新型牙科二硅酸锂玻璃陶瓷的计算机配色研究及性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二硅酸锂玻璃陶瓷由于其晶体独特的性质和分布,是目前强度最高的一类牙科璃陶瓷,并具备良好的半透光特性,为牙科美学修复的理想材料,具有广阔的应前景。Ivoclar Vivadent公司的IPS系列产品是目前市场上仅有的商品化牙科二硅酸玻璃陶瓷,品种单一,修复成本较高。为突破国外厂商的技术垄断并推广全瓷修的应用,需进一步研发出具有自主知识产权和较低成本的新型产品。性能的提高颜色的调配是牙科陶瓷材料研发的两大阻碍。课题组前期已制备出可用于牙科修的实验二硅酸锂玻璃陶瓷,本课题在前期工作的基础上,通过分析晶化热处理时对实验二硅酸锂玻璃陶瓷微观结构和性能的影响,优化热处理时间,进一步提高能;研究锆基陶瓷色料对实验玻璃陶瓷颜色、微观结构和性能的影响,探讨其用实验玻璃陶瓷配色的可能性;采用计算机配色技术进行配色研究,筛选出与Vitapanlassical比色板颜色相匹配的色料配方;比较三种计算机配色方法配色的准确性,建立计算机配色数据库,为进一步的色彩学研究奠定基础;分析饰面瓷烧结对实验玻璃陶瓷颜色的影响;并对牙科二硅酸锂玻璃陶瓷的微观结构和性能进行比较分析。通过本课题的研究,为研发拥有自主知识产权的新型牙科二硅酸锂玻璃陶瓷产品奠定实验基础。本课题共分为三部分:
     第一部分实验二硅酸锂玻璃陶瓷的性能分析
     1.采用两段式晶化热处理制度(700℃/900℃)制备出SiO2-Li2O-K2O-Al2O3-ZrO2-P2O5系玻璃陶瓷,两段式晶化热处理时间分别为:A,1h/1h;B,2h/2h;C,3h/3h;D,4h/4h;E,5h/5h;F,6h/6h;G,8h/8h。XRD结果表明,使用不同的晶化热处理时间制备出的实验玻璃陶瓷的晶相组成相似,主晶相均为Li2Si2O5,次晶相均为Li2SiO3和Li3PO4。SEM结果显示,各组棒状的Li2Si2O5晶体形成互锁微结构,但各组晶体的大小及分布均随热处理时间的不同而存在差异。不同的热处理时间对实验玻璃陶瓷的透明度无显著影响。经两段式晶化热处理5h制备出的实验玻璃陶瓷具有最高的弯曲强度:308±25MPa。
     2.在实验玻璃陶瓷中分别添加1.0wt.%锆镨黄、锆铁红和锆钒蓝三种锆基色料,分析色料添加对其微观结构和性能的影响。结果表明,添加1.0wt.%锆基色料对实验玻璃陶瓷的热力学性能、晶相组成、微观结构和弯曲强度均无显著影响。添加1.0wt.%锆基色料后,实验玻璃陶瓷的透明度发生显著变化,但均能满足临床应用要求。三种锆基色料可用于实验玻璃陶瓷的配色研究。
     第二部分实验二硅酸锂玻璃陶瓷的计算机配色
     3.在实验玻璃陶瓷中分别添加梯度质量百分比浓度的锆镨黄、锆铁红和锆钒蓝,制备出单色梯度浓度色样瓷块,研究不同色料浓度对瓷块色度值和反射光谱的影响。结果显示,三种锆基色料的添加浓度与色样瓷块的色度值之间的关系符合色料着色的基本规律,且光谱反射率数据可用于建立计算机配色的单色数据库。
     4.采用基于Kubelka-Munk理论的三刺激值和全光谱匹配法,以Vitapan Classical比色板为靶目标样,对实验玻璃陶瓷进行计算机配色研究。结果表明,根据三刺激值和全光谱匹配法提供的色料配方烧制的配色样,均能获得与Vitapan Classical比色板各比色片相近的颜色,其中全光谱匹配法配色精度优于三刺激值法,二者的配色样与靶目标样之间的平均色差分别为10.8±2.1和14.0±2.2。
     5.采用基于BP人工神经网络的计算机配色方法,以Vitapan Classical比色板为靶目标样,对实验玻璃陶瓷进行配色研究。结果表明,根据BP人工神经网络提供的色料配方烧制的配色样,可获得与Vitapan Classical比色板各比色片相一致的颜色,其配色样与靶目标样之间的平均色差为6.3±1.2,配色精度优于三刺激值和全光谱匹配法。
     6.在实验玻璃陶瓷基底瓷上烧结IPS e.max Ceram饰面瓷,对其烧结饰面瓷后的颜色进行评价,并根据饰面瓷的烧结程序对A2色实验玻璃陶瓷进行反复烧结,以研究饰面瓷反复烧结对其颜色的影响。结果表明,烧结IPS e.max Ceram饰面瓷后,实验玻璃陶瓷与Vitapan Classical比色板各比色片之间的平均色差减小至3.5±0.4,且反复烧结对实验玻璃陶瓷的颜色无影响。
     第三部分牙科二硅酸锂玻璃陶瓷的比较分析
     7.对实验玻璃陶瓷与IPS e.max Press瓷块的微观结构和性能进行比较分析,探讨二硅酸锂玻璃陶瓷性能和结构之间的关系。结果表明,实验玻璃陶瓷与IPS e.maxPress瓷块的晶相组成、微观结构和机械性能均相近,其透明度介于IPS e.max PressMO和HO瓷块之间。实验玻璃陶瓷的性能符合牙科美学修复材料的要求,展现出理想的应用前景。
Lithium disilicate glass-ceramic possesses higher mechanical strength than otherdental glass-ceramics and meanwhile demonstrates excellent translucency characteristicsdue to the unique nature and distribution of Li2Si2O5crystals. Therefore, it has beenconsidered as the ideal aesthetic restorative material with board applications in cosmeticdentistry. Currently, IPS products manufactured by Ivoclar Vivadent Corporate are theonly commercial dental lithium disilicate glass-ceramics with high cost. In order to breakthe technological monopoly of foreign manufacturers and to promote the application ofall-ceramic restorations in China, new products with independent intellectual propertyrights and lower cost need to be developed. Property improvement and color matching aretwo main difficulties of developing new dental ceramics. In the previous study, a novel dental lithium disilicate glass-ceramic has been produced. In the present study, the effectof the sintering time and zircon-based ceramic pigments on the microstructure andproperties of experimental lithium disilicate glass-ceramic were investigated, in order toimprove the properties of the experimental glass-ceramic by optimizing the sintering timeand to investgate whether zircon-based tricolor pigments can be used to color theexperimental glass-ceramic. Moreover, computer color matching of the experimentalglass-ceramic was conducted to procure pigment formulations matching with the color ofthe Vitapan Classical shade guide. Besides, the color matching accuracies of threecomputer color matching methods were evaluated with the aim of establishing colormatching database for further color research. Furthermore, the effect of veneeringporcelain on the color of the experimental glass-ceramic was studied. And finally, themicrostructure and properties of the experimental glass-ceramic were compared with thoseof commercial dental lithium disilicate glass-ceramics. Based on these studies, we aimedto develop a novel dental lithium disilicate glass-ceramic product with intellectualproperty. The present study includes three parts:Part I: property analysis of the experimental lithium disilicate glass-ceramic
