基于雾通量分析的细水雾灭火机理模拟实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雾通量是影响细水雾灭火性能的关键参数之一。本文在原有雾通量定义的基础上,将能够直接与燃料和火焰作用的细水雾通量定义为有效雾通量。细水雾灭火过程是一个多种机理同时作用的、非定常、非稳态的过程。为了对细水雾的灭火机理进行定量研究,将火灾中常见的扩散火分成了燃料区、反应区和卷吸区(供氧区)三个部分。将能够在这三个区作用的有效雾通量分为燃料区有效雾通量、反应区有效雾通量和卷吸区有效雾通量,对有效雾通量的分类可以把燃料冷却、氧气冷却、燃料稀释和氧气稀释等作用机理分开,便于更好的对这些灭火机理进行定量分析。
     粒径小于50μm的细水雾具有类似于气体灭火剂的特性,它们的粒径范围相对稳定,雾通量、动量以及单位体积内的水雾总量等参数很容易得到控制,使用这种细水雾抑制火焰可以将瞬息万变的灭火过程转换为稳态或准稳态过程。因此,本文将这部分细水雾独立出来,定义为超细水雾,而粒径大于50μm的细水雾则定义为常规细水雾。在调研了超细水雾发生方法及机理的基础上,研制了适合于本文实验要求的、可用于灭火的超细水雾发生系统。使用电子天平和激光多普勒测速仪等设备对超细水雾与常规细水雾的特性进行了测量,并将超细水雾与常规细水雾的特性进行了对比分析。
     超细水雾粒径小、速度低,无法穿透火焰反应面进入反应区,因此,使用低速超细水雾抑制火焰时,细水雾只能在火焰对空气的卷吸作用下到达火焰附近,通过汽化吸热以及稀释氧气的机理实现灭火,这样就排除了其他灭火机理的影响。由于超细水雾到达火焰反应面之前就全部汽化,因此在超细水雾与火焰反应而之间存在一个没有液滴的包络面,将这个包络面的厚度假设为无穷大之后,就可以通过扩散火空气卷吸量的计算方法求出包络面内火焰卷吸的(空气-水蒸气)混合气的体积,由于超细水雾汽化前后的质量并没有变,所以通过混合气的体积可以进一步推算出不同尺寸火焰卷吸超细水雾的量。于是,这些超细水雾从火焰反应区吸收的热就能得到定量,同时超细水雾汽化对氧气的稀释作用也可以定量分析。为了验证卷吸区有效雾通量计算方法的可靠性,建立了杯形燃烧器实验台,通过实验验证了这种理论的准确性。
     前人进行细水雾灭火有效性实验时使用的通常是常规细水雾,这些雾滴粒径和动量均较大的细水雾在灭火时,雾滴会很快穿过羽流与火焰到达燃料表面,仅有少量细水雾完全汽化,因此前人在冷态情况下测量的雾通量可以近似等于本文中的燃料区有效雾通量,测量时通常使用收集法和积分法,测量值均为一段时间内的平均,测量基于雾通量定常的假设之上。但在灭火过程中,尤其是细水雾施加初期,燃料区有效雾通量却存在不稳定的变化过程。为了对有效雾通量进行实时测量,在试管(烧杯)收集法的基础上进行改进,建立了电子天平实时称重系统和数据采集系统,实验验证了称重法有效雾通量测量的可行性。对比不同高度下测量的有效雾通量与假设雾场雾流密度均匀分布条件下推导的有效雾通量随喷头高度变化的曲线,可以看出本文给出的雾通量计算模型具有较高的精确度。
     在测量了燃料区有效雾通量的基础上,对影响细水雾灭火性能的各种参数进行了分类,将雾滴粒径、雾滴速度、动量、动能等参数定义为直接参数,而将喷头高度、喷头特性参数、细水雾系统压力、通风条件等参数定义为间接参数,因为间接参数通过影响直接参数来影响细水雾灭火性能。通过常规细水雾扑灭正庚烷与柴油火的实验,在直接参数的因子分析基础上研究了直接参数与灭火性能的相关性。结果表明,在本文研究的这些直接参数中,雾场最前端细水雾速度与稳定喷射时细水雾的平均速度是两个决定细水雾是否能够迅速将火焰抑制,并最终扑灭火焰的参数。这个结果表明在设计常规细水雾灭火系统的时候,应该优先保证细水雾具有足够的速度。
     为了定量研究反应区有效雾通量对燃烧的影响,独立分析反应区细水雾冷却火焰、稀释燃料的灭火机理,建立了另一种杯形燃烧器实验台,在燃烧器的气体燃料通道中加入了雾通量可控的超细水雾发生系统,超细水雾跟随燃料运动到燃烧器的出口,作用于燃烧反应。实验测量了冷态条件下的有效雾通量之后,通过热态实验研究不同有效通量的超细水雾对火焰燃烧的影响,定量分析了反应区有效雾通量的灭火机理,得到了反应区有效雾通量灭火的临界值。
Water mist flux is one of the key factors that affect the suppression efficiency. In order to focus on the water mist which has direct influence on the fuel and flame, the flux made up by these water mists is effective flux. The process of water mist fire suppression contains couples of mechanisms at the same time, and the process is characterized as an un-constant and un-stable process. To investigate the effective flux's suppression mechanism quantitatively, the common seen buoyant flame which often occurs in fires is divided into three regions: the fuel-zone, the reaction-zone and the entrainment-zone. Consequently, the effective flux is consisted of fuel-zone effective flux, reaction-zone effective flux and entrainment-zone effective flux. This kind of division can separate the suppression mechanisms like fuel cooling, oxygen cooling, fuel dilution and oxygen dilution, make the quantitative analysis easier.
