抗除草剂基因EPSPS在棉花杂种优势中的利用及其快速转育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是我国重要的经济作物,棉田杂草危害一直是困扰棉农的问题之一。在棉花已有高产优质等优良性状基础上,通过转基因技术转化抗草甘膦基因,增强作物对草甘膦的抗性,以及将抗草甘膦特性作为指示性状应用于杂种生产,已成为植物转基因领域的重要研究内容。
     本研究以农艺和品质性状优良的9个棉花新品系为母本,以具有EPSPS基因抗草甘膦新品系为父本,通过不去雄人工授粉配制杂交组合,确定筛选真杂种的适宜草甘膦浓度和最适喷施时间,对F1的产量及品质性状杂种优势进行分析。同时应用本实验室建立的棉花一年多代快速回交转育技术,将EPSPS基因转育到5个常规亲本中,以期获得稳定的转基因材料。主要结果如下:
     1.通过喷施不同浓度的草甘膦,确定了有效鉴别父、母本品种抗与非抗草甘膦的最适浓度为2g/L,鉴别杂交种的最适草甘膦浓度为2.25 g/L,即10%草甘膦水剂稀释45倍,最适宜的喷施时间为棉苗三叶期。
     2.在田间对杂种F1进行草甘膦喷施处理并利用PCR检测目的基因,结果显示9个组合的PCR阳性率介于33.6%~62.52%之间,其中有4个组合的阳性率达到50%以上。
     3.应用高效液相色谱法测定草甘膦处理3 d后不同组合F1的叶片莽草酸含量,结果显示各组合莽草酸含量的高低与其抗草甘膦强弱表现一致,但不同组合受其遗传背景的影响,其抗性强弱亦稍有差异。
     4.转EPSPS基因棉花F1杂种优势分析结果表明,F1皮棉产量为1777.1~2441.3 kg/hm2,产量增加显著。产量的增加主要源于铃数的增加,9个组合平均可增加27%,其中组合1增加量达到49%。断裂比强度的竞争优势可高达15%。
     5.以5个品系为轮回亲本,以抗草甘膦品系为非轮回亲本进行杂交、回交,利用幼胚培养、嫁接、生长调控等集成的棉花一年多代回交转育技术,获得5个品系的BC4转基因抗除草剂新材料。
Cotton is an important economic crop. Weeds in cotton field is one of the troubles that farmer faced. Base on the excellent characteristics such as high yield and quality, it has become a hot aspect in transgenic plant breeding research to increase the resistant potential of cotton to glyphosate, as well as to utilize glyphosate resistance as an indicator in the heterosis utilization.
     In this study, nine combinations were made between nine lines with good agronomic traits and fiber quality and a glyphosate-resistant new line via no-emasculation-pollination method. The optimum concentration and the spraying time of glyphosate were determined, and heterosis of cotton yield and fiber quality traits was analyzed. Meanwhile, EPSPS gene was transformed to five elite cotton lines by using rapid backcross introgression for generation advancement under local conditions in order to obtain BC4 generation. The results are as follows.
     1. The optimum concentration of glyphosate was 2g/L and 2.25 g/L to discriminate resistant glyphosate and non-resistant parental varieties or hybrids, respectively. This concentration can kill non-glyphosate-resistant plants, while preserving the resistant glyphosate plants. And the most appropriate time of spraying was three-leaf stage.
     2. F1 generation of nine combinations grown in the field were sprayed with the optimum glyphosate solution and tested by PCR method. The results showed that the positive ratio of hybrid of different combinations ranged from 33.6% to 62.52%. Among them, the positive ratio of four crosses was more than 50%.
     3. Shikimic acid contents of F1 generation of different combinations were determined using HPLC method. The results showed that the trend of shikimic acid content of different combinations was in consistent with the trend of glyphosate resistance. To a certain extent, the resistance capacity of different crosses was slightly different due to their different genetic background.