     1. Glass-ceramics derived from the SiO2-Li2O-K2O-Al2O3-ZrO2-P2O5system wereproduced by a two-stage sintering cycle with a primary thermal treatment at700oCfollowed by a secondary thermal treatment at900oC. The periods during which thematerials were subjected to each temperature level (700oC/900oC) were the following: A,1h/1h; B,2h/2h; C,3h/3h; D,4h/4h; E,5h/5h; F,6h/6h; G,8h/8h. The XRD resultsrevealed that all groups had a similar crystalline structure though the sintering times weredifferent. The main crystalline phase corresponds to Li2Si2O5and the minor phasescorrespond to Li2SiO3and Li3PO4. SEM analysis showed an interlocking microstructureof rod-shaped Li2Si2O5crystals in all specimens. However, the glass-ceramics producedwith different sintering times showed different crystal sizes and spatial distribution. Thetranslucency parameters (TP) of the glass-ceramics studied were not affected by sinteringtime since similar TP values were observed in all specimens. The glass-ceramic sinteredduring5h in each temperature level (700oC/900oC) showed the highest flexural strength (308±25MPa).
     2.1.0wt.%zircon-based tricolor pigments (praseodymium zircon yellow, ferrumzircon red and vanadium zircon blue) were added into the experimental glass-ceramic andtheir effects on the microstructure and properties of the experimental glass-ceramic wereinvestigated. The results revealed that the three pigments had no significant effects on thethermal property, crystalline phase composition, microstructure and flexural strength ofthe experimental glass-ceramic. Although significant differences (P<0.05) were observedbetween the translucencies of the uncolored and1.0wt.%zircon-based pigment coloredceramics, the translucencies of the latter were sufficient to fabricate dental restorations.These results indicate that the zircon-based tricolor pigments could be used as thecolorants of the experimental glass-ceramic.Part II: computer color matching of the experimental lithium disilicate glass-ceramic
     3. Monochrome colored experimental glass-ceramic samples with gradient addedconcentrations of zircon-based tricolor pigments were fabricated. The effect of thepigments on the chromatic values and reflective spectrums of the monochrome sampleswere investigated. The results indicated that the relationship between the addedconcentration of pigments and the chromatic values was consistent with the basic law ofpigmentation, and that the spectral reflectance data of monochrome samples could be usedto establish the database of computer color matching.
     4. Computer color matching methods based on Kubelka-Munk theory, namely,tristimulus matching method and spectrophometic matching method, were applied forcolor matching of the experimental glass-ceramic with Vitapan Classical shade guide. Theresults showed that the samples sintered according to the pigment formula provided bythese two computer color matching methods both achieved similar colors with the shadetabs of Vitapan Classical shade guide. However, spectrophometic matching method wassuperior to tristimulus matching method in color matching precision, and the average colordifferences (ΔE) between the matching samples of these two methods and the target shadetabs were10.8±2.1and14.0±2.2, respectively.