     Water mist with the diameter less than 50 microns has the characters similar to the gas extinguishant. Its diameter is steady-going, the flux, momentum and the water in unit volume can easily controlled. Using this kind of water mist to suppress flame can transform the fire suppression process to a relatively stable process. So this kind of water mist is picked up and defined as Super-fine Water Mist, and water mist with the diameter lager than 50 microns is defined as Regular Water Mist. On the basis of investigations on the methods and mechanisms to produce Super-fine Water Mist, a Super-fine Water Mist generator system is established; using electronic balance, the Laser Doppler Velocimeter and Adaptive Phase/Doppler Velocimeter (LDV/APV) system, the characters of Super-fine Water Mist were measured, and compared with those of Regular Water Mist.
     Super-fine Water Mist can't perforate the flame surface into the reaction-zone because of the diameter and low velocity, when Super-fine Water Mist is used to suppress flame, it can only be entrained by the flame, suppress the flame by means of heat absorption and dilution of the oxygen. Because Super-fine Water Mist becomes vapor before coming to the flame surface, there is a none-liquid zone between the flame and water mist. Suppose that the none-liquid zone can extend to far away, the calculation for buoyant flame entrainment with air can be used to calculate the air-vapor mixture volume, in this way, the Super-fine Water Mist entrained into the entrainment-zone is calculated. Consequently, the heat absorbed by the water mist and the oxygen dilution degree can also be determined. In order to verify the reliability of the calculation, a cup-burner system was established, experiments results confirmed the veracity.
     Former researchers mainly use ordinary water mist in the fire, suppression experiments, this kind of water mist can penetrate the plume and flame quickly and reach the fuel surface because of the large diameter and high velocity, only little proportion of water mist changes to gas phase. Therefore, former measurement results of water mist flux are nearly the same as the fuel-zone effective water mist flux. People use collect-method and integral-method to measure fuel-zone effective flux, the flux measured is the average of a period time, based on the supposition that the flux is constant. But, in fact, the flux is unstable, especially at the beginning of the spray. In order to measure the flux in real-time, the collect-method is upgraded to an electronic balance together with a real-time data acquisition system. The feasibility of this method was verified by experiments. The data acquired in the experiments have a good coordinate with the results calculated on the supposition that the flux density of the water mist flux field is uniform. Therefore, a water mist flux calculation method is established.
     After the fuel-zone effective flux is measured, the factors that affect the suppression efficiency are divided into two groups; mist diameter, mist velocity, momentum and kinetic energy are one group, named as direct factors. Height of sprinkler, and the K factor, the operation pressure and the ventilation condition are the other group, named as in-direct factors. The factors in the latter group are called in-direct factors, because they don't affect the suppression process directly, but affect the factors in the former group, while the former group can affect the suppression directly. The correlativity of the direct factors and the suppression efficiency is analyzed by the suppression experiments of heptanes-fire and diesel fires. There comes the conclusion that the water mist velocity has the largest correlativity with the suppression efficiency, this result suggests that velocity should be considered prior to other factors of the water mist in the water mist system designs.