     4. The heterosis analysis of F1 of different combinations showed that the range of lint yield is from 1777.1 to 2441.3 kg/hm2, which increased significantly. Glyphosate-resistant cotton yield increases were mainly due to the increase in boll number. The average increase ratio of the 9 combinations was 27%, and the highest combination achieved 49%. The fiber strength of competitive advantage could be as high as 15%.
     5. Five elite lines were utilized to cross and backcross with resistant glyphosate line via rapid backcross introgression for generation advancement under local conditions including immature embryo culture, grafting and plant growth regulation. In a year, four backcross generations of five crosses were obtained, which will lay a foundation for further breeding the new resistant glyphosate varieties.
引文
[1] Alibhai M F. Closing down on glyphosate inhibition with a new structure for drug discovery[J]. Proceedings of the National Academy of Sciences. 2001,98(6):2944–2946.
    [2] Jones M A, Snipes C E. Tolerance of transgenic cotton to topical applications of glyphosate[J]. The Journal of Cotton Science, 1999,3(1):19–26.
    [3] Zhu Y, Yu Z L, Lin M. Bioresistance and biodegradation of glyphosate and construction of transgenic plants[M]. Molecular Plant Breeding, 1(4):435–441.
    [4]楚宗艳.棉花抗草甘膦基因的表达及功能鉴定[D].北京:中国农业科学院,博士学位论文, 2008.
    [5]苏少泉.抗草甘膦作物的创制与发展[J].世界农业, 2004,3:48–50.
    [6] Williams G M, Kroes R, Munro I C. Safety evaluation and risk assessment of the herbicide roundup and its active ingredient, glyphosate, for humans[J]. Toxicology and Pharmacology, 2000,31(2): 117–165.
    [7]朱玉,于中连,林敏.草甘膦生物抗性和生物降解及其转基因研究[J].分子植物育种, 2003,4(1):435–441.
    [8] Amrhein N, Deus B, Gehrke P, et al. The site of the inhibition of the shikimate pathway by glyphosate[J]. Plant Physiology, 1980,66(5),830–834.
    [9] Berlin J, White L. Effects of glyphosate on shikimic acid accumulation in tobacco cell cultures with low and high yields of cinnamoyl putrescines[J]. Zeitschrift fuer Naturforschung, Section c Biosciences, 1981,36(2):210–214.
    [10] Lydon J, Duke S O. Glyphosate induction of elevated levels of hydroxybenzoic acids in higher plants[J]. Journal of Agricultural and Food Chemistry,1988,36(4),813–818.
    [11]陈虎保,朱惠香,陈国海.草甘麟的作用机理及部位[J].林业科技通讯, 1997,1:23–25.
    [12]何卓培,周庆祺.耐受草甘膦抗枯萎病棉花新种质PI3910[J].作物品种资源, 1995,4:26.
    [13]祝水金,汪静儿,俞志华,等.棉花抗草甘膦突变体筛选及其在杂种优势利用中的应用[J].棉花学报,2003,15(4):227–230.
    [14]曾潜,肖才升,谢崇湘,等.抗除草剂棉选育初报[J].作物研究, 2001,4:25–28.
    [15]刘亚平,肖远龙,涂祈钧.抗草甘膦除草剂棉花品系的筛选[J].江西棉花, 2008,30(6):30–32.
    [16]苏少泉.抗草甘膦作物的创制与发展[J].世界农业, 2004,3:48–50.
    [17] Comai L. Facciotti D. Hiatt W R, et al. Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyohosate[J]. Nature,1985,317(24):741–774.
    [18]谢龙旭,李云锋,徐培林.根癌农杆菌介导的转aroAM12基因棉花植株的草甘膦抗性[J].植物生理与分子生物学学报, 2004,30(2):173–178.
    [19] Nida D L, Kolacz K H, Buehler R E, et al. Glyphosate-tolerant cotton: genetic characterization and protein expression[J]. Journal of Agricultural and Food Chemistry, 1996,44(7):1960–1966.
    [20] May O L, Bourland F M, Nichols R L. Challenges in testing transgenic and nontransgenic cotton cultivars[J]. Crop Science, 2003,43(5):1594–1601.
