郑西客运专线黄土地基振(震)陷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
郑西客运专线(高速铁路)是我国在黄土地区修建的第一条高速铁路,最高时速达350km,全线铺设无碴轨道。它与普通线路的有碴轨道相比,对路基沉降的变形要求更高、更严。由于客运专线部分经过高烈度的巨厚黄土区,因此黄土震陷是路基抗震设计中必须考虑的重要问题之一。另一方面,列车长期振动引起的黄土地基附加沉降(振陷)是路基抗震设计中必须考虑的另一个重要问题。为此,本文基于国内外有关震(振)陷的研究现状,在综合分析的基础上,结合铁道部重大科研课题开展了高速铁路黄土地基震(振)陷的研究和试验工作。
     本文在对线路区域的环境地质条件、工程地质特征分析的基础上,开展了多种黄土动、静力学试验,系统的探索了黄土路基在地震和列车振动作用下的震(振)陷变形及其相关问题。研究中采用现场勘察、现场测试与室内试验相结合;定性综合分析与定量、半定量分析相结合;线性与非线性理论相结合;模拟与计算相结合,取得了一些较有价值的研究成果,主要包括:
     (1)收集整理了郑-西客运专线沿线的环境地质和工程地质资料,并通过野外勘察,全面了解客运专线的工程地质情况,通过土的常规物理、力学试验,获取沿线黄土的一系列物理和静力学参数。
     (2)在郑-西客运专线沿线进行了一定数量的现场剪切波速测试,测试结果表明剪切波速随深度呈指数关系增大。根据波速测试和震陷试验结果,建立了利用剪切波速预测黄土震陷的回归模型。
     (3)将长持时的正弦荷载通过动三轴施加在原状黄土上,研究了黄土在这种特殊荷载下的残余应变(振陷)特征。根据试验结果,对不同高度路堤在机车长持时振动荷载下的沉降量进行了简化计算。结果表明,振陷量随路堤增高而减小,随振次的增加而增大。同时,还建立了黄土振陷的预测模型。
     (4)根据该沿线地震危险性分析结果,对典型黄土场地(华阴、潼关、灵宝、偃师)进行了人工地震波合成。将合成的地震波通过动三轴直接施加到客运专线沿线原状黄土样上来研究黄土的震陷性。根据试验的结果,对四个研究区的黄土震陷量进行了估算,评价了场地震陷性。结果表明:在地震超越概率2%作用下华阴、潼关场地可产生严重震陷,灵宝场地可产生轻微震陷;在地震超越概率10%作用下华阴、潼关、灵宝场地可产生轻微震陷;在以上情况下,偃师场地无震陷性。
     (5)将模糊信息优化处理技术与神经网络相结合提出了一种模糊神经网络模型,并将其应用于震陷的预测中。这种方法,弥补了神经网络在数据处理方面的不足以及信息扩散在计算方面的缺陷。通过实例验证,这种方法在预测震陷系数上,优于多元回归方法。
     (6)利用扫描电镜、GIS、分形理论等对黄土震陷前后黄土微结构变化进行分析发现黄土的震陷性主要是由弱胶结粒间孔隙、架空孔隙微结构的变化所造成的,分形理论结果能够较好的反映震陷前后黄土孔隙的变化规律。
     (7)分析了黄土震陷的影响因素,将黄土结构简化为微观的弹塑性模型,进而对黄土震陷的机理进行了初步探讨。
     (8)利用FLAC软件建立了潼关、华阴等四个区域的黄土路基弹塑性动力分析模型,输入人工地震波,对黄土地基沉降进行了动力分析,得到了不同地震荷载下的路基黄土震陷量。同时还建立了不同高度路堤的路基分析模型,计算了静沉降以及机车振动荷载下动力沉降。
     (9)提出了一种有限元与神经网络联合的计算方法,用于计算长持时机车振动荷载下路基的动力沉降。
     (10)针对郑-西客运专线路基黄土产生的震陷特点,提出强夯、化学灌浆、挤密桩等消除其影响的地基处理措施。
Zhengzhou-Xi'an passenger express railway is the first high-speed (350 km/h at best ) railway construction in loess area in China. Compared with common railway of ballast track,it is required to paved by ballastless track on the whole line and has stricter control of roadbed deformation. As the railway pass through high earthquake intensity region with huge thick loess, loess seismic subsidence should be considered in roadbed seismic design, in addition dynamic loess additional settlement caused by the long term vibration of the train should also be considered. Based on the present research situation about seismic subsidence and dynamic additional settlement of soil at home and abroad, in addition to comprehensive analysis of characteristics of environmental geology and loess property along the line, the research project on loess seismic subsidence and dynamic loess additional settlement caused by the long term vibration of the train are carried out, which is supported by China-MOR(Ministry Of Railway).
