基于碰撞与搁浅事故下油船的定量风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油船在航行过程中不可避免会发生碰撞、搁浅等海损事故。由于油船舷侧的防护较少,受到猛烈冲击后,会造成严重损伤,易引发溢油事故,且一旦遇到火源,极有可能升级为火灾和爆炸事故,危及设备和人员的安全,并对环境造成极大的污染。定量风险评估技术可以科学地预测事故发生概率及破坏程度,从而降低事故风险。近年来,定量风险评估技术在船舶与海洋工程领域内引起广泛的关注,建立油船运输风险评估体系,对提高油船运输的安全性具有非常重要的意义。
     本文在研究风险评估理论的基础上,探讨了风险接受准则,对船舶碰撞、搁浅事故进行了风险识别;研究了事故发生概率的计算方法,建立了船舶碰撞、搁浅的计算模型,编写了相应的计算程序,并针对故障树分析技术的不足,引入贝叶斯网络技术,对导致船舶搁浅的人因可靠性因素进行分析;参照环境保护行业标准、利用NEPTUNE软件,分别对油船溢油事故后果进行了计算,预测了事故的影响范围,提出了降低风险的措施;结合发生的碰撞事故实际案例,实现了油船溢油风险的模糊综合评判。
     本文主要工作及结论如下:
     (1)阐述了风险评估理论,并对油船碰撞、搁浅事故进行了风险识别;比较了各种分析研究方法的优缺点,并从概率和后果两方面对抵御风险的措施进行了研究;探讨了个人风险、社会风险、环境风险三方面风险可接受准则及其制定方法。
     (2)结合统计资料,分析了油船碰撞、搁浅事故发生的特点;基于二项式分布理论,预测了某典型海域的年度重大事故发生概率。
     (3)依据P.T.Pedersen和Fujii碰撞模型、参考DNV过往船只与海洋平台碰撞风险的分析方法,建立了船舶碰撞、搁浅事故的数学计算模型,编写了相应的运算程序,计算了船舶在不同角度下发生碰撞事故和不同航道宽度发生搁浅事故的概率,并发现船舶碰撞事故发生的概率随着角度的增加呈指数增长,船舶搁浅事故发生的概率随着航道宽度的增加呈指数递减,结果与统计资料相一致。
     (4)针对人因可靠性在影响船舶碰撞、搁浅的因素中占有主导地位,在研究故障树分析方法的基础上,引入了贝叶斯网络对导致搁浅事故的人为原因进行定量分析,分析出了导致事故发生的最有可能的事件顺序组合,结果与调查统计相符,并从降低事件发生概率考虑,提出了减灾的措施。
     (5)分析了溢油对环境的危害和对人类生产活动的影响,参照环境保护行业标准对不同规模的溢油速率、油膜面积和油膜平均厚度进行了计算,并运用NEPTUNE软件与之进行对比;预测了火灾的发生概率,探讨了火灾的影响范围;从降低事故后果方面考虑,结合船舶特点,提出一种新型船用防火结构,取得了较好的防火效果。
     (6)基于模糊综合评判理论,引入了溢油量、海域类型、油品特性、油船状况、气候海况、人员状况等相关因素作为模糊综合评判参数一级指标,并在此基础上进一步划分出了二级指标,运用了层次分析法,计算了各参数的权重系数,实现了油船溢油危害风险的模糊综合评判。
Marine accident is inevitable to aviod, such as collision and grounding accident, during oil tanker voyage. As oil tankers’side less protection, affected by the impact, oil tankers have been violently shaken, which may cause serious damage, easily lead to oil spills, and the event of fire. It is highly likely to escalate into a fire and explosion accidents, endangering the safety of equipment and personnel, and significant environmental pollution. Quantitative risk assessment techniques could scientifically predict the probability of accident and the extent of damage, thus reducing the risk of accidents. In recent years, it has aroused widespread concern in marine and ocean engineering field. It is significant important to establish the risk assessment of tanker transportation system, to improve the security of tanker transportation.
