限元分析得出,15CrMo钢、316L不锈钢和21Cr5Mn24Al2Si钢都可以制备膨胀筛管基管,但其应用的井深和井况不同。15CrMo钢是一种耐热的珠光体钢,其能耐550℃以下的高温,但耐腐蚀性较差,只能适用于腐蚀较轻的油气井;316L不锈钢是一种奥氏体不锈钢,其耐腐蚀性能较好,但强度受温度的影响较大,其主要用于常规井况的井中,一般井深在1000-2000米;21Cr5Mn24Al2Si钢的综合机械性能较好,不但强度和延伸率较高,而且还具有较好的耐腐蚀性能,故其制备的膨胀筛管基管能用于腐蚀性较强和深井及超深井。
The article introduces the constitution of expansion screen pipe, expand craft, and selection of materials. Followed by it, the author selects three materials as inflation sieve tube base tubes to do the experiment. It includes metallographic analysis, mechanical property analysis, Fracture morphology analysis and fem analysis.
     According to experimental study, at room temperature conditions the ductility of 15CrMo steel、316L stainless steel and 21Cr5Mn24A12Si steel, all meet demand for preparation of inflation sieve tube base tube, but in different well temperature conditions show different results. The mechanical property of three inflation sieve tube base tubes was influenced by well temperature in different extent. The Rm、Reh and A of 15CrMo steel has different influence by temperature, as the temperature increases, the Rm and Reh have a tiny increases, and the A has a larger amplitude drop; the Rm、Reh and A of 316L stainless steel and 21Cr5Mn24Al2Si steel are severely influenced, as the temperature increases, the Rm、Reh and A have a larger amplitude drop. In finite element analysis, equivalent stress distribution of 15CrMo steel and 21Cr5Mn24A12Si steel, and 316L stainless steel are the same after different expansibility, the maximums of them are totally the same and are distributed around kerf spiry; for the 15CrMo steel, temperature and expansibility have a tiny influence on performance, while, for 21Cr5Mn24A12Si steel and 316L stainless steel, expansibility also has a tiny influence on performance, temperature is on the opposite side; calculated results of fem analysis is 90.08% of the results in laboratory, therefore, it's reliable and can be used in site operation.
     Finally, according to experiment and fem analysis,15CrMo steel、316L stainless steel and 21Cr5Mn24A12Si steel can preparation expansion screen base pipe, but their application different well depth and well conditions.15CrMo steel is a kind of heat-resistant pearlite steel, it can resist 550℃, but it cannot resist corrosion, so can only applicable to lighter corrosion wells.316L stainless steel is a kind of austenitic stainless steel, the corrosion resistance performance is better, but by the influence of the temperature of the intensity bigger, so can applicable to the not complex wells and the well depth in 1,000 to 2,000 meters. 21Cr5Mn24A12Si steel has good mechanical performance, not only strength and elongation is higher, but also has good corrosion resistance, so it can be used to the complex well、deep well and ultra deep well.
引文
[1]西部石化网新闻中心.2010,2,23.
    [2]杨建平.辽河油田稠油防砂实验研究与防砂工艺决策[D].中国石油大学,2007.
    [3]王金凤,邓金根,沈琛.胜利油田弱胶结稠油藏岩石破坏准则及出砂预测[J].断块油气田.2001,8(2):19~22.
    [4]雷昊.稠油油藏注蒸汽开采储层伤害研究[D].西南石油大学,2006.
    [5]陈晓喜,杨志斌,刘新福,等.稠油冷采技术在河南油田的应用[J].2002,29(4):96~96.
    [6]叶建平,唐书恒.中国煤层气资源[J].中国煤层气,1998,(2):25~28.
    [7]郑玉柱,韩宝山.煤层气采收率的影响因素及确定方法研究[J].天然气工业,2005,25(1):20~23.
    [8]陈多福,姚伯初,赵振华,等.珠江口和琼东南盆地天然气水合物形成和稳定分布的地球化学边界条件及其分布区[J].海洋地质与第四纪地质,2001,21(4):73~78.
