亚麻纤维发育规律及PGRs调控机理与效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验选用我省生产上广泛使用及有代表性的15个品种,试图通过品种试验(纤维发育观察、内源激素测定试验、碳氮积累试验、田间调查)及植物生长调节剂试验处理来阐述不同类型品种亚麻纤维发育规律、内源激素与纤维发育之间关系、碳氮积累与纤维发育关系以及植物生长调节剂对亚麻产质量影响机理。
    研究发现各类型品种纤维发育与麻株生长均具有协同性,同一茎段内不同节间茎粗、纤维细胞分化数量、纤胞径向大小、纤胞壁厚都随株高和干物质的增加而增加,在时间分布上表现出连续性。纤维发育在茎向空间分布上表现出明显的位置效应,不同节间纤维发育是不同步进行的,由基端向颈端依次发生,而且不同节间在发育速度上也是不一致的,麻株各茎段发育进程因此存在差异。
    不同基因型亚麻成熟茎中部纤维发育存在差异,高纤品种茎粗、茎截面细胞数、纤维细胞壁厚、纤胞长短径均大于中纤品种。尽管上油用亚麻茎截面纤维细胞最多,但是其细胞最小,细胞壁最薄。兼用亚麻的纤维发育也较差。
    纤维细胞数与长麻率、强度、可挠度、原茎产量、长麻产量呈正相关。纤维细胞壁厚与各产质量性状均呈正相关关系,其中与分裂度呈显著正相关关系(r=0.52*),而与纤维含量(r=0.75**)、长麻率(r=0.68**)、长麻产量(r=0.85**)相关达到极显著水平, 纤维细胞腔宽与各性状均呈负相关关系,其中与纤维细胞壁厚呈显著负相关关系(r=-0.54*),与原茎产量(r=-0.66**)、长麻产量(r=-0.66**)负相关达到极显著水平。
    亚麻叶片、茎中氮含量变化均呈下降趋势。成熟期亚麻茎杆内氮素含量与茎中部纤胞数呈显著正相关(r=0.64*),氮含量与纤胞腔宽成负相关关系。各品种叶片中糖含量呈明显的增加趋势,各品种茎中糖含量变化规律较为一致,均是先不断的升高,在开花期达到峰值,而后下降至最低。叶片、茎中碳氮比动态变化随纤维生长发育均呈上升态势,这种态势与径粗、细胞数、纤胞长短径、纤胞壁厚变化具有相对的一致性。青熟期茎中可溶性糖含量与纤胞腔宽呈负相关关系,与纤胞壁厚呈正相关关系,而与纤胞数正相关达到极显著水平(r=0.67**)。
    高纤品种茎尖叶中GA3含量随纤维生长发育表现为先下降再上升,在出苗后第51天时达到最高点,而后迅速下降;中纤品种先保持上升趋势,在出苗后第40天达最大,然后逐渐降低至最低。高纤品种IAA含量变化为先下降再上升然后再下降,其中最后一阶段含量急剧下降,中纤品种也为先下降再上升而后再下降,只不过升降的趋势出相对较平缓。随生育期不同类型品种亚麻基部、中部韧皮纤维中各激素含量的动态变化具有相一致的规律,均呈先下降再上升“V”型变化。纤用品种GA3、IAA、ZR含量在茎中分布为:花蕾>茎中部麻皮>茎基部麻皮>茎尖叶,而油用、兼用品种表现为:茎中部麻皮>茎基部麻皮>茎尖叶>花蕾。
     长麻产量、原茎产量与(IAA+GA3)/ZR相关分别达到显著水平(r=0.78*)、极显著水平(r=0.87**),全麻产量与其相关关系也接近显著水平(r=0.66)。原茎产量、全麻产量、长麻产量与GA、IAA、ZR、IAA+GA均为正相关关系。纤维强度与IAA、ZR、IAA+GA
    
    
    相关达到极显著水平(r=0.84**,0.84**,0.86**),纤维分裂度与GA、ZR、IAA+GA相关达到显著水平(r=0.79*,0.79*,0.75*),纤维强度、分裂度与可挠度成负相关关系。
    乙烯利快速生长期处理使中早熟品种阿里安和中熟品种黑亚11号的原茎产量获得极显著提高,阿里安和维京的长麻率均有所增加,乙烯利使阿里安的纤维强度略有增加,而黑亚11号和维京的纤维强度值下降较大。
    赤霉素处理对三品种的株高和茎粗影响都不大,对三个品种的纤维含量影响也不大,品质指标显示,赤霉素处理增加了黑亚11号的纤维强度,但是其它两个品种下降。
    枞形期喷施多效唑使三个品种的原茎产量的下降都在10%以上。品质指标显示阿里安和黑亚11号的纤维强度是增加的,而维京的纤维强度下降。现蕾前喷洒多效唑同样导致三个品种原茎产量下降,但是都没有达到显著水平。从品质指标看,维京和阿里安的可挠度下降,而二者的纤维强度增加,黑亚11号的处理效应正好相反。
This test adopts 15 varieties which have representation and have been widely planted in production of HeiLongJiang province, and tries to expatiate on developmental rules of flax fibre through experiments of varieties and plant growth regulator substance in different varieties, relationships between endogenous hormones and fibre growth, relationships between accumulation of C and N and fibre growth, and mechanism of plant growth regulator substance affecting yield and quality of flax.