     In order to investigate influence of the effective flux on the combustion, analyze water mist suppression mechanism of flame cooling and fuel dilution in the reaction-zone separately, another cup-burner experimental apparatus was set up, in this burner, a flux controlled Super-fine Water Mist generator system is added into the water mist transmit process, with the force of the fuel, water mist generated is taken to the opening of the burner. Effective flux was measured before the fire ignited, after that, effects of different flux on the flame combustion was investigated; the suppression mechanism of reaction-zone effective flux is analyzed. Threshold flux for the fire extinguishment was obtained by experiments.
引文
[1].R.L.AIpert.Incentive for Use of Misting Spray as a Fire Suppression Flooding Agent[J].Proceedings of Water Mist Fire Suppression Workshop,1993,PE31-36.
    [2].Tewarson A.,Khan M.M.Extinguishment of Diffusion Flames of Polymeric Materials by Halon-1301[J].Journal of Fire Sciences,1993,11(5):407-420.
    [3].Grant G.,J.Breton,D.Drysdale.Fire Suppression by Water Sprays[J].Progress in Energy and Combustion Science,2000,26(2):79-130.
    [4].Liu J.H.,G.X.Liao,E D.Li,W.C.Fan,Q.Lu.Progress in research and application of water mist fire suppression technology[J].Chinese Science Bulletin,2003.48(8):p.718-725.
    [5].Liu Z.G.,A.K.Kim,J.Z.Su.A review of water mist suppression technology:Part Ⅱapplication studies[J].Journal of Fire Protection Engineering,2001.11(1):p.30.
    [6].Liu Z.G.,A.K.Kim.A review of water mist suppression technology:fundamental studies[J].Journal of Fire Protection Engineering,2000.10(3):p.19.
    [7].Mawhinney J.R.,J.K.Richardson.A review of water mist fire suppression research and development,1996[J].Fire Technology,1997.33(1):p.54-90.
    [8].Yao B.,W.K.Chow.A review of water mist fire suppression systems[J].Journal of Applied Fire Science,2001.10(3):p.18.
    [9].Jones A.,P.F.Nolan.Discussions on the use of fine water sprays or mists for fire suppression[J].J.Loss Prey.Process Ind.,1995,Vol.8,Number 1,p17(6).
    [10].刘江虹,廖光煊,厉培德,范维澄,陆强.细水雾灭火技术研究与进展[J].科学通报,2003年4月.48(8):p.7.
    [11].Heskestad Gunnar.Extinction of gas and liquid pool fires with water sprays[J].Fire Safety Journal 38(2003)301-317.
    [12].Liu J.H.,G.X.Liao,P.D.Li,B.Yao.Preliminary study on interaction of water mist with diffusion flame of liquid fuels[J].Progress in Natural Science,2003.13(3):p.237-240.
    [13].Liu Zhigang,Andrew K.Kim,Don Carpenter.A study of portable water mist fire extinguishers used for extinguishment of multiple fire types[J].Fire Safety Journal,doi:10.1016/j.firesaf.2006.06.008,2006.
    [14].Liu Z.G.,A.K.Kim,D.Carpenter.Extinguishment of large cooking oil pool fires by the use of water mist systems[J].NRCC Report,No.NRCC-46970,2004.
    [15].Liu Z.G.,A.K.Kim,D.Carpenter,J.M.Kanabus-Kaminska.Extinguishment of cooking oil fires by water mist fire suppression systems[J].Fire Technology,2004.40(4):p. 309-333.
    [16].龙芸.细水雾灭火系统现状及其应用[J].消防技术与产品信息,2004年(12):p.5.
    [17].武铁木.灭火系统的新成员--细水雾灭火系统[J].中国档案,2003.3:p.3.
    [18].Mawhinney J.R.,G.G.Back.Water Mist Fire suppression Systems[J].SFPE Handbook,3rd edition,2000,4-311.
    [19].Chow W.K.,B.Yao,M.Y.Ng.Application of water mist fire suppression systems in small retail shops[J].Journal of Fire Sciences,2002.20(6):p.479-503.
    [20].Darwin R.L.,F.W.Williams.The development of water mist fire protection systems for US navy ships[J].Naval Engineers Journal,2000.112(6):p.49-57.
    [21].Darwin R.L.,EW.Williams.Overview of the development of water mist systems for US navy ships[J].Halon Option Technology Working Conference,Apt 27-29,1999:p.8.