     This paper summarizes the theory of risk assessment methods and risk acceptance criteria. Risk of vessel collision and grounding accidents are identified. Probability of accidents is calculated, in virtue of computer program. On account of fault tree analysis defect, Bayesian network technology is introduced to study human and organization factors. Based on industry standards and with NEPTUNE software, the consequences of oil spills from oil tanker are simulated, realized the scope of the accident and made a scientific prediction of risk reduction measures. Combined a collision accident occurred actually, study on multi-level fuzzy comprehensive evaluation based on risk analysis.
     In this paper, the work and conclusions were as follows:
     (1) Seting out the theory of risk assessment, and tanker collision, grounding accidents risk identification; compares the advantages and disadvantages of various methods of analysis, and from both the probability and consequences of the measures of risks research; studies on the criteria of personal risk, social risk, environmental risk, after the vessel failure, for the acceptability of the ship and the development of methodologies.?
     (2) According to statistics on oil tanker accidents, the oil tanker collision, grounding of the accident characteristics is analyzed; based on the binomial distribution theory, the waters of a typical annual probability of occurrence of major accidents is predicted.
     (3) In accordance with P.T.Pedersen and Fujii collision model, refer to DNV passing ships and marine platforms collision risk analysis methods, the mathematical calculation model of vessel collision, grounding accidents is established, and computing programs are written to calculate the vessel at different angles collisions and different channel widths of the probability of an accident occurring grounding, which be found that the probability of ship collision accident increases exponentially as the perspective of growth, the probability of ship grounding incidents as the channel width increases exponentially decreasing, results and statistical data consistent.
     (4) As human and organization errors analysis is a dominant position of vessel collision factors. Bayesian network is introduced to make a quantitative analysis about vessel grounding on account of fault tree analysis defect, list the most likely sequence of events, put forward risk reduction measures, and from reducing the probability of events to consider proposed mitigation measures.
     (5) Analysis of the oil spill on the environment hazards and human impact of production activities, environmental protection industry standards and NEPTUNE software are used to calculate parameters such as oil spills speed, simulate the expanded scope. Then the probability and range of fire occurrence is predicted, proposing a new type of marine fire protection structures from reducing the accident consequences which achieved good fire protection.
     (6) On the basis of the theory of fuzzy comprehensive evaluation, six parameters, the quantity and character of oil, type of the sea, tanker condition, weather and human factors, have been introduced as 1st index, further divided into the 2nd index. The Analytic Hierarchy Process is used to calculate the weight coefficients of each parameter to achieve a tanker oil spill Fuzzy Comprehensive Evaluation of risk harm.
引文
[1]张圣坤,白勇,唐文勇.船舶与海洋工程风险评估[M].北京:国防工业出版社,2003:2-15.
    [2] S. Aksu. Rational approach in accounting for environmental damage due to tanker accidents[R]. Glasgow.2007.
    [3] Keisha Huijer. Trends in oil spill from tanker ship 1995-2004[C]. International Tanker Owners Pollution Federation. London. 2005.
    [4] Dagmar Schmidt Etkin. Analysis of oil spill trends in the United States and worldwide[C]. 2001 International oil spill conference. Massachusetts 2001. 1291-1300.
    [5]王自力,顾永宁.船舶碰撞研究的现状和趋势[J].造船技术,2000,(4):7-12.
    [6] Fujii.Y.Yamanouchi, H. & Mizuki, N. Some Factors Affecting the Frequency of Accidents in Marine Traffic. II– The Probability of Stranding and III– The Effect of Darkness on the Probability of Collision and Stranding. Journal of Navigation 27(1974)2, pp. 239-247.
    [7] Preben Terndrup Pedersen , Shengming Zhang. Collision Analysis for MS DEXTRA[R]. SAFER EURORO Spring meeting. 1999
    [8] Macduff, T. The probability of vessel collisions [J]. Ocean Industry 1974, pp. 144-148.