     5. Computer color matching method based on BP artificial neural network was usedto match the color of the experimental glass-ceramic with Vitapan Classical shade guide.The results demonstrated that the samples sintered according to the pigment formulaprovided by BP artificial neural network also obtained similar colors with the shade tabsof Vitapan Classical shade guide. Moreover, this method showed better color matchingaccuracy than both tristimulus and spectrophometic matching methods, with smalleraverage color differences between the matching samples and the target shade tabs(6.3±1.2).
     6. IPS e.max Ceram veneering porcelain was fired on the experimental glass-ceramiccore materials and the colors of the samples fired with veneering porcelain were evaluated.Additionally, the effect of repeated firing according to the firing program of IPS e.maxCeram on the color of A2colored experimental glass-ceramic was investigated, in order todetermine color stability of the colored experimental glass-ceramic. The resultsdemonstrated that average color differences between the samples fired with veneeringporcelain and the target shade tabs were reduced to3.5±0.4. Moreover, repeated firing hadno significant effect on the color of the experimental glass-ceramic.Part III: comparative analysis on the microstructure and properties of dental lithiumdisilicate glass-ceramics
     7. The microstructure and properties of the experimental glass-ceramic and IPSe.max Press ceramic blocks were compared, with aim to analyze the relationship betweenthe properties and microstructure of lithium disilicate glass-ceramic. The results showedthat the crystalline phase composition, microstructure and mechanical properties of theexperimental glass ceramic were similar to those of IPS e.max Press ceramic blocks. Thetranslucency parameters of the experimental glass ceramic were higher than those of IPSe.max Press HO ceramic blocks but lower than those of MO ceramic blocks. The resultsverified that the experimental lithium disilicate glass-ceramic possesses sufficientperformance that comply with the requirements of dental aesthetic restorative materialsand demonstrates ideal application prospects.
引文
[1] Mclean JW, Hughes TH. The reinforcement of dental porcelain with ceramic oxides.[J]. Br Dent J.1965,119(6):251-267.
    [2] Malament KA. The cast-glass ceramic restoration.[J]. J Prosthet Dent.1987,57(6):674-683.
    [3] Pilathadka S, Vahalova D. Contemporary all-ceramic materials, part-1.[J]. ActaMedica (Hradec Kralove).2007,50(2):101-104.
    [4] Kelly JR, Benetti P. Ceramic materials in dentistry: historical evolution and currentpractice.[J]. Aust Dent J.2011,56Suppl1:84-96.
    [5] Kelly JR. Dental Ceramics: current thinking and trends.[J]. Dent clin N Am.2004,48(2):513-530.
    [6] Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinicalrecommendations: a systematic review.[J]. J Prosthet Dent.2007,98(5):389-404.
    [7] Shenoy A, Shenoy N. Dental ceramics: An update.[J]. J Conserv Dent.2010,13(4):195-203.
    [8]姜婷,二阶堂澈,田上顺次,等.实用口腔粘接修复技术.[M].北京:人民军医出版社.2008,11-14.
    [9] Zhang Y, Griggs JA, Benham AW. Influence of powder/liquid mixing ratio on porosityand translucency of dental porcelains.[J]. J Prosthet Dent.2004,91(2):128-135.
    [10]Lee YK. Changes in the translucency of porcelain and repairing resin composite bythe illumination.[J]. Dent Mater.2007,23(4):492-497.
    [11]刘维良,喻佑华.先进陶瓷工艺学.[M].武汉:武汉理工大学出版社.2004,176-186,489-491.
    [12]周敏,杨觉明,周建军,等.玻璃陶瓷的研究与发展.[J].西安工业学院学报.2001,21(4):343-348.
    [13]Dong JK, Luthy H, Wohlwend A, et al. Heat-pressed ceramics: technology andstrength.[J]. Int J Prosthodont.1992,5(1):9-16.
    [14]Mackert JR Jr, Russell CM. Leucite crystallization during processing of aheat-pressed dental ceramic.[J]. Int J Prosthodont.1996,9(3):261-265.
    [15]Oh SC, Dong JK, Lüthy H, et al. Strength and microstructure of IPS Empress2glass-ceramic after different treatments.[J]. Int J Prosthodont.2000,13(6):468-472.
    [16]Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots andcurrent perspectives.[J]. J Prosthet Dent.1996,75(1):18-32.
    [17]Gorman CM, McDevitt WE, Hill RG. Comparison of two heat-pressed all-ceramicdental materials.[J]. Dent Mater.2000,16(6):389-395.
    [18]Apel E, Deubener J, Bernard A, et al. Phenomena and mechanisms of crackpropagation in glass-ceramics.[J]. J Mech Behav Biomed Mater.2008,1(4):313-325.
    [19]Isgró G, Addison O, Fleming GJ. Transient and residual stresses in a pressableglass-ceramic before and after resin-cement coating determined using profilometry.[J]. J Dent.2011,39(5):368-375.
    [20]H land W, Rheinberger V, Apel E, et al. Clinical applications of glass-ceramics indentistry.[J]. J Mater Sci Mater Med.2006,17(11):1037-1042.
    [21]Cattell MJ, Clarke RL, Lynch EJ. The biaxial flexural strength and reliability of fourdental ceramics—Part II.[J]. J Dent.1997,25(5):409-414.
    [22]Clifford A, Hill R, Rafferty A, et al. An investigation into the crystallization of Dicorglass-ceramic.[J]. J Mater Sci-Mater M.2001,12(5):461-469.