    [9]于兴河,张志杰,苏新,等.中国南海天然气水合物沉积成藏条件初探及其分布[J].地学前缘,2004,11(1):311~315.
    [10]万仁傅,罗英俊.采油技术手册(第七分册防砂技术)[M].北京:石油工业出版社,1991.
    [11]Stein.N, Kelly.J, Baldwin.WF.Sand Production Determined from Noise Measurement [J]. SPE 3498,1972.
    [12]H.Bahaa, E.Ragaee. Sand Control Application in Mediterranean Sea Pliocene Gas Reservoirs—Case Study [J]. OTC 17790,2006.
    [13]Jon Carlson, Derrel Gurley, George King, et al. Sand Control:Why and How? [J].Oilfield Reviewed, October 1992.
    [14]S.P.Beare, T.J.Ballard. Expandable Sand Screens and Drilling Fluids:Laboratory Testing For Successful Fiel Application [J].SPE 98297,2006.
    [15]J.W.Spurlock, D.B.Demski. A New Approach to the Sand Control Problem—A Multi-Layer, Wire-Wrapped Sand Screen [J]. SPE 4014,1972.
    [16]荣莽.八面河油田TBS筛管完井的水平井生产现状及对策[J].石油天然气学报.2005,37(3):542~543.
    [17]A.J.Bond, C.G.Blount, R.F.Keese, et al. Novel Approaches to Profile Modification in Horizontal Slotted Liner at Prudhoe Bay, Alaska [J]. SPE 38832,1997.
    [18]J.Arukhe, R.Senyk, N.Adaji, et al. Openhole Horizontal Completions in Niger Delta [J]. SPE,100495,2006.
    [19]孟庆昆,谢正凯,冯来.可膨胀套管技术概述[J].2003,26(4):67~68.
    [20]张文华,刘国辉,胡国清.可膨胀管技术及其应用[J].石油钻采工艺,2001,23(1):28~31.
    [21]杨传勇.国外可膨胀套管技术的发展及应用[J].石油机械,2006,34(10):74~77.
    [22]Mark van Buren. Trial of an Expandable Sand Screen to Replace Internal Gravel Packing [J]. SPE/IADC 57565,1999.
    [23]李天降,张建军,赵平.膨胀筛管防砂—机械防砂新思路[J].海洋石油,2004,24(2):78~80.
    [24]陈功剑,李春福,宋开红.实体膨胀管工具优化分析[J].石油机械,2009,37(11):29~32.
    [25]Robert L.Cuthbertson, Annabel Green, John A.G.Dewar, et al.Completion of an Underbalance Well Using Expandable Sand Screen for Sand Control [J].SPE/IADC 79792,2003.
    [26]Oladele O.Owoeye, Leste.O.Aihevba, R.A.Hartmann, et, al. Optimization of Well Economics By Application of Expandable Tubular Technology [J]. IADC/SPE 59142, 2000.
    [27]Paul Metcalfe.Expandable Technology:The first then years [J]. OTC 14214,2002.
    [29]Jean-Noel Furgier, Ryad Souilah, Eric Delattre. Different Applications of Exoandable Screen Through Three Case Studies [J]. SPE 121543,2009.
    [29]Stephen Willson,Tony Crook, Jian Guo Yu, et al. Assuring the Mechanical Integrity of Expandable Sand Screens [J]. OTC 14314,2002.
    [30]Alex Weekse, Steve Grant, Rob Urselmann. Expandable Sand Screen:Three New World Record in the Brigantine Field [J]. IADC/SPE 74549,2002.
    [31]Matw Hackworth,Craig Johnson,et al.Development and First Application of Bistable Expandable Sand Screen[J].SPE86425,2004.
    [32]Mir Rezaul, M.Zaki Awang, L.Umar.First Successful Implementation of Expandable Sand Screen Technology In An Open Hole Horizontal Well Located In Baram Field,Offshore Malaysia—A Case Study [J]. SPE 84914.
