改性固体表面的物理化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高新技术的不断发展,对材料性能的要求越来越高,在对材料的表面保护和表面强化研究不断深入的过程中,逐渐形成了表面改性技术。表面改性是通过有目的地改变表面物理化学性质来实现的,通过改进功能、改善或提高材料的应用性能以满足当今新材料、新技术的要求。同时,表面改性也是节约能源和资源的重要途径,例如仅通过对建筑装饰材料的表面进行改性就能使其摩擦力发生变化,达到要求的标准。材料的疲劳断裂、磨损、腐蚀、氧化、辐射损伤等,一般都是从表面开始的,因此表面改性可以以最低的经济成本来提供优质的产品。此外,各类改性剂的开发合成、改性剂与基体间的作用研究、各种评价方法对不同材料不同改性剂的适应性问题也正在做更深入的研究和探讨。表面改性不仅已成为表面化学中的热门课题,也是界面工程中的重要研究课题之一。
     表面化学改性通过表面改性剂与材料表面进行化学反应或化学吸附的方式完成改性,改变固体表面的润湿性、界面张力及电性质等使固体表面性质得到提高,以增强材料性能。这是目前生产中应用最为广泛的改性方法。
     本文固体改性研究内容分为两个部分:第一章,磨光花岗岩表面化学改性与摩擦力改变的相依性;第二章,地表黏附石油的无污染分离。
     第一章主要是以磨光花岗岩为例研究坚硬的固体表面的防滑、增强,主要内容如下:
     (1)合成了一种用无色无味水溶性的复合有机硅材料。该复合有机硅材料能与主要成分是硅酸盐的花岗岩磨光表面反应形成烷基硅氧结构,在基材表面上生成一层几个分子厚的不溶性防水透气膜,逐渐形成化学吸附膜。
     (2)采用表面接触角、红外光谱、透射电子显微镜、电渗等方法对经复合有机硅材料改性后的花岗岩表面性质作出了表征评价,结果表明改性后花岗岩表面憎水性明显提高,微观形状趋于颗粒变小、均匀,表面电负性降低。
     (3)通过测定改性前后花岗岩磨光表面的摩擦系数和抗冻融性,表明改性后防滑、增强效果显著。
     (4)我们认为复合有机硅材料提高见水就滑的花岗岩表面摩擦力,增加光滑硬表面的防滑能力是由于反应形成的膜具有很低的表面张力,以及改变了花岗岩的表面势能。
     第二章主要是以粘土(砂)为例研究疏松固体表面无污染油砂分离。主要内容如下:
     (1)研究并合成了一种油-土分离处理剂。
     (2)通过脱油效率实验证明油-土分离处理剂能够有效分离黏附在砂子表面的石油,并且使油中不含水,水中不含油,土壤中不含油。
     (3)通过岩心稳定性实验,测定岩心试样的溶失率、水敏性及渗透率表明油-土分离处理剂对土壤不会造成伤害,能够防止粘土膨胀。
     (4)对比普通的使用表面活性剂的化学洗涤处理的机理,探讨了油-土分离处理剂的脱油机理。
Along with the development of high and new-technology, requirement on characteristic of material becomes higher and higher. Surface modification technology has been developed during the study on surface protection and surface strengthening. Surface modification technology includes changing on physical property and chemical property of material, the aim is to improve characteristic of material. Surface modification technology is one kind of methods of economizing energy sources and resource. Generally speaking, it is take place from surface such as corrosion, oxidation, abrasion and wear. Surface modification technology is more and more important not only in chemical but also in interphase engineering.
     Surface modification is accomplished by chemical reaction and chemical adsorption. This is the common method in production now.
     The paper consists of two sections:
     I. Relationship of change in friction and chemical reactions of polished granite surface.
     The polished surfaces of granite would become slipper in contact with water. The reaction between a colorless, odorless, water-soluble composite organic-silicon compound and the polished surface of granite would improve the anti-skid property and increase friction without changing the polished surface of granite. Because of it s low surface tension and surface energy, various waterproof agents can be made from the composite organic-silicon compound. Composite organic-silicon waterproof agents can form a waterproof film by reacting with the granite surface. With the change of granite surface property such as wetting, counter freezing, electrical property and micro-appearance, the friction force of granite surface also changed.