     Based on the analysis of environmental geology and geological condition along the railway line, loess dynamic and static experiments are carried out. Through field investigation as well as field and lab test, semiquantitative and quantitative method, linear and nonlinear analysis, simulation and computation loess seismic subsidence, dynamic loess additional settlement caused by the long term vibration of the train as well as their correlations are studied. The research work has accomplished with the following achievements:
     1.By collecting environmental and engineering geological materials along the passenger express railway line and field investigation; engineering geological characteristics of the passenger express railway have been comprehensively understood. And by means of routine physics and mechanics tests, a series of loess physical and static parameters have been obtained.
     2.Field shear wave velocity test of loess along the passenger express railway line have been carried out. The test results shows that as depth rises, shear wave velocity increases in exponential trend. According to result of shear wave velocity and lab seismic subsidence experiment of loess, the regression model has been established through which seismic subsidence of loess can be predicted by shear wave velocity.
     3.By imposing long time-sustained sinusoid loading on natural loess specimens in dynamic triaxial test, characteristic of loess residual strain(dynamic subsidence) has been studied. Based on the results, the settlement of the embankment in different height under long time-sustained vibration of train has been computed. The result shows that dynamic loess additional settlement has negative relationship with the height of embankment and positive relationship with frequency of vibration. At the same time, predicting model of dynamic additional settlement of loess has been proposed.
     4.Based on seismic hazard analysis results, seismic wave has been artificially synthesized in typical loess field (Huayin Tongguan Lingbao Yanshi). By imposing synthesized seismic wave on natural loess specimens along the passenger express railway line in dynamic triaxial test, seismic subsidence is studied. According to test results, seismic settlement quantity of loess in four research area has been evaluated. Which indicates that severe seismic subsidence may appear in Huayin as well as Tongguan and slim seismic subsidence takes place in Lingbao under seism exceedance probability of 2%; slim seismic subsidence may appear in Huayin Tongguan and Lingbao under seism exceedance probability of 10%; under both probability above, there is no seismic subsidence in Yanshi.
     5. A fuzzy neural network model is proposed through the combination of fuzzy information optimization technology and neural network, with which loess seismic subsidence can be predicted. The method overcomes the shortage in data processing of neural network and disadvantage of computation of information diffusion. By examples, this method is superiorer to multiple regression analysis in prediction of loess seismic subsidence.
     6.By SEM GIS and Fractal Theory, Loess micro-structure of pre-and-post seismic subsidence have been studied, the study shows that subsidence is mainly induced by the changes of weakly cemented void and space void. Therefore, change principle of the loess porosity of pre-and-post seismic can be described better by Fractal Theory.
     7.Factors influencing loess seismic subsidence have been analyzed; through simplifying loess structure to micro-elastic model, loess dynamic subsidence mechanism has been deeply discussed.
     8.Loess dynamic elastic-plastic models of Tongguan and Huayin area etc are established by FLAC software, and through inputting artificial seismic wave data, loess roadbed settlement have been dynamically analyzed. Through numerical simulation loess seismic subsidence quantity under different seismic loading are obtained. At the same time, the model for roadbed in different height is established through which static subsidence settlement as well as dynamic subsidence settlement under the train vibration can be calculated.
     9. A new method combining finite element analysis with artificial neural networks is proposed, which is used for calculating dynamic subsidence settlement induced by long term vibration of train.
     10. According to characteristics of loess seismic subsidence along the railway, measures of dynamic tamping, chemical grouting, compaction pile etc are proposed to improve the roadbed properties.