    [33]Bobby D.Sanford, Michael J.Bednarz, Chris Palmer, et al. Case History:First Installation of an Expandable Sand-Screen Completion in the Gulf of Mexico [J].OTC 13282,2001.
    [34]A.Hooshmandkoochi, F.Ghorbani. First Installation of an Openhole Expandable Sand-Screen Completion in the Iranian Oil Field Leads to Operation Success and Production Enhancement—A Case History [J]. SPE 106972,2007.
    [35]练章华,刘永刚,孟英峰,等.膨胀管力学研究[J].天然气工业,2004,24(9):54~56.
    [36]练章华,施太和,杨龙,等.膨胀套管计算机仿真分析[J].天然气工业,2003,23(4):41~43.
    [37]练章华,施太和,韩建增.膨胀套管摩擦系数与轴向位移的模拟研究[J].石油机械,2002,30(1):1-3.
    [38]刘永刚,练章华,李辉荣.膨胀管金属流动行为的计算机模拟研究[J].石油机械,2004,32(10):4-7.
    [39]吴大康,王长宇,李前春.可膨胀管修复套损技术研究与应用[J].石油机械,2007,35(8):41-43.
    [40]马勇,李学源,付申,等.可膨胀套管技术发展及在吐哈油田的应用[J].石油矿场机械,2007,36(12):78~81.
    [41]张新旭,魏学成,张令存.膨胀管技术在通61-侧162井的应用[J].石油钻采工艺,2005,27(2):71~73.
    [42]樊奖平,张高峰,赵海军,等.实体膨胀管补贴技术在大港油田的应用[J].钻采工艺,2008,31(4):143~145.
    [43]张建乔,刘永红,吕广忠,等.可膨胀筛管外壳膨胀性能的数值分析[J].工程设计学报,2007,14(1):48~51.
    [44]朱海波,王绍先,唐明,等.可膨胀割缝管结构设计有限元研究[J].石油机械,2008,36(12):23~26.
    [45]J.L.Wang, GRen. An Alternative Wellbore Stabilization and Sand Control Technology—Application of Expandable Sand Control System in ulti-lateral Wells [J].SPE 80445,2003.
    [46]张建兵,施太和,练章华.钻井膨胀管膨胀过程中不均匀变形的试验研究[J].石油机械,2002,32(7):1-4.
    [47]Juanita Cassidy and Chuck Butterfield. Electrochemical Investigation of Oilfield Fluid Corrosion on Expanded Casing [J] CORROSION 2002, April 7-11,2002, Denver, Co.
    [48]许瑞萍,刘洁,张玉新,等.石油膨胀管材料的设计准则[J]石油机械,33(2005),11.28~31.
    [49]Maddin R.A history of martensite, some thoughts on the early hardening of iron,in martnesite[J]. ASE.International.1992,11-19.
    [50]徐祖耀.马氏体相变与马氏体第二版[M].北京:科学出版社,1999.
    [51]郭可信.金相史话(3)[J].材料科学与工程.2001,19(2):2~8.
    [52]徐祖耀.材料热处理的进展和瞻望[J].材料热处理学报,2003,24(1):1~4.
    [53]Matthew Hackworth, Craig Johnson, Juliane Heiland, et al.Development and First Application of Bistable Expandable Sand Screen[J].SPE 84265,2003.
    [54]Alex Weekse, Steve Grant, Rob Urselman.Expandable Sand Screen:Three New World Records in the Brigantine Field[J]. IADC/SPE 74549,2002.
    [55]Kevin Bourassa, Tove Husby, Rick Watts.Development, Testing, and Field Deployment of a Hydraulically Expanded Solid Liner Hanger in a Casing Directionally Drilled Well in Norway[J]. IADC/SPE 112561,2008.
    [56]H.Asahi,E.Tsuru,T.Motoyoshi,et al.Effect of Metallurgical Factors on Expandability and Mechanical Properties after Expandbale Tubular.Corrosion[J].2005.
    [57]王从曾.材料性能学[M].北京:北京工业出版社,2001.