    It showed that fibre development of each cultivar has the consistency with growth of flax plant. Stem diameter, fiber cell quantity in cross-section of stem, long and short diameter of fiber, and fiber cell wall thickness all increase with adding of plant height and dry matter of different leaf places in the same part of stem, and all of them express continuity in time distribution. Flax fibre growth appears obvious place effect in axis space distribution, and it is not synchronous in different leaf places. It appears in turn from bottom to top, and developmental rates are also not consistent in different leaf places. So the developmental courses of each part of stem of flax plant were different.
    There are differences in fibre development of mature stem of different genetypes, and stem diameter of high flax varieties, fiber cell quantity in cross-section of stem, fiber cell wall thickness, long or short diameter of fiber are all more than moderate flax varieties. The number of fiber cells of stem section of linseed is the most, but these cells are smallest, and wall of the cell is thinnest. The growth of dual-purpose flax is also weak.
    The number of fiber cells shows positive correlation with some factors, which include long fiber ratio, intension, flexibility, straw yield, and yield of long fiber. Fiber cell wall thickness shows positive correlation with each character of yield and quality, and it appears significant positive correlation with division degree(r=0.52*), fiber content(r=0.75**), long fiber ratio(r=0.68**)and yield of long fiber(r=0.85**). Short diameter of cavity shows negative correlation with each character, significant negative correlation with fiber cell wall thickness(r=-0.54*), very notable negative correlation with straw yield(r=-0.66**)and yield of long fiber(r=-0.66**).
    Nitrogen content of flax show a declining trend in leaves and stems. Nitrogen content of flax stems has a sigenificant positive correlation with the number of fiber cells in the middle of stem in autumn(r=0.64*), negative correlation with short diameter of cavity. Saccharine content in leaves of each cultivar has an increasing trend, which is consistent with that of
    
    
    stems, reaching peak value in blooming stage, and declining to the bottom in consequence. Dynamic change of C/N in leaves and stems rise with fiber development. It has a relative consistency with stem diameter, cells number, long or short diameter of fiber, and fiber cell wall thickness. In green-ripe stage solubility saccharine content of stems shows negative correlation with short diameter of cavity, positive correlation with fiber cell wall thickness, and significant positive correlation with the number of fiber cells (r=0.67**).
