四川盆地震旦系—下古生界油气成藏机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文为国家重点基础研究发展计划(973)课题《中国海相碳酸盐岩层系油气富集机理与分布预测》(课题编号:2005CB422100)06子课题—中国海相碳酸盐岩层系深层油气成藏机理(课题编号:2005CB422106)的部分研究成果。
     论文主要研究了川东南丁山构造及川中地区安平店-高石梯构造震旦系储层的成岩作用及其控制因素,刻画了孔隙演化过程。利用现今震旦系储层沥青生物标志物地球化学确定了震旦系储层沥青的主要源岩。利用磷灰石裂变径迹技术和Easy%Ro化学动力学模型模拟计算了震旦系—下古生界的地温场演变,利用包裹体分析及PVTX热动力学模拟技术恢复了包裹体被捕获时的古压力,指出在特定的温度和压力背景下,震旦系古气藏中的天然气主要为水溶气。根据震旦系-下古生界储层孔、洞、缝充填物的相对关系,结合流体包裹体特征及锶、碳、氧稳定同位素特征确定了流体充注序列及充注期次。重点研究了震旦系气藏的成藏机理,揭示了油气生成、运移、聚集、散失、储层孔隙演化、圈闭形成(改造)过程在时间上和空间上的动态匹配关系,建立了油气的多期成藏及其演化模式,系统的总结了四川盆地震旦系成藏机理和成藏特征,论文取得的主要成果如下。
     (1)震旦系储层的成岩作用主要为白云岩化、重结晶作用、硅化、膏化及溶蚀充填作用等,可以识别出34种成岩作用。白云岩化作用对灯影组储集物性影响有限,晚期硅化胶结作用对孔隙度影响较大。震旦纪末的桐湾运动使灯影组受岩溶改造强烈;构造岩溶与有机酸深埋岩溶可使储层的孔隙度增加,与之相伴生的重结晶作用可抵制成岩阶段的部分胶结作用所导致的孔隙减少,是震旦系储层孔隙保持的主要原因。由于震旦系储层埋藏历史长,众多的成岩作用改造致使其孔隙演化过程复杂,成岩作用与流体充注的相似性使不同构造带孔隙演化过程具有一定相似性。
     (2)震旦系主要发育有三期破裂作用:第一期为大、中低角度裂缝,形成于中—深埋藏环境;第二期形成于深埋藏过程,区域有机质成熟后—喜马拉雅期前;第三期为构造松弛形成的张裂缝,形成于干气阶段或更早的构造阶段。破裂作用在早期溶蚀孔洞基本被充填的情况上,可增加储层的“孔隙度”,并极大地改善储层的渗透性。
     (3)震旦系—下古生界储层沥青及源岩的生物标志物研究表明,川中地区安平店—高石梯构造带寒武系源岩的沉积环境为具有一定盐度的还原环境,生物主要来自于低等水生生物的菌藻类;奥陶系、寒武系及震旦系储层沥青的各种生标指纹均可以与寒武系泥岩对比,他们主要来自寒武系泥质烃源岩。合川12井二叠系储层沥青的源岩应可能主要为志留系泥岩,寒武系洗象池群储层沥青的源岩应主要为寒武系泥岩。川东南地区丁山构造震旦系储层沥青均来自寒武系泥岩。寒武系石冷水组岩屑中软沥青样品的源岩与寒武系泥岩不具明显的亲缘关系,可能主要来自上覆志留系龙马溪组烃源岩,因此,寒武系储层沥青表现出混源的特征。
     (4)对于过、高成熟阶段的沥青样品,甾烷异构化参数发生了“倒转”,已经失去了表征成熟度的意义。经研究发现,Ts/(Ts+Tm)或Ts/Tm生标参数能够区分不同成熟度及沉积环境所形成的沥青;该比值所反应的相对的成熟度的大小与Pr/nC_(17)-Ph/nC_(18)关系所反应的成熟度及所测定的沥青反射率基本一致,能够反应样品的相对成熟度的高低。
     (5)利用磷灰石裂变径迹技术和Easy%Ro化学动力学模型计算了川东南丁山1井和川中地区安平1井的古地温演变,震旦系和寒武系古地温梯度是变化的,大致都经历了降低—升高—降低的过程。恢复了川东南与川中地区地层埋藏史与烃源岩热演化史。经川东南丁山1井寒武系和川中安平1井震旦系储层中的流体包裹体激光拉曼分析表明,储层中的甲烷有一部分为溶解态甲烷,它们以水溶气的形式赋存于盐水流体中。利用包裹体的均一温度和模拟的包裹体压力,确定了水对甲烷的溶解能力。结合地层隆升—沉降史及地温场、古压力的变化,根据岩心孔洞缝中矿物的充填顺序,刻画了水溶气的形成及捕获过程。
     (6)根据储层孔、洞、缝中的矿物充填顺序及锶、碳、氧稳定同位素地球化学研究,川中地区和川东南地区震旦系—下古生界储层至少存在6期流体充注。从第一世代的矿物到第四世代的矿物,记录的是岩层被逐渐深埋的过程,第五世代矿物→第六世代矿物,则记录了隆升过程中溶解于水中的天然气发生气水分离→盐水流体与沥青分离沉淀的过程。这一系列的流体充注序列上代表了从深埋到隆升过程中,流体充注的全过程。
     (7)震旦系—下古生界围岩和孔、洞、缝充填物的锶、碳、氧稳定同位素地球化学揭示,所充注的盐水流体不是来自于围岩自身,均是外源的。震旦系储层中具有多期油气充注,上覆寒武系、奥陶系储层中可能只有一期石油充注。不同层位均有相同来源的油藏流体和盐水流体充注,暗示着断裂和裂缝可能是导致流体穿层运移的主要垂向输导体系。
     (8)川东南丁山构造震旦系天然气藏的演化主要经历了以下几个阶段:①志留纪末期古油藏的形成阶段;②加里东运动造成的地层抬升剥蚀期的古油藏破坏阶段;③早二叠纪—早中三叠纪寒武系源岩二次生烃油气再充注阶段;③中、晚三叠纪—中、晚侏罗纪,油裂解气及水溶气形成阶段;④晚白垩纪末,天然气脱溶,古气藏的破坏阶段。川中安平店—高石梯构造带震旦系油气成藏的演化与丁山构造震旦系相似,与丁山构造所不同的是晚白垩纪以来的地层隆升主要为天然气出水脱溶和古气藏的调整阶段,仅仅是天然气的散失、转移和再分配过程,致使安平店—高石梯构造带震旦系气藏形成现今的残留气藏。
     (9)四川盆地震旦系-下古生界天然气的成藏过程是一个古油藏→古气藏→现今(调整改造型)气藏的演化过程,其主要特征有:①源岩的早期生排烃,为古油藏形成和破坏阶段;②源岩的二次生烃,发生于二叠纪—三叠纪的有机质成熟生烃和排烃过程,油气早期多期成藏,表现为生排烃差异、多期油气运聚;③发生于中侏罗世及以前的原油热裂解产生天然气和沥青的过程,导致天然气中期成藏,表现为深埋高温、油气转化;④发生于喜马拉雅期构造圈闭的形成和隆升剥蚀过程,致使天然气晚期成藏,表现为隆升剥蚀、能量场调整、天然气出水脱溶、晚期破坏或重新分配成藏。
The paper mainly discussed the diagenesis and its control factors of sinian reservoirs in DingShan structure and AnPingDian-GaoShiTi structure, southeast and middle of Sichuang basin, then drew its porosity evolution.Using the characteristics of biological maker in simian reservoirs bitumen, oil source could be identified. Based on apatite fission track analysis and Easy%Ro chemical kinetics model, geothermal system of Sinian—Lower Palaeozoic could be simulated.The palaeopressure could be recovered by the analysis of fluid inclusion and stimulation of PVTX thermodymamic when these inclusions were captured. So the natural gas in sinian reservoirs exist as Water-soluble gas due to the condition of the particular temperature and pressuer.In the sinian-lower palaeoozoic reservoir, Based on the relative order of fillers