    [23]Bapna MS, Mueller HJ. Study of devitrification of Dicor glass.[J]. Biomaterials.1996,17(21):2045-2052.
    [24]Chaysuwan D, Sirinukunwattana K, Kanchanatawewat K, et al. Machinableglass-ceramics forming as a restorative dental material.[J]. Dent Mater J.2011,30(3):358-367.
    [25]Tinschert J, Zwez D, Marx R, et al. Structural reliability of alumina-, feldspar-,leucite-, mica-and zirconia-based ceramics.[J]. J Dent.2000,28(7):529-535.
    [26]Malament KA, Socransky SS. Survival of Dicor glass-ceramic dental restorationsover14years: Part I. Survival of Dicor complete coverage restorations and effect ofinternal surface acid etching, tooth position, gender, and age.[J]. J Prosthet Dent.1999,81(1):23-32.
    [27]Malament KA, Socransky SS. Survival of Dicor glass-ceramic dental restorationsover14years. Part II: effect of thickness of Dicor material and design of toothpreparation.[J]. J Prosthet Dent.1999,81(6):662-667.
    [28]Thompson JY, Bayne SC, Heymann HO. Mechanical properties of a new mica-basedmachinable glass ceramic for CAD/CAM restorations.[J]. J Prosthet Dent.1996,76(6):619-623.
    [29]Jahanmir S, Dong X. Wear mechanism of a dental glass-ceramic.[J]. Wear.1995,181-183(part2):821-825.
    [30]Lehner C, Studer S, Brodbeck U, et al. Six-year clinical results of leucite-reinforcedglass ceramic inlays and onlays.[J]. Acta med dent helv.1998,3:137-146.
    [31]H landa W, Rheinbergera V, Apela E, et al. Future perspectives of biomaterials fordental restoration.[J]. J Eur Ceram Soc.2009,29(7):1291-1297.
    [32]Heffernan MJ, Aquilino SA, Diaz-Arnold AM, et al. Relative translucency of sixall-ceramic systems. Part II: core and veneer materials.[J]. J Prosthet Dent.2002,88(1):10-15.
    [33]Stookey DS. Catalyzed crystallization of glasses in theory and practice.[J]. Ind EngChem.1959,51(7):805-808.
    [34]Beall GH, Karstetter BR, Rittler HL. Crystallization and chemical strength of stuffedβ-quartz glass-ceramic.[J]. JAm Ceram Soc.1967,50(4):67-74.
    [35] Freiman SW, Hench LL. Effect of crystallization on the mechanical properties ofLi2O-SiO2glass-ceramics.[J]. JAm Ceram Soc.1972,55(2):86-90.
    [36]H land W, Rheinberger VM, Schweiger M. Control of nucleation in glass-ceramics.[J]. Philos Trans R Soc Lond A.2003,361:575-589.
    [37] Albakry M, Guazzato M, Swain MV. Biaxial flexural strength, elastic moduli, andx-ray diffraction characterization of three pressable all-ceramic materials.[J]. JProsthet Dent.2003,89(4):374-380.
    [38]Albakry M, Guazzato M, Swain MV. Effect of sandblasting, grinding, polishing andglazing on the flexural strength of two pressable all-ceramic dental materials.[J]. JDent.2004,32(2):91-99.
    [39]Chen YM, Smales RJ, Yip KH, et al. Translucency and biaxial flexural strength offour ceramic core materials.[J]. Dent Mater.2008,24(11):1506-1511.
    [40]Cattell MJ, Palumbo RP, Knowles JC, et al. The effect of veneering and heat treatmenton the flexural strength of Empress2ceramics.[J]. J Dent.2002,30(4):161-169.
    [41] Bürke H. IPS e.max Press and IPS e.max CAD. Report Ivoclar Vivadent.2006:6-16.
    [42] Apel E, van’t Hoen C, Rheinberger VM, et al. Influence of ZrO2on thecrystallization and properties of lithium disilicate glassceramics derived from amulti-component system.[J]. J Eur Ceram Soc.2007,27(2-3):1571-1577.
    [43]H land W, Rheinberger VM, Apel E, et al. Principles and phenomena ofbioengineering with glass-ceramics for dental restoration.[J]. J Eur Ceram Soc.2007,27(2-3):1521-1526.
    [44]Haselton DR, Diaz-Arnold AM, Hillis SL. Clinical assessment of high-strengthall-ceramic crowns.[J]. J Prosthet Dent.2000,83(4):396-401.
    [45]Sundh A, Sj gren G. A comparison of fracture strength of yttrium-oxide-partially-stabilized zirconia ceramic crowns with varying core thickness, shapes andveneer ceramics.[J]. J Oral Rehabil.2004,31(7):682-688.
    [46]Chai J, Takahashi Y, Sulaiman F, et al. Probability of fracture of all-ceramic crowns.[J]. Int J Prosthodont.2000,13(5):420-424.
    [47]Xiao-ping L, Jie-mo T, Yun-long Z, et al. Strength and fracture toughness ofMgO-modified glass infiltrated alumina for CAD/CAM.[J]. Dent Mater.2002,18(3):216-220.
    [48]Heffernan MJ, Aquilino SA, Diaz-Arnold AM, et al. Relative translucency of sixall-ceramic systems. Part I: core materials.[J]. J Prosthet Dent.2002,88(1):4-9.