    With the development of fiber, GA3 content in shoot declines firstly to high fiber cultivars, then increases, which takes 51 days to reach the peak after seedling, then declines quickly; moderate fiber cultivars also keep an ascending trend firstly, reaching the peak after seedling about 40 days, and then declines to the bottom gradually. IAA content of high fiber cultivars changes according to the sequence that declining firstly, rising secondly, declining lastly, especially the content declines rapidly in the last period. The rules of moderate fiber cultivars are alike, but the extent of changing is relatively mild. For different cultivars of flax, dynamic change of each hormone content in bottom and middle part of stem are consistent, namely show the changing trend like letter “V”. Distribution of GA3, IAA, ZR content of f
引文
K·伊稍.植物解剖学.科学出版社.1996,p157~158
    陈德华,成广明,周桂生等.高产棉花整株铃重的提高与棉铃内源激素GA3及ZR的关系.扬州大学学报.2002,23(1):68~71
    陈德华,何钟佩,徐立华等.高产棉花叶片内源激素与氮磷钾吸收积累的关系及其对棉铃增重机理的研究.作物学报,2000,26(16):659~665
    陈金桂,杨军,周燮.植物激素对微管和纤维素微纤丝排向的调节.生命科学.2001,13(3):139~141
    陈学梅.HPLC法定量分析植物激素组织中ABA、IAA、NAA.植物生理学通报.1992,28(5):368~371
    刁家连,于翠芳.夏玉米耔粒发育过程中内源激素动态变化.莱阳农学院学报.1996,13(4):251~256
    董至新.大豆栽培生理的激素调控效应.石河子大学学报.2001,12(4):339~341
    方能虎,侯树泉,邵学广等.植物激素的反相高效液相色谱法分离和鉴定.色谱.1998,16(5):417~420
    关风芝,张福修,赵德宝等.亚麻纤维发育规律的研究.中国麻作,1993(1):14~17
    关凤芝,宋宪友,王殿奎.亚麻原茎综合高产栽培技术的研究.中国麻作.1997,19(4):15~18
    关凤芝,徐丽珍,王玉富等.主要栽培因子对亚麻纤维发育规律的影响初探.黑龙江农业科学,1999,6:9~12
    桂明珠.亚麻站立脱胶技术初探.中国麻作,1995,17(2):36~39
    郭雅琳. 亚麻的化学组成和微观结构对染色性能的影响 化学通报 2002,6:407~410
    韩锦峰,赫冬梅,刘华山等.不同植物激素处理方法对烤烟内烟碱含量的影响.中国烟草学报.2001,7(2):22~25
    赫冬梅,胡国公,穆琳.烟草内源激素的酶联免疫吸附法(ELISA)测定.烟草科技.2000,5:41~42
    黄敬芳,邝秀明,孙焕良等.主要麻类韧皮纤维发育规律研究.中国麻作.1994,16(增刊):1~35
    江洁,刘晓兰,郑喜群.化学助剂在亚麻脱胶工艺的中的应用.齐齐哈尔工学院学报,1997,9:1~4
    姜广虹,王克荣,马秀峰等.稀土对亚麻产质量效果的影响. 东北农业大学学报.1994,25(1):15~19
    金幼菊. 气相色谱-质谱联用在植物激素分析中的作用.植物生理学通报.1992,28(1):72~77
    
    雷蕾,康庆华,张晓波等. 反相高效液相色谱法分离和测定亚麻植株中植物激素.黑龙江农业科学.2001,(6):21~22
    李彩凤,李明,王克荣.钾对亚麻纤维产量和品质影响机理初探.东北农业大学学报.1998,29(1):21~26
    李桂琴,胡宝忠,桂明珠等.亚麻原茎结构与站立脱胶的解剖学效应观察.中国麻作,1997,19(2):41~43
    李明,陈克农.高纤亚麻品种茎的解剖构造特点.中国麻作,2000,22(1):17-19
    李明,王克荣.关于亚麻韧皮纤维生长发育阶段划分的探讨.中国作,1996,18(1):29
    李明.亚麻原茎及纤维产量与不同生育期氮、磷、钾的相关分析.中国麻作,1996,18(2):37~39
    李宗道.麻作的理论与技术.上海科学技术出版社.1980,p272~273
    刘继华,尹承俏,于凤英等.外源激素对棉纤维超分子结构及强度的影响.1994,20(1):120~125
    刘林德,姚敦义.植物激素的概念及其新成员.生物学通报.2002,37(8):18~19
    刘晓兰,江洁,郑喜群.亚麻酶法脱胶工艺的研究.齐齐哈尔大学学报,1998,6:11~14
    刘秀辉.高分子表面活化剂对亚麻化学脱胶的影响.西北师范大学学报.1997,4:108~109.