in hole,bore and fracture, combining with characteristic of fluid inclusion and isotope of Sr, C and O, the sequence and stage of charging of fluid could be determined. The paper pays attention to the mechanism of gas accumulation in sinian reservoirs, and reveal the dynamics relationships matched with each other in the time-space scales during the hydrocarbon generation, migration, accumulation,dissipating, reservoir evolution and trap formation, and then build the evolution and model of hydrocarbon generation, accumulation of muti-stage and sum up the mechanism and feature of hydrocarbon accumulation systematically in sinian of Sichuan Basin.
     (1)The diagenesises of Zinian reservoir mainly include dolomitizaton, recrystallization, silication, gypsification,denudation, packing action, and so on, which could be categoried into thirty-four diagenesis. Dolomitizaton impact on the reservoir quality of Denying Formation, but silication which happened at late period effected the reservoir quality more seriously. Porosity increased because of karstifacition resulted from tectonic movement and organic acid, while recrystallization could resist part of cementation which can lead to decrease of porosity in diagenesis stage.That was why pore space in Zinian reservoirs could be maintained. Sinian reservoirs underwent a long time burial and the multitudinous diagenesises which made the porosity evolution complicated. There were similarity between each other in different tectonic belts due to their similar diagensises and fluid charging.
     (2)There were there-stage cataclasises in Zinian:the first stage developed big,middle-low angle fracture in middle-deep burial; the second stage formed fracture in deep burial after organic matured but before Himalayan epoch;the third stage developed gash fracture from tectonically relaxation in the phase of dry gas or earlier. Cataclasises could increase porosity in the early time when emposieus were infilled and improved permeability of reservoir.
     (3) Research on reservoir bitumen and possible source rock of Zinian-lower palaeozoic,their biomarker indicated that, 1)in Anpingdian-Gaoshiti tectonic belt, source rock in Cambrian was in anoxic and deoxidated environment having some salinity when it was deposited, and living beings were such low aquatic life as homoneneae; All of the bitumen in Ordovician, Cambrian and Sinian could be compared with mudstone in Cambrian by fingerprint, as concluded that the bitumen came from mudstone in Cambrian.Reservoir bitumen in Permian in Well Hechuan12 probably came from Silurian mudstone, and that in Xixiangchi group of Cambrian come from mudstone in Cambrian. All of Zinian reservoir bitumen of Dingshan Structure in southeast Sichuan area came from mudstone in Cambrian.Bitumen in debris of Shenglengshui Formation of Cambrian have no affiliation with Cambrian mudstone, which likely came from Longmaxi Formation of overlying Silurian. So Cambrian reservoir bitumen show the feature of multiple source.
     (4)As for bitumen of post-high maturity, sterane isomerization parameter came about reversal, which cannot be identified the maturity. Research indicated such biomarkers parameter as Ts/(Ts+Tm) or Ts/Tm could distinguish that bitumen of different maturity and depositonal environment. These parameters accorded with variance of Pr/nC_(17)-Ph/nC_(18) and bitumen reflectance which can also reflect the relative maturity.