    [49]Magne P, Belser U. Esthetic improvements and in vitro testing of In-Ceram Aluminaand Spinell ceramic.[J]. Int J Prosthodont.1997,10(5):459-466.
    [50]Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partialdentures: a review of the literature.[J]. J Prosthet Dent.2004,92(6):557-562.
    [51]Andersson M, Odén A. A new all-ceramic crown. A dense-sintered, high-purityalumina coping with porcelain.[J]. Acta Odontol Scand.1993,51(1):59-64.
    [52]Esquivel-Upshaw JF, Chai J, Sansano S, et al. Resistance to staining, flexural strength,and chemical solubility of core porcelains for all-ceramic crowns.[J]. Int JProsthodont.2001,14(3):284-288.
    [53]巢永烈,孟玉坤,廖运茂,等. GⅠ-Ⅱ型粉浆涂塑渗透陶瓷试件的弯曲强度测试.[J].口腔材料器械杂志.1998,7(2):63-65.
    [54]陈吉华,周忠慎,艾绳前,等.高强度铝瓷全冠材料的研制-核瓷强度的研究.[J].实用口腔医学杂志.1995,11(1):48-51.
    [55]Garvie RC, Nicholson PS. Phase analysis in zirconia systems.[J]. J Am Ceram Soc.1972,55(6):303-305.
    [56]Luthardt RG, Sandkuhl O, Reitz B. Zirconia-TZP and alumina--advanced technologiesfor the manufacturing of single crowns.[J]. Eur J Prosthodont Restor Dent.1999,7(4):113-119.
    [57]I eri U, Ozkurt Z, Yaln z A, et al. Comparison of different grinding procedures on theflexural strength of zirconia.[J]. J Prosthet Dent.2012,107(5):309-315.
    [58]Rekow ED, Silva NR, Coelho PG, et al. Performance of dental ceramics: challengesfor improvements.[J]. J Dent Res.2011,90(8):937-952.
    [59]Sundh A, Molin M, Sj gren G. Fracture resistance of yttrium oxide partially-stabilizedzirconia all-ceramic bridges after veneering and mechanical fatigue testing.[J]. DentMater.2005,21(5):476-482.
    [60]Luthardt RG, Holzhüter M, Sandkuhl O, et al. Reliability and properties of groundY-TZP-zirconia ceramics.[J].J Dent Res.2002,81(7):487-491.
    [61]Luthardt RG, Holzhüter MS, Rudolph H, et al. CAD/CAM-machining effects onY-TZP zirconia.[J]. Dent Mater.2004,20(7):655-662.
    [62]Raigrodski AJ, Hillstead MB, Meng GK, et al. Survival and complications ofzirconia-based fixed dental prostheses: a systematic review.[J]. J Prosthet Dent.2012,107(3):170-177.
    [63]王富.牙科二硅酸锂玻璃陶瓷的制备及热压铸工艺的研究.[D].西安:第四军医大学.2009.
    [64]李江.齿科可切削氟硅云母玻璃陶瓷的烧结工艺改良及计算机配色研究.[D].西安:第四军医大学.2005.
    [65]宋开新,俞建长.微晶玻璃的制备与应用.[J].山东陶瓷.2002,25(1):17-20.
    [66]侯朝霞,苏春辉.玻璃陶瓷的研究与发展.[J].功能材料.2004,35:379-382,385.
    [67]乔冠军,王永兰.以Ba云母为主晶相的可切削玻璃陶瓷.[J].无机材料学报.1996,11(1):29-32.
    [68]马新沛,李光新,沈莲,等.低熔点可加工微晶玻璃的研究.[J].西安交通大学学报.1999,33(6):50-54.
    [69]张林,沈毅,李锋锋,等.高温熔融法制备ZnO-B2O3-SiO2玻璃.[J].河北理工大学学报(自然科学版).2010,32(3):71-74.
    [70]Tancred DC, Carr AJ, McCormack BA. The sintering and mechanical behavior ofhydroxyapatite with bioglass additions.[J]. J Mater Sci Mater Med.2001,12(1):81-93.
    [71]刘允超.烧结法微晶玻璃的研究.[J].陶瓷研究.1996,11(3):146-148.
    [72]俞允,张河明.烧结法微晶玻璃特点、工艺及设备.[J].中国陶瓷.2010,3:17-21.
    [73]Uhlmann DR, Suratwala T, Davidson K, et al. Sol-gel derived coatings on glass.[J]. JNon-Cryst Solids.1997,218:113-122.
    [74]殷海荣,王明华,方俊.溶胶-凝胶制备Li2O-Al2O3-SiO2微晶玻璃的研究进展.[J].硅酸盐通报.2006,25(4):147-147,179.
    [75]殷海荣,吕承珍.溶胶-凝胶技术制备新型微晶玻璃.[J].陶瓷.2008,8:8-11.
    [76]Livage J. Sol-gel processes.[J]. Curr Opin Solid St M.1997,2(2):132-138.
    [77]Zarzycki J. Past and present of sol-gel science and technology.[J]. J Sol-Gel SciTechn.1997,8(1-3):17-22.
    [78]Samuneva B, Kalimanova S, Kashchieva E, et al. Composite glass-ceramics in thesystems MgO-SiO2, MgO-Al2O3-SiO2and fluorapatite obtained by sol-gel technology.[J]. J Sol-Gel Sci Techn.2003,26(1-3):273-278.