     II. Separation without pollution on contaminated soil by oil
     There are many attempts been made to stabilize the contaminated soil. It was found that the pollution and damage with different degree were occurred in the treatments. The active agent was made in order to avoid damage or pollute. The effects of this treatment including: displacing oil, anti-swelling and demulsify. At last,the oil had no water,the water had no oil,and there were little oil in clay.
引文
[1] Wen Shizhu (温诗铸). Nano Tribology (纳米摩擦学). Beijing: Tsinghua University Press, 1998: 226-227
    [2] Ruan J, Bhushan B. Friction behavior of highly oriented pyrolytic graphite. J Appl Phys,1994, 76: 5022-5035
    [3] Chen Zongqi (陈宗琪),Wang Guang xin (王光信), Xu Guiying (徐桂英). Colloid and Interface Chemistry (胶体与界面化学). Beijing: Higher Education Press, 2001: 34-36
    [4] Xin Yinchang (辛寅昌). Preparation method of anti-skid material used for polished surface of brick: CN, 200510043466.0. 2005-11-23
    [5] ASTM Designation D2047-99: Standard Test Method for Static Coefficient of Friction of Polish-Coated Flooring Surfaces as Measured by the James Machine
    [6] 钱林茂,雒建斌,温诗铸,萧旭东.二氧化硅及其硅烷自组装膜微观摩擦力与黏着力的研究( Ⅰ)* 摩擦力的实验与分析.物理学报,2000,49(11),2240~2246
    [7] 张承志.建筑混凝土[M].北京:化学工业出版社,2001:48
    [8] 刘成禹,何满潮,王树仁,胡江春. 花岗岩低温冻融损伤特性的实验研究. 湖南科技大学学报(自然科学版),2005,20(1)37-40
    [9] Sun Zhongxin (孙中新). The breath function research of the organic waterproof coating. New Building Material (新型建筑材料), 2003, 1: 26
    [10] Ding Hao (丁浩). Research development and prospect on change of mine surface [J]. Conservation and Utilization of Mineral Resources(矿产保护与利用), 1997, 1: 22
    [11] 侯万国,孙德军,张春光等.应用胶体化学,科学出版社,1998:102-103
    [12] 朱步瑶,赵振国.界面化学基础,化学工业出版社,2003:205-209
    [13] 朱良漪等.分析仪器手册,2002:261-268
    [14] 廖凯荣,等.高分子材料科学与工程,1995,6:40
    [15] Hans Mayer,Rudolf Hager,Marianne Kreuzpointner ,Sandra Huber .Aqueous creams of organosilicon compounds.USTP 6492459.2002
    [16] Fisher, Paul David. Method of treating surfaces with organosilicon water repellent compositions. USTP 6403163.2002
    [17] Ishikawa, Hiroki. Method for preparing organic silicon compound emulsion. USTP 6319980.2001
    [18] Rudolf Hager. Emulsions of organosilicon compounds for imparting water repellency to building materials. 6294608.2001
    [19] 黄月文,刘伟区,罗广建.有机硅建筑材料.广州化学,2001,(1):57-63
    [20] 陈宗琪,等.胶体化学实验.济南:山东大学出版社,1987:66