    [21]赵福永,谢龙旭,田颖川,等.抗草甘膦基因aroAM12及抗虫基因Bts1m的转基因棉株[J].作物学报. 2005,31(1):108–113.
    [22]朱玉.极端污染环境下草甘膦耐受菌株荧光假单胞菌G2的鉴定及其EPSPS合成酶基因的克隆[D].北京:中国农业科学院,博士学位论文, 2002.
    [23] LIU Xi-juan, LIU Yu-hui, WANG Zhi-xing, et al. Generation of glyphosate-tolerant transgenic tobacco and cotton by transformation with a 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSP) gene[J]. Journal of Agricultural Biotechnology, 2007,15(6):958–963.
    [24]孙鹤,郎志宏,陆伟,等.转2mG2–epsps基因烟草的草甘膦耐受性分析[J].中国农业科技导报, 2009,11(4):100–106.
    [25] Shull G H. What is“heterosis”?[J]. Genetics, 1948,33(5):439–446.
    [26]韦贞国.哈克尼西棉雄性不育的胞质效应[J].作物学报, 1995,7(2):76–81.
    [27]王志忠,王兆晓,崔瑞敏.种间杂交与陆地棉品种间杂交杂种优势利用研究[J],棉花学报, 1998,10(3):162–166.
    [28]郭小平.印度杂交棉研究与生产[J].中国棉花, 2001,28(4):11–13.
    [29]俞志华,等.棉花细胞质雄性不育系的研究与改良[J].棉花学报, 1999,11(5):268–274.
    [30]李剑锋,中国棉花杂种优势利用研究概述[J].江西棉花. 2005,27(1):3–7.
    [31]唐海明,陈金湘,熊格生,等.棉花雄性不育系的研究现状及展望[J].中国棉花, 2006,33(3):6–8.
    [32]黄观武.我国杂交棉花的研究与利用[J].四川棉花, 1991,(1):6–12.
    [33]周曙霞,刘文国,程鲁军,等.哈克尼西棉细胞质对陆海种间杂种优势的影响[J].中国棉花, 2003,30(4):8–10.
    [34]黄观武,苟云高.棉花核不育的二级繁殖及利用[J].西南农业学报, 1992,5(1):7–13.
    [35]张香桂,周宝良,陈松,等.杂交棉种子生产方法研究概况[J].中国种业, 2004,2:33–35.
    [36]王学德,潘家驹.陆地棉芽黄指示性状的杂种优势利用研究[J].南京农业大学学报, 1989,12(1):1–8.
    [37]袁有禄,靖深蓉,张天真,等.陆地棉显性无腺体指示性状的杂种优势利用研究[J].种子, 1997(6):15–17.
    [38]陈于和,秦素平,郑桂茹,等.显性无腺体作标记性状在陆地棉杂种优势利用中的初步研究[J].河北职业技术师范学院学报, 1999.4(13):20–25.
    [39]梁满中,肖杰华.带标记性状的两系杂交棉的研究及应用[J].作物研究, 1998(1):25–26.
    [40]邢以华,靖深蓉.从美国引进的棉花“三系”及杂种一代试种情况[J].中国棉花, 1983(5):21–23.
    [41]吕有军,付亮,王彩霞,等.国内棉花雄性不育性研究现状问题对策[J].种子, 2005,24(1):44–49.
    [42]杨崇庆.油用亚麻杂种优势利用研究[D].甘肃,兰州, 2009.
    [43]潘家驹.作物育种学总论[M].北京:农业出版社, 1994,1–6.
    [44] Fehr W R. Principles of cultivar development[M]. New York: Macmillan Publishing Company,1987:11–55.
    [45] Worley S, Culp T W, Harrell D C. The relative contributions of yield components to lint yield of upland cotton, Gossypuim hirsutum[J]. Euphytica, 1974,23(2):399–403.
    [46]王伟,陈宛新,朱祯,等.转基因棉花高效定植方法的研究[J].植物学报, 1999,41(10):1072–1075.