    龙德树,杨传强,曾宪庆等.亚麻和胡麻性能的研究.纺织学报.1999,6:136~140
    潘廷慧,张振福,李殿一等.亚麻纤维产量构成因素的分析.中国麻作,1996,18(3):29~31
    秦武发,董永华,张彩英等.植物激素对小麦品质的影响.河北农业大学学报.1996,19(4):93~98
    任喜英,李桂琴等.亚麻站立脱胶区域适应性试验总结.中国麻作,1997,19(4):36~38
    沈新莲,周保良,顾立美等.棉纤维发育过程中内源激素动态变化研究.江苏农业学报.1998,14(4):204~206
    史加强.亚麻纤维理化性能对染色机理的影响.纺织学报.1999,2:16~19
    宋宪友.提高雨露沤麻品质技术的研究.中国麻作,2000,22(2):41~43
    孙焕良,傅仓先,赵立宁等.麻类近缘(属)种纤维形态、结构的研究. 中国麻作.1994,16(增刊):35~47
    孙玉亭等.黑龙江省农业气候资源及其利用.气象出版社.1986:243-255
    王立群,宣世纬,关凤芝等.亚麻微生物脱胶技术的研究.中国麻作,1995,17(1):34~36
    王瑞英,于振华.稻麦及豆科作物籽粒发育过程中的内源激素水平变化.麦类作物.1997,17(3):44~47
    王晓楷,胡宝忠,李桂琴等.亚麻站立脱胶的喷施技术探讨.中国麻作,1998,20(2):30~32
    
    王学东,崔琳,胡宝忠.不同品种亚麻纤维发育特点的研究.东北农业大学学报,1998,29(3):311~313
    王玉富,关凤芝,宋宪友.亚麻种植业与WTO.中国麻作,2001,23(1):29~32
    王玉富.中国亚麻育种工作的现状及发展方向.黑龙江农业科学.1999,5:44~46
    王兆木, 焦清亮, 王振华等. 高档纺织纤维资源—亚麻的开发利用.新疆农业科学,2001,38(4):211~214
    卫德林.亚麻温水沤麻机理与新技术. 黑龙江科技出版社,1988,12~64
    卫德林编译.亚麻译丛.黑龙江科技出版社.1986.167~169
    吴昌斌,孙洪涛,范志辉等.亚麻韧皮部的化学组成及果胶的结构.中国麻作,1997,19(3):38~40,45
    吴广文.亚麻鲜茎雨露沤制技术的初步研究.中国麻业.2002,24(2):18~21
    武跃通,贾霄云.亚麻韧皮纤维的形成与相关因子研究.内蒙古农业科技,1999,10:5~6
    谢君.高效液相色谱测定多种内源激素方法研究.四川农业大学学报.1997,15(3):297~299
    徐丽珍,关凤芝.密度对亚麻纤维细胞发育的影响.中国麻作,2000,22(1):20~22
    徐丽珍.高产纤维用亚麻生育规律的研究.中国麻作,1998,20(3):22~24
    徐丽珍.气象因素对亚麻产量的影响.中国麻作.1992,4:22~25
    许智宏等.植物发育的分子机理.科学出版社.1999,p171
    雅可夫·莱什姆著.植物生长调节及激素基础.科学出版社.1980,98~100
    杨建昌,王志琴,朱庆森.外源激素对水稻光合能力与产量的影响.江苏农学院学报.1995,16(1):27~31
    姚晓敏,李桂琴,桂明珠等.站立脱胶对亚麻种子的应影响.中国麻作.1998,20(1):39~41
    曾寒冰.亚麻栽培学.东农校内教材(孙凤舞主编),1980
    张石城等.植物化学调控原理与技术.中国农业科学出版社.1999,p227~228
    张志.稀土微肥及亚麻种子包衣在亚麻生产中的作用.高师理科学刊.2000,11,20(4):53~55
    周晓舟.植物激素家族新成员.生物学杂志.2000,17(2):47
    周燮等.ABA的放射免疫法.南京农大学报.1985,1:89
    周续邦.植物生长调节剂在不同作物上的应用.青海农林科技.1994,3
    庄馥萃.植物纤维和纤维植物.生物学通报.2001,36(11):16~18
    Abe H,Funada R,Ohtain J,et Annals of Botany,1995;75:305~310
    Abo El Saod I; Momtaz A; Mansor-M. Effect of foliar application with ZnSO4 and GA3 on growth and yield of flax crop. Fibra. 1975, 20(2):42~50
    Aloni R etc.2000. Hormonal control of vascular differentiation in plants: the physiological basis of cambium ontogeny and xylem evolution.In:Savidge RA,Barnett JR,Napier R,editors. Cell and molecular biology of wood formation. Oxford:BIOS
    
    
    Scientific Publishers.p 223~236
    Aloni R. 1995. The induction of vascular tissues by auxin and cytokinin. In:Davies PJ,editor. Plant hormones . Netherlands:Kluwer Academic Publishers.p 531~546
    Aloni R. etc.1983. The control of vessel size and density along the plant axis-a new hypothesis. Diffrentiation . 24:203~208
    Aloni R.1980.Role of auxin and sucrose in differentiation of sieve and tracheary elements in plant tissue cultures.Planta 150:255~263
    Aloni R.1987.Differentiation of vascular tissues. Annu Rev Plant Physiol.38:179~204
    Bodlaender KBA,Waart M vander. The effect of growth regulating chemicals on flax. Bedrijfsontwikkeling. 1975,6(5):439~443
    Cosgrove D J.Bioassay,1996;18:533~540
    D.Lindsay ,Roisin Molloy.Rettying-a Key Process in the Production of High Value Fibre from Flax.Outlook on Agriculture,1990,25(4):235~242
    Danny E Akin ect.Chemical and Structural Analysis of Fibre and Core Tissues form Flax.Jouenal Science Agriculture,1996,72(2):155-165
    Davidyan GG,Anashchenko AV. Trudy po Prikladnoi Botanike, Genetike Selektsii. 1977,60(1):106~110