     (5) Based on apatite fission track and Easy%Ro chemical kinetics model, palaeogeothermal could be calculated in well Dingsan 1 and Well Anping 1. The geothermal gradient of Cambrian and Sinian varied from decreasing to increasing, and to decreasing again. The burial history of strata and thermal evolutionhsitroy of source rokcs was reconstructed. Laser Raman spectroscopy analysis for fluid inclusion in reservoirs of Cambrian in Well Dingsan 1, and of Sinian in Well Anping 1 .These indicated that a part of methane in reservoir was soluble, they existed in the saline water in the form of soluble-water gas. Using fluid inclusion homogenization temperature and analog inclusion pressure, dissolving capacity of methane in water can be confirmed. Combined with burial history, evolution of temperature and pressure with filling sequence of mineral in core hole, bore and fissiure, the formation and capture of water-soluble gas can be displayed.
     (6)Based on filling sequence of mineral in core hole, bore and fissure, and the isotope of Sr,C,O, Sinian-Lower palaeozoic reservoirs underwent fluid charging at least six stages.From the first stage to the forth stage, mineral recorded the process of burial. From the fifth to the sixth stage, mineral recorded the paration processse of gas and water and the separation process of saline water and bitumen, bitumen depositing.The sequence of fluid charging represented the full sequence of fluid charging from deep burial to uplifting.
     (7)Isotope of Sr,C,0 of mineral in core hole,bore and fissiur revealed that the saline water wasn't from adjacent rock but allogenetic. Reservoir in Sinian presented multi-phase chargings, while that in overlying Cambrian and Ordovician probably appeared to be only one stage of fluid charging. Hydrocarbon and saline water in different layers coming from the same source, suggested that fault and fractures play the part of the main conduction systems which fluid migrated vertically.
     (8)Sinian oil and gas reservoir evolved through such stages of DingShan structure,①Palaeo-oil pools formed in late Silurian.②Palaeo-oil pools were destroyed by the uplift and denudation in Caledonian event.③From early Permian to early-middle Triassic, source rock in Cambrian generated hydrocarbon secondly.④From middle-late Triassic to middle-late Jurassic, oil cracking to gas happened and water-soluble gas formated.⑤At the end of late Cretaceous, natural gas exsolution took place and palaeo-gas pools were destroyed. Zinian hydrocarbon accumulation in Anpindian-Gaositi tectonic belt was similar to that of Well Dingshan structure. But natural gas appeared to be lost, transferred and redistributed when its exsolution came about due to uplifting since late Cretaceous, which leaded to remnant gas pool in Anpindian-Gaositi tectonic belt.
     (9)Sinian-low Palaeozoic gas accumulating experienced from palaeo-oil pools to palaeo-gas pools, and adjustion and reformation, which were characterd as by①palaeo-oil pool developed and was destructed when hydrocarbon generated from source rock in the early stage;②the second hydrocarbon generation leaded to multi-stage hydrocarbon accumulation early when organic matter maturation, hydrocarbon generation and expelled during Permian and Triassic;③In the middle Jurassic or before, oil cracking to gas and bitumen formation due to deeply burial, result in high temperature of gas pool and oil transformation to gas.④In the Himalayan, strcture trap formation, and the uplifting and denudation lead to late accumulation of hydrocarbon, which features mainly are uplifting, denudation, energy field adjustion, gas exsolution from water, gas pools at later destruction and gas redistribution.
引文
[1]徐国盛.四川盆地天然气成藏动力学[M].2005,北京:地质版社.
    [2]蔡勋育,朱扬明,黄仁.普光气田沥青地球化学特征及成因.石油与天然气地质,2006,27(3):340-347.
    [3]胡守志,王廷栋,付晓文.四川盆地中部震旦系天然气勘探前景研究[J].石油实验地质,2005,27(3):222-225.
    [4]胡守志,王廷栋,付晓文.从地球化学角度看高科1井的天然气勘探前景[J].天然气地球科学,2003,14(6):492-495.
    [5]陈红汉,张启明,施继锡.琼东南盆地含烃热流体活动的流体包裹体证据[J].中国科学(D 辑),1997,27(4):343-348.
    [6]袁海锋,徐国盛,董臣强.准噶尔盆地中部第3区块侏罗系-白垩系油气成藏主控因素[J].新疆石油地质,2007,28(6):700-703.
    [7]陈润,耿庆生,苏现波,等.水溶气的形成与聚集.河南理工大学学报,2006,25(3):205-208.
    [8]陈世加,王廷栋,黄清德,等.C_(29)甾烷成熟度指标“倒转”及其地质意义.天然气地科学,1997,8(1):28-30.
    [9]陈宗清.展望四川地区海相地层非构造油气藏勘探前景[J].石油实验地质,1986,8(4):301-305.
    [10]成艳,陆正元,赵子路等,四川盆地西南边缘地区天然气保存条件研究,石油实验地质,2005,27(3):218-221.
    [11]储昭宏.川东北长兴组-飞仙关组碳酸盐岩储层研究,博士论文[D],2006,中国地质大学.
    [12]戴鸿鸣,王顺玉,王海清等.四川盆地寒武系-震旦系含气系统成藏特征及有利勘探区块.石油勘探与开发,1999,26(5):16-20.
    [13]邓涛.四川盆地加里东古隆起的构造机制和成藏模式[J].石油实验地质,1996,18(4):356-360.
    [14]方少仙,侯方浩,董兆雄.上震旦统灯影组中非叠层石生态系兰细菌白云岩[J].沉积学报,2003,21(1):96-105.