    [47] Hemphill J K, Maier C G A, Chapman K D. Rapid in-vitro plant regeneration of cotton(Gossypium hirsutum L.)[J]. Plant Cell Report, 1998,17(4):273–278.
    [48]张寒霜,李俊兰,赵俊丽,等.棉花再生植株嫁接移栽技术研究[J].中国棉花, 2003,30(7):20–29.
    [49]李燕娥,朱祯,吴霞,等.转基因再生棉花嫁接初报[J].中国棉花, 2000,27(3):25–30.
    [50] Jiang B G. Optimization of agrobacterium mediated cotton transformation using shoot apex explants and quantitative trait loci analysis of yield and yield component traits in upland cotton (Gossypium hirsutum L.)[D]. Louisiana State University, USA, 2004:70–85..
    [51]王彦霞.棉花当地一年多代育种技术体系建立[D].河北,保定, 2006.
    [52]赵晶.棉花当地加代育种技术体系的改良及抗虫新品系的获得[D].河北,保定, 2007.
    [53]刘来福,毛盛贤,黄远樟,等.作物数量性状遗传[M].北京:农业出版社, 1984.
    [54] Zhang J F, Stewart J M. Economical and rapid method for extracting cotton genomic DNA[J]. The Journal of Cotton Science, 2000,4(3):193–201.
    [55]吴立强,张桂寅,马峙英,等.棉花机械辅助去雄新方法的探讨[J].河北农业大学学报, 2003,26(2):13–14.
    [56]中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会联合发布,中华人民共和国《棉花细绒棉》(GB1103–2007)国家标准.
    [57]陈旭升.抗除草剂棉花研究进展[J].江西农业学报, 2006,18(1):94–98.
    [58]苏少泉.转基因棉花的种植与问题[J].世界农业, 2003,295(11):43–44.
    [59]程志明.抗草甘膦作物的现状和未来[J].上海化工, 2009,34(1):15–18.
    [60]王秀丽,王留明,王家宝,等.转基因抗草甘膦棉花鉴定方法研究[J].山东农业科学, 2008,3(9):79–80.
    [61]李燕.转EPSPS基因棉花的筛选及草甘膦对其育性的影响[D].山东,济南, 2010.
    [62] Tong X H, Daud M K, Sun Y Q, et al. Physiological and molecular mechanisms of glyphosate tolerance in an in vitro selected cotton mutant[J]. Pesticide Biochemistry and Physiology, 2009,94(2):100–106.
    [63] Harring T, Streibig J C, Husted S, Accumulation of Shikimic Acid: A Technique for screening glyphosate efficacy[J]. Journal of Agricultural and Food Chemistry, 1998,46(10):4406–4412.
    [64]刘海涛,郭香墨,夏敬源.抗虫杂交棉F1代与亲本Bt蛋白表达量及抗虫差异性研究[J].棉花学报, 2000,12(5):261–263.
    [65]戴日春,许馥华.指示性状品种不去雄辅助授粉在陆地棉品种间杂种优势利用中的应用研究[J].种子, 1987,5(31):23–27.
    [66] Perez-Jones A, Park K W, Colguhoun J, et al. Identification of glyphosate- resistant Italian ryegrass (Lolium mulfilorum) in Oregon[J]. Weed Science, 2005,53(6):775–779.
    [67] Neve P, Sadler J, Powles S B. Multiple herbicide resistance in a glyphosate-resistant rigid ryegrass (Lolium rigidum) population[J]. Weed Science. 2004,52(6):920-928.
    [68] Culpepper A S, Grey T L, Vencill W K, et al.Glyphosate-resistant palmer amaranth(amaranthus palmeri) confirmed in Georgia[J]. Weed Science, 2006,54(4):620-626.
    [69] Powles S B, Preston C. Evolved glyphosate resistant in plants: biochemical and genetic basis of resistance[J]. Weed Technology, 2006,20(2):282-289.
    [70] Culpepper A S. Glyphostae-induced weed shifts[J]. Weed Technology, 2006,20(2):277-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700