引文
1 俞展猷.日本新干线高速列车的发展历程[J].机车电传动,2003,2:1-7.
    2 Francois Bressy.法国TGV高速列车的社会经济效益[J].中国铁路,1998,10:7-13.
    3 Martin Muller,Wofgang D.Heart,Eberhard K.Jansch.郑雅文译,对德国高速铁路各发展阶段的评价[J].中国铁路,1998,10:19-27.
    4 陈海.世界各国高速列车的比较[J].国外铁道车辆,1998,6:42-45.
    5 伊藤淳一等,张健译.以285km/h运行的新干线列车[J].国外铁道车辆,2000,37(1):22-23.
    6 倪逢春编译.欧洲高速列车的发展趋势[[J].电气化铁道,2001,4:49-52.
    7 吴玉树,谢贤良.国外高速铁路发展状况及社会经济效益综述[J].中国铁路,1999,6:18-23.
    8 何华武.快速发展的中国高速铁路[J].中国铁路,2006,7:23-31.
    9 Hsiao Hui Hung, Yeong2Bin Y. A review of researches on ground borne vibrations with emphasis on those induced by trains. Proc.Natl. Sci. Count. ROC(A), 2001,25(1):1-16.
    10 Ditzel A, Herman G, Holscher P. Elasic waves generated by high speed trains[J]. Journal of Computational Acoustics, 2001,9 (3):833-840.
    11 Woldringh, R.F.&New, B.M. Embankment design for high speed trains on soft soils conception de remblais sur sols meubles pour les chemins de fer a grande vitesse[A]. In: Barends et al. (eds), Geotechnieal Engineering for Transportation Infrastructure[C]. Balkema, Rotterdam, 1999, 1-10.
    12 Hall L. Simulations analyses of train-induced ground vibrations, a comparative study of two-and three-dimensional calculations with measurements[D]. Sweden, Division of Soil and Rock Mechanics, Department of Civil and Environmental Engineering, Royal Institute of Technology, 2000,95-108.
    13 Andersen L. Soren R.K. Nielsen. Boundary element analysis of the steady-state response of an elastic half-space to a moving force on its surface [J]. Engineering Analysis with Boundary Elements. 2003, 27:23-38.
    14 Rossi F, Nicolini A. A simple model to predict train-induced vibration: theoretical formulation and experimental validation[J]. Environmental Impact Assessment Review. 2003, 23:305-322.
    15 Sheng, X. Jones, C.J.C. Thompson, D.J. A comparison of a theoretical model for quasi-statically and dynamically induced environmental vibration from trains with measurements[J]. Journal of Sound and Vibration. 2003, 267:621-635.
    16 陈云敏,陈仁朋,芦森.软土地基地铁施工及运营过程中的几个土力学问题[A].城市地铁建设与环境岩土工程高级技术论坛论文集[C].杭州,2002.165-177.
    17 崔玉军,卢应发,柴华友.循环荷载下黄土特性模拟[J].岩石力学与工程学 报,2005,23(24):4272-4281.
    18 王如路,刘建航.上海地铁长期运营中纵向变形的监测与研究[J].地下工程与隧道.2001,(4):6-11.
    19 张振中.黄土地震灾害预测[M].北京:地震出版社,1999.
    20 张振中,段汝文.黄土震陷研究与震害研究[J].西北地震学报,1987,19(增):14-18.
    21 王永炎,林在贯等.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.
    22 谢定义.试论我国黄土力学研究中的若干新趋向[J].岩土工程学报,2001,23(1):3-13.
    23 刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1997.
    24 王兰民等.黄土动力学[M].北京:地震出版社,2003.
    25 Seed, H.B. & Lee, K.L. Liquefaction of saturated sands during cyclic loading[J]. Journal of the Soil Mechanics and Foundations. 1966,92(6): 105-134.
    26 Thiers G R, Seed H B.Strength and stress-strain characteristics of clays subjected to seismic loading eonditions[A].Viabration Effects of Earthquaks on Soils and Foundatins[C]; ASTM STP450,1969.32~56.