    [21] GB/T 9966.1-2001 Experimentation Method of Savageness Stone used for Facing. Experimentation Method of Dryness, water saturation and freeze-thaw cycle strength
    [22] Shen zhong (沈钟), Zhao Zhenguo (赵振国), Wang Guoting (王果庭).Colloid and Surface Interface (胶体与表面化学). Beijing: Chemical Industry Press, 93-94
    [23] 周祖康,等.胶体化学. 北京大学出版社,1996:254
    [24] Zhou Zukang (周祖康), Gu Xiren (顾惕人), Ma Jiming (马季铭). Colloid Chemistry (胶体化学). Beijing: Peking University Press, 1996: 254
    [25] White J M. Physical Chemistry Laboratory Experiments [M]. London: Prentice Hall.1975, 450-470
    [26] 孙清,陆秀君,梁成华. 土壤的石油污染研究进展. 沈阳农业大学学报. 2002-10,33(5):390~393
    [27] 王景华,魏从如,刘凤奎.油田开发环境影响评价文集[C].北京:中国环境科学出版社,1989,45-60
    [28] Mark E. Zappi, Brad A. Rogers, Lynthia L. Teeteretal. Bioslurry treatmeat of a Soil Contaminated with Low Concentration of Total Petroleum Hydrocarbon, Journal of Hazardous materials [J].1996,46:1-12
    [29] Kaminkiar B. Bioremediation of contaminated soil. Pollution Engineering, 1992,24(11):50~52
    [30] 张丽芳,肖红,魏德洲. 表面活性剂对土壤石油污染物微生物降解的影响. 2002,(12)31, 509~513
    [31] 欧阳威,刘红,于勇勇,张丹,Valentina P. Murygina,许增德.高羊茅对微生物强化修复石油污染土壤影响的研究.环境污染治理技术与设备. 2006,(1),7 , 94~97
    [32] 于晓丽.落地原油对土壤污染及治理技术.农业环境与发展.2000,3(65),28~29
    [33] 任磊,黄廷林. 土壤的石油污染. 农业环境保护. 2000,19(6):360~363
    [34] 解岳.延河流域石油类污染物非点源污染特征及其在河流沉积物中的吸附与释放[D].西安:西安建筑科技大学,1999
    [35] 王连生.环境健康化学[M].北京:科学出版社,1994
    [36] 丁克强,孙铁珩,李培军.2000.石油污染土壤的生物修复技术 [J].生态学杂志,19(2):50~55
    [37] 吕志萍,程龙飞.2001.石油污染土壤中石油含量对玉米的影响[J].油气田环境保护,11(1):36~37
    [38] 钱鸿缙,王继唐,罗宇生,等.湿陷性黄土地基[M].北京:中国建筑工业出版社,1985
    [39] 史红星, 黄廷林.黄土地区土壤对石油类污染物吸附特性的实验研究.环境科学与技术.2002, 25(3):10~13
    [40] 谢中阁,等.环境中的苯并[a]芘及其分析技术[M].北京:中国环境科学出版社,1991
    [41] [苏]H.Φ.依兹麦罗夫.环境中常见污染物(第二辑)[M].北京:中国环境科学出版社,1986
    [42] 夏永明,孙良康.石油储运过程环境污染控制[M].北京:中国石化出版社,1992
    [43] 谢中阁.环境中石油污染物的分析技术[M].北京:中国环境科学出版社,1987
    [44] 张丽芳,李艳,肖红.表面活性剂在石油污染治理中的应用[J].辽宁化工,2002,31(9):382-385
    [45] 孙庆峰,余仁焕.石油污染土壤处理技术研究的进展.国外金属矿选矿.2005,12,4~9
    [46] 曾宪军,刘登魁.微生物修复受石油污染土壤的研究进展[J].湖南农业科学,2006(2):36-38,39
    [47] 罗士平,周国平,张齐.油田含油污泥处理工艺条件的研究[J].江苏工业学院学报,2003,15(1):24-6
    [48] 常银环,任红宇,宋迎来.油田含油泥砂的处理[J].油气田地面工程,1996,5(2):33-34,37
    [49] 刘程,张万福等.表面活性剂应用手册.化学工业出版社, 1995
    [50] 杨建涛,朱 琨,马娟.表面活性剂对黄土中石油污染物的解吸影响研究.环境污染治理技术与设备.2003,4(2):6~9,13
    [51] 辛寅昌,安骏,刘承东,等.驱油固砂剂:中国,CN02158674.8[P].2006-07-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700