    [22].Hansen R.L.,G.G.Back.Water spray protection of machinery spaces[J].Fire Technology,2001.37(4):p.10.
    [23].HUANG XIN,XISHI WANG,XIANG JIN,GUANGXUAN LIAO,JUN QIN.Fire Protection of Heritage Structures:Use of a Portable Water Mist System under High-altitude Conditions[J].JOURNAL OF FIRE SCIENCES,VOL.00,2006.
    [24].Log T.,EC.Brookes.Water mist for fire protection of historic buildings and museums[J].Museum Management and Curatorship,1995.14(3):p.16.
    [25].R.G.Bill,Hansen R.L.,Richards K.Fine-Spray(Water Mist)Protection of Shipboard Engine Rooms[J].Fire Safety Journal,Volume 29,Number 4,November 1997,pp.317-336(20).
    [26].Weng W.G.,W.C.Fan.Experimental study on the mitigation of backdraft in compartment fires with water mist[J].Journal of Fire Sciences,2002.20(4):p.259-278.
    [27].李莹,丁国锋,罗宗哲,林廷圻,姚玉超,谭晓安.中压单流体细水雾灭火系统在液压站及润滑油库中的应用研究[J].消防技术与产品信息,2003(4):p.5.
    [28].陆强,廖光煊,黄鑫,宛田宾.舰船细水雾灭火系统研究回顾[J].中国工程科学,2004.9.6(9):p.7.
    [29].韦艳文,姚效刚,弋建州,汤文成.军用舰船细水雾灭火系统研究[J].机械制造与研究,2006.35(2):p.75-78.
    [30].NFPA750.Standard for the installation of water mist fire suppression systems[J].1996 Edition National Fire Protection Association,Quincy,2000.
    [31].王静立,朱玉泉,贺小峰,廖义德,李壮云.移动式高压细水雾灭火器喷嘴的雾化特性实验研究[J].液压与气动,2005(1):p.3.
    [32].杨琦.高压细水雾灭火系统技术[J].消防技术与产品信息,2003(10):p.4.
    [33].周华,邓东,周善淮,范垣宵,杨华勇.高压单相流细水雾灭火系统研制及实验研究[J]消防科学与技术,2004.23(4):p.3.
    [34].周华,范明豪,杨华勇.移动式高压直接雾化细水雾灭火系统[J].消防科学与技术,2003.22(6):p.4.
    [35].周华,朱畅,范明豪等.高压细水雾 灭火系统的雾滴直径测量与灭火试验[J].自然科学进展,2004,14(8):950-954.
    [36].朱畅,邓东,周华.移动式高压细水雾灭火系统试验研究[J].消防科学与技术,2005.24(4):p.3.
    [37].陈卓楷,陈凡植,周炜煌,祝光.超声雾化水雾在除尘试验中的应用[J].广东化工,2006.33(162):p.4.
    [38].程存弟,超声技术.1993:陕西师范大学出版社.221.
    [39].梁泽钦,邱红喜,杨明丰,严飞,王旺平.超声雾化加湿系统研究与设计[J].武汉工业学院学报 Sep.2006.25(3):p.3.
    [40].徐立成,孙和平.超声雾化抑尘器及其应用[J].工业安全与防尘,1995.5:p.3.
    [41].张小艳,郭强,李全.微细水雾除尘技术的实验研究[J].环境污染与防治,2003.25(4):p.3.
    [42].Adiga K.C.A CFD study of the effects of inlet droplet variables on water mist fire suppression efficiency.2001[C].Savannah,GA,United States:Institute of Electrical and Electronics Engineers Inc.
    [43].Bennett Mike,K.C.Adiga,Aerospace Applications of NanoMist Ultra Fine Fog,in Presentation at the International Aircraft Systems Fire Protection Working Group Meeting.October 25 26,2006:Atlantic City,New Jersey,USA,.
    [44].Forssell E.W.,J.L.Scheffey,P.J.DiNenno,Ⅲ G.G.Back,K.C.Adiga,Hatcher Jr.R.F,J.P.Farley,W.W.Williams.False Deck Testing of Nanomist Water Mist Systems[J].Paper to be presented at HOTWC 2004,Albuquerque,NM,May 4-6(2004).
    [45].Ndubizu C.C.,R.Ananth,F.W.Williams,Water Mist Suppression of PMMA Boundary Layer Combustion - A Comparison of NanoMist and Spray Nozzle Performance.2004:United States.p.67p.