    [58]R.D.Mack.The Effect of Tubular Expansion on the Mechanical Properties and Performance of Selected OCTG-Results of Laboratory Studies[J].OTC 17622,2005.
    [59]Andrei Filippov,Robert Mack,Lance Cook,et al.Expandable Tubular Solutions[J].SPE 568500,1999.
    [60]N.C.Eisinger, B.C.Puckett. Corrosion Resistance and Predicted Fitness for Use of Expandable Pipe Manufactured from Super-Austenitic Alloy 27-7Mo[J].corrosion,2005.
    [61]柴田·俊夫.不锈钢腐蚀研究的展望(一)[J].(设备管理与维修),1997,(7):43~45.
    [62]屈兴胜,林成,刘志林.奥氏体不锈钢晶间腐蚀[J].辽宁工学院学报,2007,27(1):45~50.
    [63]黄一桓.奥氏体不锈钢晶间腐蚀机理及预防措施[J].中国科技信息,2006,(16):88~90.
    [64]Aleksy A. Konieezny.Technological and Microstructural Aspects of the Automotive TRIP Steels[J].Processing and Fabrication of Advanced Materials Ⅺ,2003,15:345-359.
    [65]O. Grassel, G. Frommeyer, C. Derder et al. Transformation and mechanical properties of Fe-Mn-Si-Al TRIP-steels[J]. Phys France,1997,5:383.
    [66]S. Vercammen, B. Blanpain, P. Wollants et al. Cold rolling behaviour of all austenitic Fe-30Mn-3Al-3Si TWIP steel:the importance of deformation twinning[J]. Acta Materialia,2004, V0152:2006.
    [67]S. Vercammen, B. Blanpain P. Wollants. Active deformation mechanisms of an austenific Fe.30Mn.3A1.3 Si TWIP steel during cold rolling:the importance of deformation twinning[J]. Transformation and deformation mechanisms in advanced high strength steels,2003,14:53-66.
    [68]K.S.Ragharan, A. S. Sastri. Nature of the work-harding behavior in hadfield's manganese steel[J]. Tran. Met. Soc. AIME.1969,245:1569-1575.
    [69]S. Zaefferer, J. Ohlert, W. Bleck. A study of microstructure, transformation mechanisms and correlation between microsturcture and mechanical properties of a low alloyed TRIP steel[J]. Acta Materialia,2004(52):2765-2778.
    [70]Alberto Lopez Manriquez, Augusto L.Podio, Kamy Sepehrnoori. Modeling of Stability of Junctions in Multilateral Wells using Finite Element[J]. ARMA 08-364,2008.
    [71]Jim B.Surjaatmadja. Finite Element Analysis Shows Screenout Development and Cement Bond Destruction in Horizontal Wells[J].SPE36867,1996.
    [72]T.Aktan. Finite-Element Analysis of Temperature and Thermal Stresses Induced by Hot Water Injection[J]. SPE 5765,1978.
    [73]L.Y.Chin,C.T.Montgmery. A Numerical Model for Simulating Solid Waste Injection in Soft Rock Reservoirs[J]. SPE 90507,2004.
    [74]郑晓晶,周国强,郭奕珊.海洋石油钻机井架动力特性分析[J].大庆石油学研学报,2005,29(3):53~54.
    [75]秦太验,柳春图,段梦兰,等.具有裂纹损失桩腿的海洋石油平台有限元分析[J].海洋工程,2000,18(3):15~19.
    [76]刘金梅,周国强,韩国有等.波浪作用下海洋石油井架模态参数识别与承载力评价[J].海洋工程,2009,27(1):22~27.
    [77]孙姜锐.石油套管弯曲变形的仿真分析[J].现代制造技术与装备,2009(190):9~15.
    [78]陈明凯,樊庆文.石油钻机天车的瞬态分析[J].石油矿场机械,2008,37(6):64~66.
    [79]Stephen Willson, Tony Crook, Jian Guo Yu. Assuring the Mechanical Integrity of Expandable Sand Screens[J]. OTC 14314,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700