    [79]Mackenzie JD. Sol-gel research—achievements since1981and prospects for thefuture.[J]. J Sol-Gel Sci Techn.2003,26(1-3):23-27.
    [80]Kumar A, Gaurav, Malik AK, et al. A review on development of solid phasemicroextraction fibers by sol-gel methods and their applications.[J]. AnalyticaChimica Acta.2008,610(1):1-14.
    [81]Rüssel C, Keding R. A new explanation for the induction period observed duringnucleation of lithium disilicate glass.[J]. J Non-Cryst Solids.2003,328(1-3):174-182.
    [82]清华大学新型陶瓷与精细工艺国家重点实验室(译).陶瓷导论.[M].北京:高等教育出版社.2010:280-294.
    [83]Casasola R, Ma Rincón J, Romero M. Glass-ceramic glazes for ceramic tiles: a review.[J]. J Mater Sci.2012,47(2):553-582.
    [84]H land W, Schweiger M, Frank M, et al. A comparison of the microstructure andproperties of the IPS Empress2and the IPS Empress glass-ceramics.[J]. J BiomedMater Res.2000,53(4):297-303.
    [85]H land W, Schweiger M, Cramer von Clausbruch S, et al. Complex nucleation andcrystal growth mechanisms.[J]. Glastech Ber Glass Sci Technol.2000, C73:12-19.
    [86]吴舜,何惠明,陈永近,等.两种着色工艺对氟硅云母玻璃陶瓷着色的影响.[J].中国美容医学.2009,18(11):1654-1656.
    [87]何代英.微晶玻璃的着色工艺及其研制.[J].陶瓷.2007,2:33-35.
    [88]陈国华,康晓玲.烧结法微晶玻璃着色工艺探讨.[J].陶瓷工程.2001,35(5):26-27.
    [89]杨锦才,孙方明.热处理制度对微晶玻璃颜色的影响.玻璃与搪瓷.[J].1997,25(5):17-20.
    [90]张志勇,张龙.锂铝硅透明微晶玻璃着色研究.[J].玻璃与搪瓷.2001,29(4):13-17.
    [91]孙再清,刘属兴.陶瓷色料的生产及应用.[M].北京:化学工业出版社.2008:1-8.
    [92]杨萍.陶瓷颜料颜色与结构关系的探讨.[J].中国陶瓷.1998,34(6):18-20.
    [93]孙再清.锆英石基陶瓷颜料.[J].陶瓷导刊.1991,2(1):13-16,23.
    [94]朱志斌.锆基色料的研究与发展.[J].佛山陶瓷.2000,10(1):5-9.
    [95]刘福田,郑少华.锆英石基陶瓷颜料的合成机理.[J].山东建材学院学报.1998,12(1):4-6.
    [96]Schabbach LM, Bondioli F, Ferrari AM, et al. Influence of firing temperature on thecolor developed by a (Zr, V)SiO4pigmented opaque ceramic glaze.[J]. J Eur CeramSoc.2007,27(1):179-184.
    [97]Llusar M, Calbo J, Badenes JA, et al. Synthesis of iron zircon coral by coprecipitationroutes.[J]. J Mater Sci.2000,36(1):153-163.
    [98]Carreto E, Pi a C, Arriola H, et al. M ssbauer Study of the Structure of Fe-ZirconSystem.[J]. J Radioanal Nucl Ch.2001,250(3):453-458.
    [99]Schabbach LM, Bondioli F, Fredel MC. Colouring of opaque ceramic glaze withzircon pigments: Formulation with simplified Kubelka-Munk model.[J]. J Eur CeramSoc.2011,31(5):659-664.
    [100] Ozel E, Turan S. Production of coloured zircon pigments from zircon.[J]. J EurCeram Soc.2007,27(2-3):1751-1757.
    [101]胡威捷,汤顺青,朱正芳.现代颜色技术原理与应用.[M].北京:北京理工大学出版社.2007:31-100,304-406.
    [102]董振礼,郑海宝,轷桂芬,等.测色与计算机配色(第二版).[M].北京:中国纺织出版社.2007:1-101.
    [103] Joiner A. Tooth colour: a review of the literature.[J]. J Dent.2004,32Suppl1:3-12.
    [104] Joiner A, Hopkinson I, Deng Y, et al. Areview of tooth colour and whiteness.[J].J Dent.2008,36Suppl1: S2-7.
    [105] Johnston WM. Color measurement in dentistry.[J]. J Dent.2009,37Suppl1:e2-6.
    [106] Yuan JC, Brewer JD, Monaco EA Jr, et al. Defining a natural tooth color spacebased on a3-dimensional shade system.[J]. J Prosthet Dent.2007,98(2):110-119.
    [107] Orel ZC, Gunde MK, Orel B. Application of the Kubelka-Munk theory for thedetermination of the optical properties of solar absorbing paints.[J]. Prog Org Coat.1997,30(1-2):59-66.
    [108] Hu X, Gilbert AB, Johnston WM. Interfacial corrections of maxillofacialelastomers for Kubelka-Munk theory using non-contact measurements.[J]. DentMater.2009,25(9):1163-1168.
    [109] He S, Liu Z. The linear colorant mixing space based on Kubleka-Munk turbidmedia theory.[J]. Procedia Engineering.2011,23:320-325.