    [46].Sheinson R.S.,F.W.Williams,K.C.Adiga,R.F.Hatcher,S.Ayers.Test Plan for Feasibility of NanoMist~(TM)Total Flooding Fire Suppression in a 28 m3Compartment[J].Naval Research Laboratory Letter Report,Washington,DC,2004.
    [47].Adiga K.C.,F.W.Williams.Ultra-fine Water Mist As a Total Flooding Agent:A Feasibility Study[J].Halon Options Technical Working Conference,Albuquerque,New Mexico May 4-6,2004.
    [48].Sheinson Ronald S.,Frederick W.Williams,b Scott Ayersa,K.C.Adiga,Robert F.Hatcher.FEASIBILITY EVALUATION STUDY OF VERY FINE WATER MIST AS A TOTAL FLOODING FIRE SUPPRESSION AGENT FOR FLAMMABLE LIQUID FIRES[J].Workshop on Fire Suppression Technologies,Mobile,Alabama,Feb 25-27,2003.
    [49].丛北华,多组分细水雾与扩散火焰相互作用的模拟研究,in火灾科学国家重点实验室.2006,中国科学技术大学:合肥.
    [50].刘江虹,廖光煊,厉培德,陆强.受限空间中细水雾灭火的准稳态模型[J].燃烧科学与技术,2003.9(4):p.5.
    [51].Jiang Z.,W.K.Chow,J.Tang,S.F.Li.Preliminary study on the suppression chemistry of water mists on poly(methyl methacrylate)flames[J].Polymer Degradation and Stability,2004.86(2):p.293-300.
    [52].Jianghong Liu,Liao Guangxuan,Fan Weicheng,Yao Bin,Lu Xiyun.Study of liquid pool fire suppression with water mists by cone calorimeter[J].Journal of Fire Sciences,2002.20(6):p.465-477.
    [53].Kim Myung Bae,Yong Jae Jang,Myoung O Yoon.Extinction Limit of a Pool Fire with a Water Mist[J].Fire Safety Journal 28(1997)295-306
    [54].Lazzarini A.K.,R.H.Krauss,H.K.Chelliah,G.T.Linteris.Extinction Conditions of Non-Premixed Flames with Fine Droplets of Water and Water/NaOH Solutions.2000[C].United States.
    [55].Liu J.H.,G.X.Liao,et al P.D.Li.Experimental study on the interaction of fine water mist with solid pool fires[J].Science in China,2003,46(2):218-223.
    [56].Ndubizu C.C.,R.Ananth,RA.Tatem.The effects of droplet size and injection orientation on water mist suppression of low and high boiling point liquid pool fires[J].Combust.Sci.and Tech.157 00.63-86(2000).
    [57].Ndubizu C.C.,R.Ananth,P.A.Tatem,K.Prasad,C.Li,Experimental and Numerical Study of the Effects of Design Parameters on Water Mist Suppression of Liquid Pool Fires.1999:United States.p.32p.
    [58].Qin J.,W.K.Chow.Bench-scale tests on PMMA fires with water mist[J].Polymer Testing,2005.24(1):p.39-63.
    [59].Qin J.,W.K.Chow.Bench-scale studies of poly(vinyl chloride)fires with water mist[J].Journal of Applied Polymer Science,2006.99(5):p.2520-2527.
    [60].Shimizu H.,M.Tsuzuki,Y.Yamazaki,A.K.Hayashi.Experiments and numerical simulation on methane flame quenching by water mist[J].Journal of Loss Prevention in the Process Industries,2001.14(6):p.603-608.
    [61].Sozbir Nedim,Shi-Chune Yao.Experimental studies of using water mist cooling for the tempering of glass.2002[C].New Orleans,LA,United States:American Society of Mechanical Engineers,New York,NY 10016-5990,United States.
    [62].Sozbir N.,S.C.Yao.Experimental investigation of water mist cooling for glass tempering[J].Atomization and Sprays,2004.14(3):p.191-210.
    [63].Wang X.S.,G.X.Liao,et al J.Qin.Experimental study on the effectiveness of the extinction of a pool fire with water mist.[J].Journal of Fire Science,2002,20(4):279-296.
    [64].Wang X.S.,G.X.Liao,B.Yao,W.C.Fan,X.P.Wu.Preliminary study on the interaction of water mist with pool fires[J].Journal of Fire Sciences,2001.19(1):p.45-61.