    [15]付晓泰,卢双舫,王振平,等.天然气组分的溶解特征及其意义[J].地球化学,1997,16(3):60-66.
    [16]郭彤楼,楼章华,马永生.南方海相油气保存条件评价和勘探决策中应注意的几个问题.石油实验地质,2003,25(1):3-9.
    [17]郭旭升,梅廉夫,汤济广等.扬子地块中,新生代构造演化对海相油气成藏的制约.石油与天然气地质,2006,27(1):295-304.
    [18]郭正吾,邓康龄.四川盆地形成与演化[M].北京:地质出版社,1994.
    [19]郝芳,李思田,孙永传,等.莺歌海-琼东南盆地的有机成熟作用及油气生成模式[J].中 国科学(D辑),1996,26(6):555-560.
    [20]何海清,王兆云,程玉群.渤海湾盆地深层石油地质条析分析[J].沉积学报,1999,17(1):273-179.
    [21]洪海涛,包强,张光荣.对四川盆地天然气资源的潜在接替层系-震旦、寒武系有利目标区块的评价.成都理工学院学报,2000,27(增刊):143-146.
    [22]洪庆玉,黄瑞瑶.四川盆地加里东古隆起成藏规律研究.西南石油学院学报,1997,19(4):1-8.
    [23]侯方浩,方少仙,王兴志,等.四川盆地灯影组天然气藏储渗体再认识[J].石油学报,1999,20(6):16-21.
    [24]侯方浩,方少仙,王兴志,等.四川震旦系灯影组天然气藏储渗体的再认识[J].石油学报,1999,20(6):16-21.
    [25]刘树根,马永生,黄文明.四川盆地上震旦统灯影组储集层致密化过程研究[J].天然气地球科学,2008(4):485-496.
    [26]胡守志,王廷栋,付晓文,陈世加,罗玉宏,唐静.四川盆地中部震旦系天然气勘探前景研究[J].石油实验地质,2005,27(3):222-225.
    [27]胡守志,付晓文,王廷栋.利用储集层沥青特征识别高演化地区的气层[J].新疆石油地质,2006,27(4):429-431.
    [28]胡守志,王廷栋,付晓文,陈世加,林峰,罗玉宏.从地球化学角度看高科1井的天然气勘探前景[J].天然气地球科学,2003,14(6):492-495.
    [29]胡守志,王廷栋,付晓文等.四川盆地中部震旦系天然气勘探前景研究[J].石油实验地质,2005,27(3):222-225.
    [30]胡书毅,马玉新,田海芹.扬子地区寒武系油气藏地质条件.石油大学学报(自然科学版),1999,23(4):20-25.
    [31]黄籍中,陈盛吉,宋家荣等.论过熟碳酸盐岩干气区地球化学研究-以四川盆地为例[J].天然气勘探与开发,1996,19(4):1-12.
    [32]黄籍中,陈盛吉,宋家荣等.四川盆地烃源体系与大中型气田形成[J].中国科学(D辑).1996,26(6):504-511.
    [33]黄籍中,陈盛吉.四川盆地震旦系气藏形成的烃源地化条件分析:以威远气田为例[J].天然气地球科学,1993,(4):16-20.
    [34]黄籍中,陈盛吉.震旦系气藏形成的烃源地球化学条件分析[J].天然气地球科学,1993,4(4):16-20.
    [35]黄籍中,冉隆辉.四川盆地震旦系灯影灰岩黑色沥青与油气勘探[J].石油学报,1989,10(1):27-37.
    [36]黄籍中.油气区天然气成因分类及其在四川盆地的应用[J].天然气地球科学,1991,(1):6-15.
    [37]黄籍中.再论四川盆地天然气地球化学特征[J].地球化学,1990,(1):32-42.
    [38]黄思静,石和,刘洁等,2001b,锶同位素地层学研究进展.地球科学进展,16(2):194-200
    [39]黄思静,1997,上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究.地质学报,71(1):45-53
    [40]雷怀彦,朱莲芳.四川盆地震旦系白云岩成因研究[J].沉积学报,1992,10(2):69-78.
    [41]李景贵.高过成熟海相碳酸盐岩抽提物不寻常的正构烷烃分布及其成因[J].石油勘探与开发,2002,29(4):8-11.
    [42]蔡勋育,朱扬明,黄仁春.普光气田沥青地球化学特征及成因[J].石油与天然气地质,2006,27(3):340-347.
    [43]段毅,吴保祥,张辉,等.鄂尔多斯盆地西峰油田原油地球化学特征及其成因[J].地质学报,2006,80(2):301-310.
    [44]梁狄刚,陈建平.中国南方高、过成熟区海相油源对比问题[J].石油勘探与开发,2005,32(2):8-12.
    [45]邱楠生,胡圣标,何丽娟.沉积盆地热体制理论与应用[M].2004,北京:地质出版社.
    [46]王一刚,刘志坚,文应初.川东石炭系储层有机包裹体、储层沥青与烃类运聚关系[J].沉积学报,1996,14(4):77-83.
    [47]王铁冠.低熟油的形成机理与分布规律[M].1995,北京:石油工业出版社.
    [48]汪泽成.四川盆地构造层序与天然气勘探[M].2002,北京:地质出版社.
    [49]温汉捷,裘愉卓,姚林波,等.中国若干下寒武统高硒地层的有机地球化学特征及生物标志物研究[J].2000,地球化学,29(1):28-35.
    [50]肖贤明,刘德汉,傅家谟,等.应用沥青反射率推算油气生成与运移的地质时间[J].科学通报,2000,45(19):2123-2127.