    [110] Christy AA, Kvalheim OM, Velapoldi RA. Quantitative analysis in diffusereflectance spectrometry: A modified Kubelka-Munk equation.[J]. Vib Spectrosc.1995,9(1):19-27.
    [111]郝文静,赵秀萍. Kubelka-Munk单常数配色理论与实践.[J].中国印刷与包装研究.2009,3(1):43-47.
    [112] Schabbach LM, Bondioli F, Ferrari AM, et al. Colour in ceramic glazes:Efficiency of the Kubelka-Munk model in glazes with a black pigment and opacifier.[J]. J Eur Ceram Soc.2009,29(13):2685-2690.
    [113] Bondioli F, Manfredini T, Romagnoli M. Color matching algorithms in ceramictile production.[J]. J Eur Ceram Soc.2006,26(3):311-316.
    [114] Schabbach LM, Bondioli F, Ferrari AM, et al. Color in ceramic glazes: Analysisof pigment and opacifier grain size distribution effect by spectrophotometer.[J]. J EurCeram Soc.2008,28(9):1777-1781.
    [115]李江,王忠义.计算机配色原理及其在牙色再现中的应用.[J].中国美容医学.2008,17(4):604-607.
    [116]王喜昌,周丰昆.全光谱色差型权重因子计算机配色方法研究.[J].照明工程学报.1999,10(1):1-5.
    [117]王乐新,王喜昌.色差型权重因子计算机配色方法研究.[J].黑龙江八一农垦大学学报.2001,13(2):91-94.
    [118]金远同,李勤,黄唯炜,等.测色配色CAD应用手册.[M].北京:中国纺织出版社.2001.
    [119] Hu X, Johnston WM. Concentration additivity of coefficients for maxillofacialelastomer pigmented to skin colors.[J]. Dent Mater.2009,25(11):1468-1473.
    [120]苏方,赵铱民,潘景光,等. MDX-4-4210硅橡胶计算机配色的三刺激值匹配法研究.[J].临床口腔医学杂志.2008,24(7):387-389.
    [121]苏方,赵铱民,潘景光,等. MDX-4-4210硅橡胶计算机配色的全光谱匹配法研究.[J]口腔医学研究.2008,24(5):491-494.
    [122]李江,王忠义,曹小刚,等.齿科可切削氟硅云母玻璃陶瓷计算机配色的三刺激值匹配法.[J].中国美容医学.2004,13(6):713-715.
    [123]殷秀莲,程显毅.计算机辅助配色系统相关技术的研究进展.[J].纺织学报.2006,27(3):106-110.
    [124]蒋宗礼.人工神经网络导论.[M].北京:高等教育出版社.2001:1-54.
    [125]高隽.人工神经网络原理及仿真实例.[M].北京:化学工业出版社.2007:1-20,43-76.
    [126]韩立群.人工神经网络理论、设计及应用(第二版).[M].北京:化学工业出版社.2007:1-67.
    [127] Bishop JM, Bushnell MJ, Westland S. Application of neural networks tocomputer recipe prediction.[J]. Color ResAppl.1991,16(1):3-9.
    [128] Boldrin E, Schettini R. Faithful cross-media color matching using neuralnetworks. Pattern Recogn.1999,32(3):465-476.
    [129] Senthilkumar M, Selvakumar N. Achieving expected depth of shade in reactivedye application using artificial neural network technique.[J]. Dyes Pigments.2006,68(2-3):89-94.
    [130] Ding L, Matthews J. Acontemporary study into the application of neural networktechniques employed to automate CAD/CAM integration for die manufacture.[J].Comput Ind Eng.2009,57(4):1457-1471.
    [131] Janik LJ, Cozzolino D, Dambergs R, et al. The prediction of total anthocyaninconcentration in red-grape homogenates using visible-near-infrared spectroscopy andartificial neural networks.[J].Analytica ChimicaActa.2007,594(1):107-118.
    [132] Senthilkumar M. Modelling of CIELAB values in vinyl sulphone dye applicationusing feed-forward neural networks.[J]. Dyes Pigments.2007,75(2):356-361.
    [133]孔倩,张秉森. BP网络泛化能力改进方法在染色配色中的应用研究.[J].青岛大学学报:工程技术版.2009,24(3):6-9.
    [134]张秉森,刘晓洁.神经网络在计算机配色中的应用.[J].印染.2005,31(18):29-31.
    [135]王巍娟,张秉森,聂晴晴,等.隐层改进的BP网络在织物染色配色中的应用.[J].青岛大学学报:工程技术版.2008,23(4):40-44.
    [136]李莉,张秉森.基于BP神经网络的织物染色计算机配色方法研究.[J].系统仿真技术.2006,4:217-221.
    [137]杨涛,廖宁放,吴威敏.基于人工神经网络水性涂料电脑配色(英文).[J].照明工程学报.2005, S1:43-46.
    [138]廖宁放,杨卫平,曾华,等.用多隐层BP网实现的CRT色度变换.[J].中国图象图形学报.2000,5(6):470-472.
    [139] Westland S, Bishops JM, Bushnell JM, et al. An intelligent approach to colourrecipe prediction.[J]. J Soc Dyers Colour.1991,107(7-8):235-237.