    [65].Weng W.G.,J.Qin,W.K.Chow.Study on the suppression mechanism of water mist on poly(methyl methacrylate)and poly(vinyl chloride)flames[J].Journal of Applied Polymer Science,2006.101(2):p.1130-1139.
    [66].Xishi Wang,Liao Guangxuan,Qin Jun,Fan Weicheng.Experimental Study on the Effectiveness of the Extinction of a Pool Fire with Water Mist[J].Journal of Fire Sciences,Vol.20,No.4,279-295,2002.
    [67].Yao Bin,Weicheng Fan,Guangxuan Liao.Interaction of water mists with a diffusion flame in a confined space[J].Fire Safety Journal,1999.33(2):p.129-139.
    [68].从北华,秦俊,廖光煊,姚斌,张和平.细水雾作用下固体PMMA燃烧特性的实验研究[J].自然科学进展,2005.15(10):p.6.
    [69].黄鑫,,刘江虹,,廖光煊,,陆强.细水雾扑灭油池火的临界条件[J].燃烧科学与技术,2006年8月.12(4):p.6.
    [70].李定启,余明高,郑立刚,贾海林.含添加剂细水雾灭火技术探讨[J].消防科学与技术,2005.24(6):p.3.
    [71].陆强.细水雾与油火的相互作用研究[J].博士学位论文,中国科学技术大学,合肥,2005.
    [72].秦俊,廖光煊,徐秀梅.细水雾抑制气体火焰的实验测量[J].激光与红外,2003.33(2):p.4.
    [73].秦俊,林霖,廖光煊.用红外热成像方法研究纸板表面火蔓延特性[J].红外技术,2003.25(3):p.6.
    [74].王喜世,,赵祥迪,,丛北华,,朱伟,,秦俊,,廖光煊.细水雾抑制气体火焰的实验[J].中国科学技术大学学报,2006年1月.36(1):p.3.
    [75].姚斌,廖光煊,范维澄,何亚平.利用锥型量热计研究细水雾作用下的油池火热释放 速率[J].量子电子学报, 2002年(02期).
    [76]. Back G. G.,C. L. Beyler,R. Hansen. A quasi-steady-state model for predicting fire suppression in spaces protected by water mist systems[J]. Fire Safety Journal, 2000. 35(4): p. 327-362.
    [77]. Hua Jinsong,Kurichi Kumar,Boo Cheong Khoo,Hong Xue. A numerical study of the interaction of water spray with a fire plume[J]. Fire Safety Journal 37 (2002) 631-657.
    [78]. K.C.Adiga,Robert F.,Jr. Hatcher,Ronald S. Sheinson,Frederick W. Williams,b Scott Ayersa. CFD MODELING OPTIONS FOR TOTAL FLOODING BEHAVIOR OF ULTRA FINE WATER MIST [J].
    [79]. Keramida E. P.,A. N. Karayannis,A. G. Boudouvis,N. C. Markatos. Numerical modeling of radiant heat attenuation through water mist[J]. Combustion Science and Technology, 2000. 159: p. 351-371.
    
    [80]. Kim S. C.,H. S. Ryou. An experimental and numerical study on fire suppression using a water mist in an enclosure[J]. Building and Environment, 2003. 38(11): p. 1309-1316.
    [81]. Li X.,J. L. Gaddis,T. Wang. Modeling of heat transfer in a mist/steam impinging jet[J]. Journal of Heat Transfer, 2001. 123(6): p. 1086-1092.
    [82]. Li Y. F.,W. K. Chow. Modelling of water mist fire suppression systems by a one-zone model[J]. Combustion Theory and Modelling, 2004. 8(3): p. 567-592.
    [83]. Prasad K.,C. Li,K. Kailasanath,C. Ndubizu,R. Ananth,P. A. Tatem. Numerical modeling of water mist suppression of methane-air diffusion flames[J]. Combustion Science and Technology, 1998. 132(1-6): p. 325-+.
    [84]. Prasad K.,C. P. Li,K. Kailasanath. Simulation of water mist suppression of small scale methanol liquid pool fires[J]. Fire Safety Journal, 1999. 33(3): p. 185-212.
    [85]. Prasad K.,G. Patnaik,K. Kailasanath. A numerical study of water-mist suppression of large scale compartment fires[J]. Fire Safety Journal, 2002. 37(6): p. 569-589.
    [86]. Ray S.K.,R.P. Singh. Effects of water mist on open fire - a model study[J]. Mining Technology, 2005. 114(A1): p. 14.