    [9] Michael D. Amrozowicz, Alan Brown, Michael Golay. A Probabilistic Analysis of Tanker Groundings. The Proceedings of the Seventh (1997) International Off shore and Polar Engineering Conference [C]. USA: International Society of Off shore and Polar Engineers, 1997. 313- 320.
    [10] William H.Moore. The Grounding of Exxon Valdez: An Examination of the Human and Organizational Factor[R]. USA: Department of Naval Architecture & Offshore Engineering, University of California at Berkeley.1990.
    [11] DET NORSKE VERITAS. Risk Assessment of Pipeline Protection. Norway, DET NORSKE VERITAS.2001.24-29.
    [12] Rolf Skjong. Criteria for establishing risk acceptance [J]. Safety and Reliability, 2003:1461-1468.
    [13] Rolf Skjong. Experience with the use of risk assessment in IMO [J]. Safety and Reliability, 2003:1453-1460.
    [14] D.Vassalos, D.Konovessis. An implementation of a life-cycle risk-based design for safety [J]. Safety and Reliablity, 2003: 1587-1594.
    [15] Brad Judson. A tanker navigation safety system[R]. British.2007.
    [16]陈刚.船舶结构碰撞与搁浅风险分析[D].上海:上海交通大学博士论文.2002.
    [17]陈刚,张圣坤.船舶搁浅概率的模糊事件树分析[J].上海交通大学学报.2002, 36 (1):112-116.
    [18]陈刚,张圣坤.海洋工程人因可靠性研究进展[J].海洋工程,2000,18(4):50-53.
    [19]李庆典,唐文勇,张圣坤.海洋工程风险接收准则研究进展[J].海洋工程,2003,21(5):96-102.
    [20]方祥麟,姚杰,卓永强.船舶交通及操纵安全系统评价模型与方法[M].大连:大连海事大学出版社. 2003:176-220.
    [21]田海潮.京唐港船舶溢油风险评价[D].大连:大连海事大学硕士论文. 2006.
    [22]李伟.海上船舶溢油后危害程度评价研究[D].大连:大连海事大学硕士论文.2008.
    [23]宁庭东.船舶油污事故的损害评估及应急处理[D].大连:大连海事大学硕士论文.2006.
    [24]于桂峰.船舶溢油对海洋生态损害评估研究[D].大连:大连海事大学硕士论文.2007.
    [25]施欣,陈维皓,赵文朋,周舫震.基于溢油模拟的船舶溢油污染风险评估[J].系统仿真学报2007,19(13):3094-3100.
    [26]刘翠红.上海港水域船舶溢油事故分析及发展趋势预测[D].上海:上海海事大学硕士论文.2007.
    [27]汪海成.海底管线系统偶然性载荷作用下的风险评估[D].天津:天津大学硕士学位论文.2003.
    [28]杨怿,郭振邦.人误因素分析在船舶撞击立管概率计算中的应用[J].中国海洋平台. 2006, 22(3), 40-43.
    [29]肖建勇.海洋平台安全风险分析方法研究[D].天津:天津大学硕士学位论文,2003.
    [30]李刚.风险评估技术及其在海上平台的应用[J].内江技术,2006(4):159.
    [31]孙彦杰.基于火灾、爆炸灾害下海洋平台定量风险评[D].镇江:江苏科技大学硕士学位论文,2008,22-23.
    [32]刘海燕.偶然载荷作用下海底管道系统油气泄漏风险评估[D].镇江:江苏科技大学硕士学位论文,2009,9-10.
    [33] Jan Erik Vinnem. Offshore Risk Assessment [M]. Norway, Kluwer Academic Publishers.1999.
    [34]金果.可燃性气云爆炸研究[D].大连:大连理工大学硕士学位论文.2000.
    [35]翁永基.油气管道泄漏事故的定量风险评价[J].石油学报,2004(5):108~112.