    [140] Boldrin E, Schettini R. Faithful cross-media color matching using neuralnetworks. Pattern Recogn.[J].1999,32(3):465-476.
    [141]刘芳,陆长德.应用BP网络的油漆配色系统.[J].染料工业.1999,36(3):35-37.
    [142]廖宁放,窦柳明,吴文敏,等.粉末涂料电脑配色的人工神经网络模型.[J].光学技术.2005,31(1):133-135.
    [143]苏方.颜面赝复体的计算机配色研究.[D].西安:第四军医大学.2006.
    [144] Fernandes HR, Tulyaganov DU, Goel A, et al. Effect of K2O onstructure-property relationships and phase transformations in Li2O-SiO2glasses.[J]. JEur Ceram Soc.2012,32(2):291-298.
    [145] Cramer von Clausbruch S, Schweiger M, H land W, et al. The effect of P2O5onthe crystallization and microstructure of glass-ceramics in theSiO2-Li2O-K2O-ZnO-P2O5system.[J]. J Non-Cryst Solids.2000,263-264:388-394.
    [146] Wang F, Gao J, Wang H, et al. Flexural strength and translucent characteristics oflithium disilicate glass-ceramics with different P2O5content.[J]. Mater Design.2010,31(7):3270-3274.
    [147] Guazzato M, Albakry M, Ringer SP, et al. Strength, fracture toughness andmicrostructure of a selection of all-ceramic materials. Part I. Pressable and aluminaglass-infiltrated ceramics.[J]. Dent Mater.2004,20(5):441-448.
    [148] Rizkalla AS, Jones DW. Mechanical properties of commercial high strengthceramic core materials.[J]. Dent Mater.2004,20(2):207-212.
    [149] Ilie N, Hickel R. Correlation between ceramics translucency and polymerizationefficiency through ceramics.[J]. Dent Mater.2008,24(7):908-914.
    [150] Hasegawa A, Ikeda I, Kawaguchi S. Color and translucency of in vivo naturalcentral incisors.[J]. J Prosthet Dent.2000,83(4):418-423.
    [151] Pa lick C, Ahrens B, Henke B, et al. Differential scanning calorimetryinvestigations on Eu-doped fluorozirconate-based glass ceramics.[J]. J Non-CrystSolids.2010,356(52-54):3085-3089.
    [152] ISO6872. Dentistry-Ceramic materials. Geneva, Switzerland: InternationalOrganization for Standardization.2008.
    [153] Sun Y, Wang ZY, Tian JM, et al. Coloration of mica glass-ceramic for use indental CAD/CAM system.[J]. Mater Lett.2002,57(2):425-428.
    [154] Allen E. Basic equations used in computer color matching.[J]. J Opt Soc Am.1996,56(9):1256-1257.
    [155] Allen E. Basic equations used in computer color matching, II. Tristimulus match,two-constant theory.[J]. J Opt SocAm.1974,64(7):991-993.
    [156] McGinnis PH. Spectrophotometric color matching with the least squarestechnique.[J]. Color Eng.1967,5(6):22-27.
    [157] O'Brien WJ, Kay KS, Boenke KM, et al. Sources of color variation on firingporcelain. Color Engineering.[J]. Dent Mater.1991,7(3):170-173.
    [158] Yilmaz B, Oz elik TB, Wee AG. Effect of repeated firings on the color of opaqueporcelain applied on different dental alloys.[J]. J Prosthet Dent.2009,101(6):395-404.
    [159] Celik G, Uludag B, Usumez A, et al. The effect of repeated firings on the color ofan all-ceramic system with two different veneering porcelain shades.[J]. J ProsthetDent.2008,99(3):203-208.
    [160] Sahin V, Uludag B, Usumez A, et al. The effect of repeated firings on the color ofan alumina ceramic system with two different veneering porcelain shades.[J]. JProsthet Dent.2010,104(6):372-378.
    [161] Crispin BJ, Seghi RR, Globe H. Effect of different metal ceramic alloys on thecolor of opaque and dentin porcelain.[J]. J Prosthet Dent.1991,65(3):351-356.
    [162] Lund PS, Piotrowski TJ. Color changes of porcelain surface colorants resultingfrom firing.[J]. Int J Prosthodont.1992,5(1):22-27.
    [163] Mulla FA, Weiner S. Effects of temperature on color stability of porcelain stains.[J]. J Prosthet Dent.1991,65(4):507-512.
    [164] Schweiger M, H land W, Frank M, et al. IPS Empress2: A new pressablehigh-strength glass-ceramic for esthetic all-ceramic restorations.[J]. Quint DentalTechnol.1999,22:143-151.
    [165] Berge HX, Sorensen JA, Edelhoff D. Split energy factor theory in fractureanalysis of dental ceramics.[J]. J Dent Res.2001,80Suppl1:57.
    [166] Sorensen JA, Berge HX, Edelhoff D. Effect of storage media and fatigue loadingon ceramic strength.[J]. J Dent Res.2000,79Suppl1:217.
    [167] Anusavice KJ, Della BA, Mecholsky JJ. Fracture behavior of leucite-and lithia-disilicate-based hot-pressed ceramics.[J]. J Dent Res.2001,80Suppl1:544.
    [168] Fischer H, Dautzenberg G, Marx R. Nondestructive estimation of the strength ofdental ceramic materials.[J]. Dent Mater.2001,17(4):289-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700