    [87]. Scott Stuart L.,Lei Liu,Jinghai Yi. Modeling the effects of a deepwater leak on behavior of a multiphase production flowline. 1999[C]. Austin, TX, USA: Soc Pet Eng (SPE), Richardson, TX, USA.
    [88]. Tsa S. S.,E. T. Liu,C. H. Chen. Numerical study for interaction between water mist and counterflow diffusion flame over Tsuji burner[J]. Combustion Science and Technology, 2001. 167: p. 257-289.
    
    [89]. Vaari J. A study of total flooding water mist fire suppression system performance using a transient one-zone computer model[J].Fire Technology,2001.37(4):p.327-342.
    [90].Wighus R.An empirical model for extinguishment of enclosed fires with water mist.[J].SINTEF Report,No.STF22 A98848,1998.
    [91].Xie H.,S.Koshizuka,Y.Oka.Numerical simulation of liquid drop deposition in annular-mist flow regime of boiling water reactor[J].Journal of Nuclear Science and Technology,2004.41(5):p.569-578.
    [92].Xin Y.,J.P.Gore,K.B.Mcgrattan,R.G.Rehm,H.R.Baum.Fire dynamics simulation of a turbulent buoyant flame using a mixture-fraction-based combustion model[J].Combustion and Flame,2005(141):p.7.
    [93].Yao,B.,W.K.Chow.Numerical modeling for compartment fire environment under a solid-cone water spray[J].Applied Mathematical Modelling,2005 年:p.15.
    [94].陆强,李钙,廖光煊,黄鑫,朱伟.油池火中细水雾强化火焰现象的研究[J].中国工程科学,2006.7.8(7):p.5.
    [95].Ndubizu Chuka C.EXPERIMENTAL STUDY OF WATER MIST SUPPRESSION MECHANISMS IN A FORCED FLOW BOUNDARY LAYER FLAME[J].Halon Options Technical Working Conference 24-26 April 2001.
    [96].陆强,廖光煊,秦俊,刘江虹.细水雾灭油池火时各种影响因素的相对重要度分析[J].火灾科学,2002.11(3):p.6.
    [97].崔正心,廖光煊,秦俊,范志航.细水雾抑制障碍物稳定火焰的实验研究[J].火灾科学,2001.7.10(3):p.4.
    [98].Downiw Bruce,Constantine Polymeropoulos,George Gogos.Interaction of a water mist with a buoyant methane diffusion flame[J].Fire Safety Journal 24(1995)359-381,1995.
    [99].林霖,房玉东,廖光煊,秦俊.细水雾作用下固体表面火蔓延速度变化规律的小尺度实验研究[J].中国工程科学,2006.8(6):p.5.
    [100].Fishera Brian,Andrew Awtryb,Ronald S.Sheinson,James W.Fleming,THE BEHAVIOR OF SUB 10 μm WATER MIST DROPS IN PROPANE/AIR CO-FLOW NON-PREMIXED "CUP BURNER" FLAMES,in HOTWC 2005.24-26 May 2005:Albuquerque,NM.
    [101].Fuss S.P.,D.J.Dye,B.A.Williams,J.W.Fleming,Inhibition of Premixed Methane-Air Flames by Submicron Water Mists.2000 HOTWC,Albuquerque,NM.2000:United States.p.16p.
    [102].Ewing Curtis T.(Hughes Associates Inc,Kensington,Md,USA),J.Thomas Hughes,Homer W.Carhart.EXTINCTION OF HYDROCARBON FLAMES BASED ON THE HEAT-ABSORPTION PROCESSES WHICH OCCUR IN THEM[J].Fire and Materials,Sep,1984.8(3):p.9.
    [103].Parra T.,F.Castro,C.Mendez,J.M.Villafruela,M.A.Rodriguez.Extinction of premixed methane-air flames by water mist[J].Fire Safety Journal,2004.39(7):p.581-600.
    [104].Ndubizu Chuka C.,Suppression of Small Electrical Cable Fires with Fine Water Mist,in Joint Meeting of the U.S.Section of the Combustion Institute.2005.
    [105].Abbud-Madrid Angel,James D.Watson,Jess G.Whittington,J.Thomas McKinnon,Jean-Pierre Delplanque.STUDY OF AN ULTRA-FINE WATER MIST SUPPRESSION SYSTEM FOR SPACECRAFT FIRES[J].