    [36]杜夏英.蓬莱19-3井口平台风险研究[D].天津:天津大学硕士学位论文,2002.
    [37]高丹,寿建敏.模糊综合评价法在船舶溢油事故定级中的应用[J].船舶,2007,4:18-21.
    [38] Torgeir Moan. Accidental Actions [R]. Institute for Marine Konstruksjoner Department of Marine Structures, 2002.
    [39]秦岭,陈利琼,陈康,油气管道风险接受准则[J].天然气与石油,2007,25(2).
    [40] Brown, A.J., Optimum Risk Tanker (ORT): A Systematic Approach to a TAPS Tanker Design[R], Ship Structure Committee (SSC) Symposium 2000, Arlington, VA, July, 2000.
    [41]孙雪景.渤海海域船舶溢油风险管理框架的研究[D].大连:大连海事大学硕士论文.2007.
    [42] Papanikolaou, E Elipoulou, N Mikelis, S Aksu, S Delautre. Casualty Analysis of Tanker[R]. The Royal Institution of Naval Architect. 2006.
    [43]金海明.宁波港油船溢油风险评估应用研究[D].上海:上海海事大学硕士论文.2006.
    [44]洪承礼.港口规划与布置(第2版)[M].北京:人民交通出版社. 2005.
    [45] Jutta Ylitalo. Ship-ship collision probability of the crossing area between Helsinki and Tallinn[R]. Helsinki University of Technology. 2009.
    [46] Amrozowicz M D. The quantitative risk of oil tanker groundings [D]. Massachusetts: Department of Ocean Engineering, Massachusetts Institute of Technology, 1996.
    [47]张力,黄曙东,何爱武,杨洪.人因可靠性分析方法[J].中国安全科学学报,2001,11(3),7.
    [48]肖国清,陈宝智.人因失误的机理及其可靠性研究[J].中国安全科学学报,2001,11(1),23-25.
    [49]刘斐,刘茂.城市输气管线火灾事故的风险定量计算[J].安全与环境工程.2006(12).63-65.
    [50]赖建波,杨昭.高压燃气管道破裂的定量风险分析[J].天津大学学报,2007(5):589-593.
    [51]韩圣章.海上油气开发工程定量风险评估方法研究[D].天津:天津大学硕士学位论文,2002.
    [52]言茂松.贝叶斯风险决策工程[M].北京:清华大学出版社.1989.
    [53] Mark S. Sanders, Ernest J. McCormick. Human Factors in Engineering and Design [M]. McGraw—Hill Companies Inc, 2002.
    [54]谢斌,张明珠,严于鲜.贝叶斯网络对故障树方法的改进[J].绵阳师范学院学报,2004,23(2):29-33.
    [55]杨晓东.基于贝叶斯网络的配电网可靠性评估[D].北京:华北电力大学硕士论文.2003.
    [56] Minding R D. Influence of rotary inertia and shear on flexural motions of isotropic elastic plates [J]. J ApplMech, 1991, 18 (1): 31- 38.
    [57]欧进萍,段忠东,陆钦年.渤海海域风特性统计分析[J].海洋通报,1997,16(1):20-28.
    [58]牟善军.海上石油工程风险评估技术研究[D].青岛:中国海洋大学博士论文. 2006:60-82.
    [59]樊海涛.船舶溢油原因和影响因素分析[J].科技资讯, 2008,32:70.
    [60]郑津洋,马夏康,尹谢平.长输管道安全[M].北京:化学工业出版社.153-171.
    [61]中华人民共和国环境保护行业标准[S].国家环境总局HJ / T169-2004:7.
    [62] ITOPF. Aerial observation of oil-Technical information paper NO.1[R].London 2009.
    [63] Apostolos Papanikolaou1, Eleftheria Eliopoulou, Nikos Mikelis. Impact of Hull Design on Tanker Pollution[R]. The 9th International Marine Design Conference-IMDC06, 2006.