    27 Lee, K L. Seismic permanent deformation in and Applied Science, University of California, earth dams[R]. Mechanics and Structures Department, School of Engineering Los Angeles, California, 1974.
    28 谢君斐,石兆吉.原状饱和粘土动力性能的试验研究[A].地震工程研究报告(第三集),[C].北京:地震出版社,1977.
    29 高国瑞.黄土显微结构分类与湿陷性[J].中国科学,1980,(12):1203-1208.
    30 郁寿松,石兆吉.土壤震陷试验研究[J].岩土工程学报,1989,11(4):35-44.
    31 Ishihara K, et al. Strength of a cohesive soil in irregular loading [A]. WCEE 8, 1984, 7-14.
    32 何光,朱鸿博.黄土振陷研究[J].岩土工程学报,1990,12(6):99-103.
    33 Muhanna A S.A Testing Procedure and a Model for Resilient Modulus and Accumulated Plastic Strain of Cohesive Sub-grade Soils[D].North Carolina State University.1994.
    34 Elliot R P, Dennis N D,Qiu Yanjun.Perrnanent Deformation of Sub grade Soils Phase Ⅱ: Repeated Load Testing of Four Solid[R].MBTC FR-1089,1995.
    35 王兰民,袁中夏,王峻,等.干密度对击实黄土震陷性影响的试验研究[J].地震工程与振动,2000,20(1):87-92.
    36 骆亚生,谢定义,董为民,等.不同地区黄土振陷变形特性的对比分析[J].陕西水利发电,2001.(17):4-7.
    37 崔冰.太原市区杂填土震陷特性的分析[J].科技情报开发与经济,2001,11(4):44-45
    38 王峻,李兰.俄罗斯伊尔库茨克地区黄土动力特性试验研究[J].西北地震学报,2001,23(3):286-290.
    39 凌建明,王伟,邬洪波.行车荷载作用下湿软路基残余变形的研究[J].同济大学学报(自然科学版),2002,30(11):1315-1320.
    40 钟辉虹,黄茂松,吴世明,等.循环荷载作用下软黏土变形特性研究[J].岩土工程学报,2002,24(5):629-632.
    41 石玉成,王兰民,林学文.黄土场地的爆破地震振动效应[J].岩石力学与工程学报,2003,22(11):1933-1938.
    42 陈永明,王兰民,刘红玫.剪切波速预测黄土场地震陷量的方法[J].岩石力学与工程学报,2003,22(增2):2834-2839.
    43 Xiaoming Yuan,Rui Sun,Meng Shangjiu.Effect of asymmetry and irregularity of seismic waves,Soil Dynamics and Earthquake Engineering 2003,(23):107-114.
    44 M.T. Yllmaz,O.Pekcan,B.S.Balar.Undrained cyclic shear and deformation behavior of silt-clay mixtures of Adapazan,Turkey[J].Soil Dynamics and Earthquake Engineering, 2004,7(24):497-507.
    45 曹继东,王权民,陈正汉.厦门填海土的振动台试验研究[J].岩石力学与工程学报,2004,23(20):3529-3535.
    46 袁晓铭,孙锐,孟上九.土体地震大变形分析中Seed有效循环次数方法的局限性[J].岩土工程学报,2004,26(2):207-311.
    47 袁晓铭,孟上九,孙锐.随机地震荷载下黏性土残余应变的半经验计算公式[J].水利学报,2004,(11):62-67.
    48 贾革续,孔宪京.粗粒土动残余变形特性的试验研究[J].岩土工程学报,2004,26(1):26-30.
    49 徐春华,徐学燕,沈晓东.不等幅值循环荷载下冻土残余应变研究及其CT分析[J].岩土力学,2005,4(26):572-576.
    50 王峻,王兰民,李兰.永登5.8级地震中黄土震陷灾害的探讨[J].地震研究,2005,28(4):393-397.
    51 王权民,陈正汉,等.厦门残积土的静动力学特性与震陷特性研究[J].四川建筑科学研究,2005,31(3):73-77.
    52 陈颖平,黄博,陈云敏.循环荷载作用下结构性软粘土的变形和强度特性[J].岩土工程学报,2005,9(27):1065-1071.