    [106].Richard J.,J.E Garo,J.M.Souil,J.P Vantelon,V.G.Knorre.Chemical and physical effects of water vapor addition on diffusion flames[J].Fire Safety Journal,2003.38(6):p.p.569-587.
    [107].房玉东,曾德云.超细水雾灭火系统在机房中的应用[J].消防技术:p.3.
    [108].房玉东,刘江虹,廖光煊,徐强,周晓猛.含MC添加剂超细水雾作用下电气设备击穿强度变化规律的实验研究[J].科学通报,2005年9月.
    [109].秦俊,廖光煊,王喜世,范志航.细水雾抑制火旋风的实验研究[J].自然灾害学报,2002.11(4):p.6.
    [110].陶玉灵.手提式超细水雾装置的研究[J].消防科学与技术,2006.25(2):p.3.
    [111].李刚,秦岩,郭剑峰.移动电源车用超细水雾灭火装置的研究[J].移动电源与车辆,2005(2):p.3.
    [112].朱伟,狭长空间纵向通风条件下细水雾抑制火灾的模拟研究,in 火灾科学国家重点实验室.2006,中国科学技术大学:合肥.
    [113].孙(?).几种不同类型细水雾喷嘴雾化特性研究[J].安防科技,2006(05).
    [114].范明豪,邓东,周华,杨华勇.纯水液压高压细水雾灭火技术及其应用探讨[J].液压与气动,2005(6):p.3.
    [115].李力.胶合板表面火蔓延特性研究[J].安徽建筑工业学院学报(自然科学版),2006.14(1):p.4.
    [116].应崇福,超声学.1990:科学技术出版社.520.
    [117].S.PATIL P.Versatility of chemical spray pyrolysis technique[J].Mater Chem Phys.1999,59(3):185-198.
    [118].秦俊,姚斌,廖光煊等.APV激光流场诊断系统及其应用[J].火灾科学,1999,8(2):37-42.
    [119].秦俊,姚斌,廖光煊等.细水雾流场雾通量的APV测量研究[J].中国科学技术大学学报,1999,29(3):322-325.
    [120].秦俊,刘江虹,王喜世,廖光煊,杨远智.激光相位多普勒诊断射流卷吸细水雾雾场特性的实验研究[J].激光杂志,2000.21(6):p.3.
    [121].Babrauskas V.Burning Rates[J].The SFPE Handbook of Fire Protection Engineering,2nd Edition,Section 3,1-15.1995.
    [122].Cetegen B.M.A phenomenological model of near-field fire entrainment[J].Fire Safety Journal 31(1998)299-312,1998.
    [123].ZHOU X.C.,JAYAVANT P.GORE,MEASUREMENTS AND PREDICTION OF AIR ENTRAINMENT BATES OF POOL FIRES,in Twenty-Sixth Symposium(International)on Combustion/The combustion Institute,1996/pp.1453-1459.
    [124].ZHOU X.C.,J.P.GORE.Air Entrainment Flow Field Induced by a Pool Fire[J].
    [125].Zhou X.C.,J.P.Gore.Effects of a Floor on the Entrainment Flow Field Induced by a Pool Fire[J].
    [126].Heine Martin C.,Lutz Madler,Rainer Jossen,Sotiris E.Pratsinis.Direct measurement of entrainment during nanoparticle synthesis in spray flames[J].Combustion and Flame 144(2006)809-820.
    [127].Wang M.,S.S.Lu,H.Hirano,T.Tagawa,H.Ozoe.Experimental and computational studies on water mist flow in the horizontal bore of a superconducting magnet:Example of magnetic force application on micron-sized objects[J].Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers,2005.44(11):p.8189-8195.
    [128].Zhou X.C.,J.P.Gore.Particle Imaging Velocimetry of the Flow Field Induced by a Small Toluene Pool Fire.Proceedings of the ASME Winter Annual Meeting,Chicago,IL,1994.1994b[C].
    [129].梁清水,梁清泉,徐文毅.细水雾特性及其灭火机理[J].消防科学与技术,2005.24(4):p.5.
    [130].李莹,丁国峰,韩颖平.工业低压细水雾灭火系统灭火机理与性能研究[J].消防技术与产品信息,2003(2):p.4.
    [131].秦俊,王喜世,廖光煊,陆强.细水雾发生及抑制液体火焰的实验研究[J].量子电子学报,2003.20(3):p.5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700