    [51]杨永才,常象春,张枝焕.英吉苏凹陷石油地球化学特征及油源对比[J].新疆石油地质,2006,27(4):410-413
    [52]曾凡刚,包建平,王铁冠.下杨子区古生界烃源岩饱和烃生物标志物地球化学特征[J].地质地球化学,1998,26(3):72-77.
    [53]徐国盛,袁海锋,马永生,等.川中-川东南地区震旦系-下古生界沥青来源及成烃演化[J].地质学报,2007,81(8):1143-1152.
    [54]徐国盛,徐燕丽,袁海锋,等.川中-川东南震旦系-下古生界烃源岩及储层沥青的地球化学特征[J].2008,石油天然气学报,29(4):45-50.
    [55]朱光有,金强,张水昌,等.东营凹陷沙河街组湖相烃源岩的组合特征[J].地质学报,2004,78(3):416-427.
    [56]张水昌.南方海相地层中生物标志化合物--细菌和藻类生物的贡献[M].北京:石油工业出版社,1993,155-174.
    [57]张水昌,Moldowan J M,Maowen Li.分子化石在前寒纪地层中的异常分布及其生物学意义[J].中国科学,D辑,2001,31(4):34-37.
    [58]朱扬明,苏爱国,梁狄刚,等.柴达木盆地原油地球化学特征及其源岩时代判识[J].地质学报,2003,72(3):272-279.
    [59]朱扬明,翁焕新,苏爱国,等.柴达木盆地尕斯库勒油田原油油源特征及成藏分析[J].地质学报,2004,78(2):253-261.
    [60]李明诚.地壳中的热液流体活动与油气运移[J].地学前缘,1995,2(3-4):155-162.
    [61]李明诚,编著.石油与天然气运移[M].2004,北京:石油工业出版社.
    [62]李晓清,汪泽成,张兴为等.四川盆地古隆起特征及对天然气的控制作用[J].石油与天然气地质,2001,22(4):347-351.
    [63]李一平.四川盆地已知大中型气田成藏条件研究[J].天然气工业,1996(增刊):1-12
    [64]梁狄刚,陈建平.中国南方高过成熟区海相油源对比问题[J].石油勘探与开发,2005,32(2):8-14.
    [65]刘顺,罗志立,熊荣国,宋颖辉.从实验岩石变形过程探讨四川盆地加里东古隆起的形成机制[J].成都理工学院学报,2000,27(4):343-347.
    [66]刘顺.四川盆地威远背斜的形成时代及形成机制[J].成都理工学院学报,2001,28(4):340-343.
    [67]刘宝泉,贾蓉芬.中上元古界生油岩中正异构烷烃热演化的特征及热模拟实验[J].地球化学,1990,3:242-248.
    [68]刘成林,李景明,蒋裕强,朱玉新.川东小河坝砂岩天然气成藏地球化学研究[J].西南石油学院学报,2002,24(1):46-49.
    [69]刘德汉,肖贤明,熊永强,耿安松,田辉,彭平安,中家贵,王云鹏.四川东部飞仙关组鲕滩气藏储层自然硫混溶包裹体及硫化氢成因研究[J].中国科学D辑(地球科学)2006,520-532.
    [70]刘树根,罗志立,庞家黎,等.四川龙门山地区的峨眉地裂运动[J].四川地质学报,1991,11(3):174-180.
    [71]罗啸泉,郭东晓,蓝江华.威远气田震旦系灯影组古岩溶与成藏探讨[J].沉积与特提斯地质,2001,21(4):54-60.
    [72]罗志立,刘顺,徐世琦等.四川盆地震旦系含气层中有利勘探区块的选择[J].石油学报,1998,19(4):1-7.
    [73]罗志立,刘树根,刘顺.四川盆地勘探天然气有利地区和新领域探讨(上)[J].天然气工业,2000,20(4):10-13.
    [74]罗志立,刘树根,刘顺.四川盆地勘探天然气有利地区和新领域探讨(下)[J].天然气工业,2000,20(5):4-8.
    [75]梅冥相,聂瑞贞,张海,陈永红,孟晓庆.上扬子区震旦系层序地层划分[J].现代地质,2006,20(1):49-60.
    [76]彭晓蕾,高玉巧,刘立等.含油气盆地中热流体活动的流体包裹体依据[J].世界地质,2005, 24(4):350-356.
    [77]钱铮,赵澄林,刘孟慧.济阳坳陷深层天然气致密砂岩储集空间成因[J].石油大学学报(自然科学版),1994,18(6):21-25.
    [78]秦胜飞.水溶天然气运移地球化学示踪-以塔里木盆地利田河气田为例[J].地学前缘,2006,13(5):524-531.
    [79]邱楠生.中国地区沉积盆地热演化和成烃史分析[J].石油勘探与开发,2002,29(1):6-9.
    [80]冉隆辉,谢姚祥,王兰生.从四川盆地解读中国南方海相碳酸盐岩油气勘探[J].石油与天然气地质,2006,27(3):289-294.
    [81]芮宗瑶,叶锦华,张立生,等.扬子克拉通周边及其隆起边缘的铅锌矿床[J].中国地质,2004,31(4):341-342.
    [82]汤良杰,吕修祥,金之钓等.中国海相碳酸盐岩层系油气地质特点、战略选区思考及需要解决的主要地质问题[J].地质通报,2006,25(9):1032-1035.
    [83]汤玉平,刘运黎,赵跃伟等.四川盆地烃类垂向微运移及其地球化学效应[J].石油实验地质,2005,27(5):508-511.