    53 熊玉春,房营光.饱和软粘土地基的损伤模型与震陷计算[J].振动工程学报,2006,19(3):359-363.
    54 徐舜华,王兰民,袁中夏.黄土震陷初判指标的界定研究[J].西北地震学报,2006,28(2):140-143.
    55 Shunichi Sawada, Yoshimichi Tsukamoto and Kenji Ishihara, Residual deformation characteristics of partially saturated sandy soils subjected to seismic exeitation[J],Soil Dynamics and Earthquake Engineering, 2006,26(2-4): 175-182.
    56 Tokimatsu, K. and Seed, H.B., Evaluation of settlements, in sands due to earthquake shaking[J]. Geotech. Engineering, 1987,ASCE 113 (GT8):861-878.
    57 Nagase, H. and Ishihara, K. ,Liquefaction-induced compaction and settlement of sand during earthquake[J], Soils Found. 1988,28 (1):66-76.
    58 Ishihara, K. and Yoshimine, M,Evaluation of settlements in sand deposits following liquefaction during earthquakes[J], Soils Found. 1992,32 (1): 173-188.
    59 王家鼎,白铭学,肖树芳.强震作用下低角度黄土斜坡滑移的复合机理研究,岩土工程学报,2001,23(4):446-450.
    60 Tsukamoto, Y. Ishihara, K. and Sawada, S.,Settlement of silty sand deposits following liquefaction during earthquakes[J], Soils Found. 2004,44(5).
    61 谢定义.土动力学[M].西安:西安交通大学出版社.1998.
    62 谢定义.黄土力学特性与应用研究的过去,现在与未来[J].地下空间,1999,19(4):273~284
    63 齐吉琳.甘肃永登5.8级地震黄土震害特征及机理分析[J].西北地震学报,1998,20(1):70-75.
    64 陈永明,石玉成,等.1995年永登地震黄土震陷变形特征及其形成机理[J].西北地震学报,2000,22(4):465-470.
    65 王兰民,袁中夏,石玉成,等.黄土地震灾害区划指标与方法研究[J].自然灾害学报,1999,8(3):75-80.
    66 Wiermann, C. etal, Effect of various dynamic loads on stress and strain behavior of a Norfolk sandy loam[J], Soil and Tillage Research, 1999,50:127-135.
    67 Alakukku, L., etal, Long-term effects of a single compaction by heavy field traffic on yield and nitrogen uptake of annual crops[J]. Soil and Tillage Research, 1995,36:141-152.
    68 Ayse Edineliler etal, Determination of static and dynamic behavior of recycled materials for highways[J], Resources Conservation and Recycling, 2004,42:223-237.
    69 Van Dijk, S.J.E.,etal, Compaction soils due to tractor traffic in vineyards and orchards and its effect on infiltration in southern France[J], Soil and Tillage Research, 2002,63:141-153.
    70 Auersch L. ,The excitation of ground vibration by rail traffic: theory of vehicle-track-soil interaction and measurements on high-specd lines[J],Journal of Sound and Vibration, 2005,284(1-2):103-132.
    71 Francois, S. Pyl, L. Masoumi H.R. and Degrande G., The influence of dynamic soil-structure interaction on traffic induced vibrations in buildings[J],Soil Dynamics and Earthquake Engineering, In Press, Corrected Proof, Available online 19 January 2007.
    72 唐益群,张曦,叶为民,等.地铁列车振动荷载作用下土体的动力特性和动强度研究[J].工程地质学报,2004,12(增):98-101.
    73 王家鼎、张倬元.黄土动力学特性及黄土滑坡机理研究评述[A],张倬元教授八十华诞论文 集[C],80-85,成都:2006.
    74 王家鼎,谢婉丽,地震液化引起地面大位移预测方法的研究,工程地质学报,2002,10(增):138-140.
    75 吴义祥,张宗祜.土体微观结构的研究现况评述[J].地质论评,1992,38(3):250-259.
    76 刘东生.黄土的物质成分和结构[M].北京:科学出版社,1996.
    77 朱海之.黄土的微结构和粘粒[J].中国第四纪研究,1965,(4):62-76.