    Derebon Yu G. Effect of different forms of nitrogen on changes in chemical composition jian of fibre of fibre flax.Nauchnye Trudy Ukrainskaya Sel skokhozyaistvennaya Akademiya.1975,171:152~154
    El-Shourbagy-MN, Abdel-Ghaffar-BA, El-Naggar-RA. Effect of IAA and GA3 on the anatomical characteristics、straw and fiber yield and quality of flax. Journal of Agronomy and Crop Science. 1995, 174(1):21~26
    Feihu Liu,Xueni Liang,NaigenZhang etc.Effect of growth regulators on yield and fibre quality in ramie ,China grass.field crops research,2001,69:41~46
    G.C.Davies,and D.M.Bruce,J.Master. Sci. 1997,32:5425
    H.L.BOS etc.In suit ESEM study of the deformation of elementary flax fibres.Joournal of Materials Science. 1999,34:3029~3034
    Huang-XM, Zhang-YX. Study of the effects of gibberellin on the quality and yield of ramie(Boehmerianivea).Fujian Agricultural Science and Technology. 1989,5:14
    Kalikinskii-AA etc. Effectiveness of localized fertilizer applications in soil for fibre flax on light loamy dernopodzolic soil. Agrokhimiya. 1991,4:53~62
    Karpova-ES etc. Role of boron in formation of yield of fibre flax.Len-i-Konoplya. 1975,12:21~22
    Kevorkov-AP etc. Effect of vanadium on yield and quality of fibre flax. Trudy Vsesoyuznyi Institut Udobrenii-i-Agropochvovedeniya. 1972,53:142~147
    Khodyankova-S etc. Study of fertilizer application methods for fibre flax in rotation in
    
    
    relation to the fertility level of dernopodzolic light-loamy soil.Vestsi Akademii Agrarnykh Navuk Respubliki Belarus.1999,1:42~48
    Kondratowicz-J. The influence of some agrotechnical factors on the yield and crop quality of fibre flax. Zeszyty Naukowe Akademii Rolniczo Technicznej w Olsztynie, Rolnictwo. 1977,20:21~70
    Mayumi K,shibaoka H.Protoplasma,1996,195:112~122
    Prodhan A K M A,Funada R,Ohtani Jetal.Planta,1995;196:577~585
    R.E.Mark,“Cell Wall Mechanics of Tracheids” Yale University Press,New Haven,1967
    R.O.Herzog,“‘DerFlachs’in ‘Technologie der Textilfasern’”Julius Springer,Berlin,1930
    SachsT.1981.The control of patterned differentiation of vascular tissues. Adv Bot Res 9:151~162
    Sakurai A,Yokoda T,Clouse S D,eds Brassionstreoids Steroidal Plant Hormones Toyoko:Springer,1999:137~161
    Sauter M,Seagull R W,Kende H.Planta.1993,19:354~362
    Serra-G; Lartaud-G; Lipatoff-V. Possibilities of using bentazone in crops of flax and peas. Mededelingen van de Faculteit Land bouwwetensc happen,Rijksuniversiteit Gent. 1974,39:2,I,571~586
    Sundberg B etc.2000.Cambial growth and auxin gradients. In:Savidge RA,Baenett JR,Napir,editors. Cell and molecular biology of wood formation. Oxford: BIOS Scientific Publishers.p 169~188
    Uglla C etc.1996. Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282~9286.
    Uglla C etc.1998. Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol117:113~121
    WH Morrison lll ect.Chemical,microscopic,and instrumentral analysis of graded flax fibre and yarnJournal of the Science of Food and Agriculture.1999,79:3~10
    Yagodin-BA etc. Utilization of nitrogen by fibre flax plants and yield of straw with different rates of nitrogen fertilizer. Izvestiya Timiryazevskoi Sel'skokhozyaistvennoi. 1991,No. 1:89~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700