    [84]王建宝,肖贤明,郭汝泰.四川盆地早古生代地层中沥青的成因及其生气潜力研究[J].天然气工业,2003,23(5):127-129.
    [85]王兰生,苟学敏,刘国瑜,王琳,汪维明,王密云.四川盆地天然气的有机地球化学特征及其成因[J].沉积学报,1997,15(2):49-53.
    [86]王青,张枝焕,钟宁宁,等.水溶-释放作用对气藏形成的影响-以克拉2气田为例[J].天然气工业 2004,24(6)18-21.
    [87]王顺玉,戴鸿鸣,王海清等.四川盆地海相碳酸盐岩大型气田天然气地球化学特征与气源[J].天然气地球科学,2000,11(2):10-17.
    [88]王兴志,穆曙光,方少仙,等.四川盆地西南部震旦系白云岩成岩过程中的孔隙演化[J].沉积学报,2000,18(4):549-554.
    [89]王一刚,陈盛吉,徐世琦.四川盆地古生界-上元古界天然气成藏条件及勘探技术[M].北京:石油工业出版社,2001.
    [90]温汉捷,裘愉卓,姚林波,等.中国若干下寒武统高硒地层的有机地球化学特征及生物标志物研究[J].地球化学,2000,29(1):38-35.
    [91]徐世琦,洪海涛,李翔.四川盆地震旦系油气成藏特征与规律[J].天然气勘探与开发,2002,25(4):1-5.
    [92]徐世琦,洪海涛,师晓蓉.乐山-龙女寺古隆起与下古生界含油气性的关系探讨[J].天然气勘探与开发,2002,25(3):10-15.
    [93]徐世琦,李天生.四川盆地加里东古隆起震旦系古岩溶型储层的分布特征[J].天然气勘探与开发,1999,22(1):14-18.
    [94]徐世琦,熊荣国.加里东古隆起形成演化特征及形成机制.天然气勘探与开发,1999,22(2): 1-6.
    [95]徐世琦,张光荣,李国辉,李红亮.加里东古隆起震旦系的烃源条件[J].成都理工学院学报,2000,27(增刊):131-138
    [96]杨家静.四川盆地乐山-龙女寺古隆起震旦系油气藏形成演化研究.西南石油学院博士论文,2002.
    [97]姚建军,郑浚茂,宁宁等.四川盆地高石梯-磨溪构造带震旦系含油气系统研究[J].天然气地球化学,2002,13(5-6):74-79。
    [98]张林,魏国齐,汪泽成等.四川盆地高石梯-磨溪构造带震旦系灯影组的成藏模式[J].天然气地球化学,2004,15(6):584-589.
    [99]张林,魏国齐,吴世祥等,四川盆地震旦系-下古生界沥青产烃潜力及分布特征[J].石油实验地质,2005,27(3):276-280.
    [100]王捷,关德范等.油气生成运移聚集模型研究[M].北京:石油工业出版社,1999.
    [101]焦大庆等.1999.盆地流体与成藏动力学过程分析.北京:石油工业出版社.
    [102]李德生.迈向新世纪的中国石油地质学[J].石油学报,2000.21(2):1-8.
    [103]胡朝元等.成油系统概念在中国的提出及应用[J].石油学报,1996.17(1):1-10.
    [104]李贤庆、胡继平、许院宏.含油气系统基本理论与实践[J].《断块油气田》,2000,7(1):11-22.
    [105]朱忠德等.油气勘探与石油地质综合研究与理论、方法和程序[M].武汉:中国地质大学出版社,1998.
    [106]田世澄等.论成藏动力学系统[J].勘探家,1996,1(2):20-24.
    [107]田世澄、陈建渝、张树林等,论成藏动力学系统[J].复式油气田,1996,1(1):31-34.
    [108]田世澄、张树林等.论成藏动力学系统的划分和类型[A].《中国含油气系统的应用与进展》第1版,北京:石油工业出版社,1997,33-41.
    [109]A.佩罗东著,冯增模等译.石油地质动力学[M].北京:石油工业出版社,1993.1-171.
    [110]孙永传.石油地质动力学的理论与实践[J].地学前缘,1995.2(2-4):9-14.
    [111]康永尚等.油气成藏流体动力系统分析原理及应用[J].沉积学报,1998,16(3):80-84.
    [112]康永尚等.油气成藏流体动力学[M].北京:地质出版社,1999.
    [113]张树林、田世澄、陈建治,断裂构造与成藏动力系统[J].石油与天然气地质,1997,18(4):261-266.
    [114]张厚福.石油地质学新进展[M].北京:石油工业出版社,1998.
    [115]张厚福,方朝亮.盆地油气成藏动力学初探-21世纪油气地质勘探新理论探索[J].石油学报,2002,23(4):7-12.
    [116]曾凡刚,程克明.华北地区下古生界海相烃源岩饱和烃生物标志物地球化学特征[J].地质地球化学,1998,26(3):25-32.
    [117]Allegre C.J.,Gaillardet J.,Meynadier L.,1996,The evolution of sea water strontium isotope in the last hundred million years:reinterpretation and consequence for erosion and climate models.Eos,Transactions,American Geophysical Union,77(46,Suppl.):325
    [118]Azmy K., Veizer J., Wenzel B. et al., 1999, Silurian strontium isotope stratigraphy.GSA Bull., 111(4): 475-483
    [119] Bailey T. R., Rosenthal Y., McArthur J. M. et al., 2003, Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth Planet. Sci. Lett., 212: 307-320
    [120]Allan U S.1989,Model for hydrocarbon migration and entrapment within faulted structure. AAPG Bulletin, 73:803-811.