    78 王挺梅,鲍芸瑛.第四纪地质问题[M].北京:科学出版社,1964.
    79 高国瑞.黄土显微结构分析及其在工程勘察中的应用[J].工程勘察,1980,(6):25-28.
    80 王永炎,腾志宏.中国黄土的微结构及其在时代上与区域上的变化[J].科学通报,1982,27(2):102-105.
    81 雷祥义.中国黄土的孔隙类型与湿陷性[J].中国科学(B辑),1987,(12):1309-1316.
    82 胡再强,沈珠江.非饱和黄土的结构性研究[J].岩石力学与工程学报,2000,19(6):775-779.
    83 汤连生.黄土湿陷性的微结构不平衡吸力成因论[J].工程地质学报,2003,11(1):30-35.
    84 刘红玫,张振中.永登震后黄土微结构特征研究[J].西北地震学报,2005,27(2):174-177.
    85 刘汉龙,余湘娟.土动力学与岩土地震工程研究进展[J].河海大学学报,1999,27(1):615.
    86 George B, Rober V W, Allen W M. Permanent displacement of sand with cycliie loading[J]. J. Geotech. Engr. ASCE,1984,1606-1623.
    87 Liu Hanlong, Iai Susamu, Koji Ichii. Evaluation of deformation to the pneumatic caisson foundations of the Kobe Ohashi bridge[R]. Report of the Port and Harbor Research Institute, 1997, 36(2):23-39.
    88 刘汉龙.随机地震作用机上地基及土石坝永久变形分析[J].岩土工程学报,1996,18(3):19-27.
    89 刘汉龙,陆兆溱.土石坝地震永久变形分析[J].河海大学学报,1996,24(1):91-96.
    90 张冬丽,王兰民,王玉华.有限元分析方法在黄土地基震陷预测中的应用[J].西北地震学报,2002,24(3):208-214.
    91 张冬丽,王兰民.1995年永登地震山体变形计算机模拟与机理分析[J].西北地震学报,2003,25(1):77-81.
    92 Zhongqi Wang, Yong Lu. Numerical analysis on dynamic deformation mechanism of soils under blast loading[J]. Soil Dynamics and Earthquake Engineering, December 2003,8(23):705-714.
    93 A.R. Khoei, A. R. Azami, S. M. Haeri. Implementation of plasticity based models in dynamic analysis of earth and roekfill dams: A comparison of Pastor-Zienkiewicz and cap models[J].Computers and Geotechnics, 2004,5(31):384-409.
    94 Zhi-Liang Wang, Faiz I. Makdisi,John Egan. Practical applications of a nonlinear approach to analysis of earthquake-induced liquefaction and deformation of earth structures[J]. Soil Dynamics and Earthquake Errgineering, 2006, 2-4(26):231-252.
    95 胡宗允.地铁列车振动引起的地基沉降变形[J].北京交通大学,2006,0301.
    96 Metrikine, A.V. etal,Oroundvibration induced by a high-speed train in a tunnel: two-dimentional model[A], Proc. Wave2000,2000,111-120.
    97 Gardien W. and Stuit H.G. Modelling of soil vibrations from railway tunnels[J], Journal of Sound and Vibration, 2003,267(3):605-619.
    98 Lombaert, G. etal, Road traffic induced flee field vibrations: numerical modeling and in situ measurements[A], Proe. Wave2000, 2000,195-208.
    99 Paolucei,R. etal, Numerical prediction of low-frequency ground vibrations induced by high-speed trains at Ledsgaard, Sweden[J], Soil Dynamics and Earthquake Eng., 2003,23:425-433.
    100 G. Degrande, D. Clouteau, R. Othman, M. Amst, H. Chebli, R. Klein, P. Chatterjee, B. Janssens. A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation[J].Journal of Sound and Vibration, 2006, 3-5(293): 645-666.
    101 L. Auersch.Ground vibration due to railway traffic—The calculation of the effects of moving static loads and their experimental verification[J]. Journal of Sound and Vibration,2006, 3-5(293):599-610.
    98 郑柱坚.波速测试及其在抗震设计中的应用[J].工程抗震,1998,(2):16-19.