    [64]赵土英.原油码头溢油与火灾爆炸事故原因分析[J].安防科技.2004(12).34-36.
    [65]王自力.船舶碰撞损伤机理与结构耐撞性研究[D].上海:上海交通大学博士论文,2003.
    [66]李美娟.钢结构防腐及防火保护[J].当代建设.2003,5:41.
    [67]张宇,谭振东,王广东,何超.防火隔热材料在海洋船舶上的应用研究[J].海洋技术, 2009,28 (1):85-88.
    [68]王建,刘玉波.钢结构防火保护方式的合理选择[J].消防技术与产品信息,2006,7:22-26.
    [69]包瑞.某船局部防火[J].江苏船舶,2006,23(6):11-12.
    [70]彭祖赠,孙韫玉.模糊(Fuzzy)数学及其应用[M].武汉:武汉大学出版社. 2002.
    [71]王宗军.综合评价的方法、问题及其研究趋势[J].管理科学学报. 1998(1):73-79.
    [72]沈斐敏,伍良.燃气火灾爆炸风险评价中不确定性问题的探讨[J].专家园, 2002(11):35~39.
    [73] International Offshore and Polar Engineering Conference[C], USA, 1998: 420 ~427.
    [74] Moan T. Current trends in the safety of offshore structures [A]. Proceeding of the seventh.
    [75]王红芳,赵玫.舰用电子设备结构可靠性模糊综合评估研究[J].船舶工程. 2000(5):54-56.
    [76]戴西超,张庆春.综合评价中权重系数确定方法的比较研究[J].煤炭经济研究,2003.11:37.
    [77]贺仲雄.模糊数学及其应用[M].天津:天津科学技术出版社. 1982.
    [78]徐昌文.模糊数学在船舶工程中的应用[M].北京:国防工业出版社. 1992.
    [79] Saaty T.L. The Analytic Hierarchy Process [M]. NewYork: McGraw-Hull. 1980.
    [80]高振会等.海洋溢油生态损害评估技术导则[S].天津:国家海洋局北海分局,2007.
    [81] Oil spill preparedness and response[R]. IPIECA REPORT SERIES 1990-2005.
    [82] Du chun mei. Primary study on environmental capacity of sea water in Shazikou bay. Marine Science. 2002,26 (10).
    [83]钱闵等.油船的安全知识与安全操作[M].大连:人连海事大学出版社,1998.
    [84]黄忠秀.船舶与港口水预防污染[M].北京:人民交通出版社,1999,1-35,365-370.
    [85]耿晓辉,任福安,殷佩海.溢油事故威胁程度的模糊神经网络评价[J].世界海运,2000,2-42.
    [86] Frank lee.Oil Spill identification by near-infrared spectroscopy coupled with clustering analysis based on principle components [J]. Marine Environmental Science. 2009,23 (2):58.
    [87]孙维维.大连新港海区油船溢油风险总体评价初探[D].大连:大连海事大学硕士论文,2001.
    [88]谢红卫,孙志强,李欣欣.典型人因可靠性分析方法评述[J].国防科技大学学报,2007,29(2),103-105
    [89]张力.概率安全评价中人因可靠性分析技术研究[D].长沙:湖南大学博士学位论文,2004.
    [90]孙旋,牛秦洲.基于贝叶斯网络的人因可靠性评价[J].中国安全科学学报,2006,16(8),32.
    [91]施式亮.矿井安全非线性动力学评价[M].北京:北京煤炭工业出版社,2001.
    [92] Watt.J.M.J. Criteria for fire ranking. Fire Safety Science-Proceedings of the Third International Symposium[M]. London: Elsevier Science Publishing, 1991: 457-466.
    [93] C.F.Christensen & L.W.Andersen, P.H.Pedersen. Ship Collision Risk for an Offshore Wind Farm [R]. RAMB?LL, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700