    [121] Bailey T.R., McArthur J.M., Prince H. et al., 2000, Dissolution methods for strontium isotope stratigraphy: whole rock analysis. Chem. Geol., 167:313-319
    [122]Bertram C.I.,Elderfield H.,Aldridge R.J. et al.,1992, 87Sr/86Sr, 143Nd/144Nd and REEs in Silurian phosphatic fossils, Earth Planet. Sci. Lett., 113:239-249
    [123]Bralower T.J.,Fullagar P. D., Paull C. K. et al., 1997, Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections. GSA Bull., 109:1421-1442
    [124]Burke W.H.,Denison R.E.,Hetherington E.A. et al., 1982, Variation of 87Sr/86Sr throughout Phanerozoic time.Geology, 10:516-519
    [125]Barker C E and Elders W A.1981 .Vitrinite reflectance geothermometry and apprant heating duration in the Cerro Prieto geothermal field. Geothermics, 10:207-223
    [125]Bredehoeft J D, J. B. Wesley, T. D. Fouch. 1994. Simulations of the Origin of Fluid Pressure, Fracture Generation, and the Movement of Fluids in the Uinta Basin, Utah. AAPG Bulletin, 78(11): 1729-1747.
    [126]Christoph K.,Kozur H.W.,Bruckschen P. et al.,2003,Strontium isotope evolution of Late Permian and Triassic seawater. Geochimica et Cosmochimica Acta, 67 (1):47-62
    [127]Curiale,J A 1986.0rigin of solid bitumens,with emphasis on biological marker esults.Organic Geochemistry, 10:559-580.
    [128]Dahl B,Speers G C.1986.Geochemical characterization of atarmat in the Oseberg Field Norwegian Sector, North Sea. Organic geochemistry, 10:547-558.
    [129]Duan Yi,Wu Baoxiang,Zhanghui,et al. 2006. Geochemistry and genesis of crude oils of the Xifeng oil field in the Ordos Basin. Acta Geologica Sinica, 80(2):301-310.
    [130]Dow W.G, Application of oil correlation and source rock data to exploration in Williston basin(abs)[J].AAPG Bulletin, 1972,56:615.
    [131] Demaison G, The generative basin concept, in Demaison G, and Murris R.J., eds., Petroleum geochemistry and basin evaluation: AAPG Memoir 35,1984, 1-14.
    [132]Demaison G, and Huizinga B.J., Genetic classification of petroleum systems[J].AAPG Bulletin, 1991,75( 10): 1626-1643.
    [133]Downey M W. 1984, Evaluating seals for hydrocarbon accumulations. AAPG Bulletin, 68: 1752-1763.
    [134]Eadington P. J., 1991, Fluid history analysis- a new concept for prospect evalution, The APEA journal, 31: 282—294.
    [135]Ferket H , F Roure, R Swennena, S Ortuno. 2000. Fluid migration placed into the deformation history of fold-and-thrustbelts an example from the Veracruz basin (Mexico). Journal of Geochemical Exploration, 69-70:275—279.
    [136]Garven G. 1989. A hydrogeologic model for the formation of the giant oil sands deposits, of the western Canada sedimentary basin: American Journal of Science, 289: 105—166.
    [136]Gao G.and Land L. S.,1991, Geochemistry of Cambro-Ordovician Arbuckle limestone, Oklahoma: implications for diagenetic 180 alteration and secular 13C and 87Sr/86Sr variation. Geochim. Cosmochim. Acta., 55:2911-2920
    [137]George S C,Llorca, S M,Hamilton P J.1993.An intergrated analytical approach for determining the origin of solid bitumens in the McArthur Basin, Northerm Australia. Organic Geochemistry, 21:235-248
    [138]George,S C,Herbert Volk,Manzur Ahmed,Walter PickleTony Allan.2007.Biomarker evidence for two sources for solid bitumens in the Subu wells:Implications for the petroleum prospectivity of East Papuan Basin, Organic Geochemistry, 38:609-642.
    [139]Hanson A D, Zhang S C, Moldowan J M, Liang D G, Zhang BM. 2000.Molecular organic geochemistry of the Tarim basin,Northwest China. American Association of Petroleum Geologists Bulletin, 84:1109-1128.
    [140]Hwang R S,Teerman S,CarIson R. 1998.Geochemical comparison of reservoir solid bitumens with diverse origins.Organic Geochemistry,29:505-518.
    [141 ]Hood A, Gutjahr C C M, Heacock R L. 1975. Organic metamorphism and the generation of petroleum. Organic metamorphism and the generation of petroleum. American Association of Petroleum Geologists Bulletin, 59(6): 986-996.
    [142]Hubbert, M. K.., 1953, entrapment of petroleum under hydrodynamic conditions, AAPG bulletin, 37: 1954-2026.
    [143]Hunt J M. 1990. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG. 74(1): 1 — 12.
    [144]Karweil, J. 1955. Die Metamorphose der Kohlen vom Standpunkt der physikalischen Chemie. Z.Deutsch. Geol.Ges.,107:132-139
    [145]Lerche I, Yarzab R F, Kendall. 1984.Determination of paleoheat flux from vitrinite reflectance data. American Association of Petroleum Geologists Bulletin, 68(11):1704-1717.
    [146]Losh S, L Walter, P Meulbroek,et al. 2002. Reservoir fluids and their migration into the South Eugene Island Block 330 reservoirs, offshore Louisiana. AAPG Bulletin, 86(8): 1463—1488.
    [147]Leythaeuser D et al. 1988. Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brace fild arda. Geochimica et Cosmochmica Acta, 52: 701-713.
    [148]Lee M K , and C. M Bethke, 1994, Groundwater flow, late cementation, and petroleum accumulation in the Permian Lyons Sandstone, Denver basin: AAPG bulletin, 78: 217-237.
    [149] Ma, Y. S., X. S. Guo, T. L. Guo, R. Huang, X. Y. Cai, and G. X. Li, 2007, The Puguang gas field-New giant discovery in the mature Sichuan basin, SW China: AAPG Bulletin, v. 91, p. 627-643.
    [150]Mckirdy D M, Aldridge A K,Ypma P J M. 1983. A geochemical comparison of some crude oils form Pre-Ordovician carbonate rocks. Advances in Organic Geochemistry 1981 John Wiley and Sons, New York, 99-107.
    [151]Moldowan J M , SeifertW K, Gallegos E J. 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. American Association of Petroleum Geologists Bulletin, 69:1255-1268.
    [152] Magoon L.B., The petroleum system-a classification scheme for research, resource assessment, and exploration (abs)[J].AAPG Bulletin, 1987,71(5),587.
    [153]Magoon L.B., and Dow W.G., The petroleum system: from source rock to trap[A].AAPG Memoir 60,1994.
    [153]Munn, M. J., 1909, Studies in the application of the anticlinal theory of oil and gas accumulation: Economic Geology, 4: 141 -157.
    [ 154]Mello U T, G D Karner. 1996, Development of Sediment Overpressure and Its Effect on Thermal Maturation: Application to the Gulf of Mexico Basin. AAPG Bulletin, 80(9): 1367-1396.
    [155]Macgregor D S. 1996. Factors controlling the destruction or preservation of giant light oilfield. Petroleum Geoscience, 2: 197-217.
    
    [155]Naeser N D,McCulloh T H..1989.Thermal History of sedimentary basin.Springer-Verleg
    [156]Osborne M J and Swarbrick R E. 1997. Mechanisms for generating overpressure in sedimentary basins: a reevaluation. AAPG, 81:1023 - 1041.
    [157]Osborne M J and Swarbrick R E. 1997. Mechanisms for generating overpressure in sedimentary basins: a reevaluation. AAPG, 81:1023-1041.
    [158] Perrodon A., and Masse P., Subsidence, sedimentation and petroleum systems[J].Journal of Petroleum Geology, 1984, 7(1 ):5-26.
    [159]Peters K E,Moldowan J M. 1993.The biomarker guide:interpreting molecular fossils in petroleum and ancient sediments. Prentice Hall. Inc.
    [160]Peters K E, Fraser, T H., Welly A, et al. 1999. Geochemistry of crude oils from Eastern Indonesia. American Association of Petroleum Geologists Bulletin, 83(12): 1927-1942.
    [161]Peters K E, Clifford C Walters, J Michael Moldowan. 2005. The Biomarker Guide:Volume 2. Biomarkers and isotopes in petroleum exploration and earth history.Cambridge University Press.
    [162]Schneider F & S Hay. 2001 .Compaction model for quartzose sandstones application to the Garn Formation, Haltenbanken, Mid-Norwegian Continental Shelf. Marine and Petroleum Geology, 18 (7) :833-848.
    [163]Palacas J G.1984. Petroleum geochemistry and source rock potential of carbonate rocks. AAPG Studies in Geology 18.
    [164]Rubinstein I, Sieskind O, Albrecht P. 1975. Rearranged steranes in a shale; occurrence and simulated formation. Journal of Chemical Society Perkin, 1:1833-1835.
    [165]Sweeney J J,Burnham A K.1990.Evaluation of a sample method of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74(4): 1559-1570.
    [166]Seifert W K, Moldowan J M. 1978. Application of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochimica et Cosmochimica Acta, 42:77-95.
    [167]Sinninghe Damste J S,Kenig F,Koopmans M P,Koster J,Schouten S,Hayes J M,de Leeuw J W.1995. Evidence for gammacerane as an indicator of water column stratification.Geochimica et Cosmochimica Acta 59,1895-1900.
    [168]Song, W. H., 1996, Research on reservoir-forming conditions of large- and medium-sized gas fields of the Leshan-Longnusi paleo-high: Natural Gas Industry, v. 16, supplementary issue, p. 13-26 (in Chinese with English abstract).
    [169]Tissot B, Deroo-G, Hood-A.1978, Geochemical study of the Uinta Basin; formation of petroleum from the Green River Formation. Geochimica et Cosmochimica Acta. 42; 10, Pages 1469-1486.
    [170]Tissot B P,Welte D H. 1984.Petroleum formation and occurrence.New York:Springer-Vevlag Berlin Heidelberg.
    [171]Waples D.W. 1980.Time and temperature in petroleum formation; application of Lopatin's method to petroleum exploration. American Association of Petroleum Geologists Bulletin, 64(6): 916-926.
    [172]Waples D W, Machihara T, 1990. Application of sterane and triterpane biomarkers in petroleum exploration. Bulletin Canadian Petroleum Geology 38:357-380.
    [173]Wen Hanjie,Qiu Yuzuo,Yao Linbo,et al.2000.Organic geochemistry and biomakers of some Lower Cambrian high-selenium formations in China.Geochimica,29(1):28-35.
    
    [174]Zhao Mengjun, Zhang Shuichang et al. 2006. Geochemistry and Genesis of bitumen in Paleo-oil reservoir in the Nanpanjiang Basin, China. Acta Geologica Sinica. 80(6):893-901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700