    103 王兰民,张振中.地震时黄土震陷量的计算方法[J]启然灾害学报,1993,2(3):85-94.
    104 石玉成,蔡红卫,孙崇绍.黄土地区场地的地震地面运动特征[J].西北地震学报,1998,20(3):66-67.
    105 《工程地质手册》编写组.工程地质手册[M].北京:中国建筑工业出版社,1992.
    106 廖红建,宋朋,杨政,等.往返荷载下粘性土的强度及取值标准试验研究[J].岩土力学.2001.22(1):16-20
    107 詹永祥,蒋关鲁,魏永幸.无碴轨道桩板结构路基在地震荷载下的动力响应分析[J].中国铁道科学,2006,37(6):151-154.
    108 范金城,梅长林.数据分析[M].北京:科学出版社,2002.
    109 王美石,陈祥光,李宗峰.用于油田产量预测的多元线性回归和自回归模型[J].石油规化设计,2005,16(3):19-21.
    110 张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993.
    111 Zhana Q. The application of neural network to rock mechanics and rock enaineerina[J]. Int.J.ofRock Mech. Min. Sct 1997,34(1):135-134.
    112 蔡煌东,宫家文,姚林声.砂土液化预测的人工神经网络模型[[J].岩土工程学报,1993,15 (6):53-58.
    113 冯夏庭,杨成祥.智能岩石力学(2)——参数与模型的智能辨识[J].岩石力学与工程学报,1999,18(3):350-353.
    114 冯夏庭,张治强,杨成样,等.位移反分析的进化神经网络方法研究[J].岩石力学与工程学报,1999,8(5):529-633.
    115 孙海涛,吴限.深基坑工程变形预报神经网络法的初步研究[J].岩土力学,1998,19(4):63-68.
    116 卢才金,胡厚田.改进的BP网络在岩质边坡稳定性评价评判中的应用[J].岩石力学与工程学报,1999,18(3):303-307.
    117 何玉敖,何亚东.基于人工神经网络的液化震陷预估方法[J].土木工程学报,1999,32(1):71-74.
    118 袁金荣,池毓蔚,刘学增.深基坑墙体位移的神经网络动态预测[J].同济大学学报,2000,28(3):282-286.
    119 王晓鸿,顾云峰.基坑工程施工环境控制的神经网络方法研究[J].地质灾害与环境保护,2001,12(3):64-68.
    120 赵其华,孙钧,徐伟.地连墙变形的神经网络多步预测研究[J].成都理工大学学报,2002,29(5):581-585.
    121 袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1999.
    122 胡聿贤.地震工程[M].北京:地震出版社,1990.
    123 WANG Lanmin ,ZHANG Zhenzhong,WANG Jun. The method of predicting loess ground earthquake disaster in urban areas by irregular seismic loading test[J]. The First International Conference on Disaster Prevention in Urban Areas (Tehran Iran), 1992.
    124 国家地震局震害防御司.地震灾害预测和评估工作手册[M].北京:地震出版社,1993.
    125 谢维信,钱坛涛.模糊神经网络研究[J].深圳大学学报,1999,16(2):22-27.
    126 Carpenter G A, Grossberg S, Rosen DB. Fuzzy ART: An Adaptive Resonance Algorithm for Rapid[J], Stable Classification of Analog Patterns. IJCNN, 1991, (2):411-420.
    127 S.K.PaI, Sushmita Mitra, MultiLayer Perception fuzzy sets and classifications[J]. IEEE Trans on Neural Network, 1992, 1.3(5):683-697.
    128 Kong S G,.Kosko B. Differential Competitive Learning for Centroid Estimation and Phoneme Recognition[J]. IEEE Trans. on Neural Network, 1991, 1.2(1): 118-124.
    129 J.A.Feldman. Dynamic Connections in Neural Network[J], Biological Cybernetics, 1982, (46):27-39
    130 D.E. Rummelhart, D.Zipser. Feature Discovery by Competitive Learning[M]. USA:MIT, 1986.
    131 王家鼎,黄崇福.余震区长度与震级关系的模糊神经元网络模型[J].西北地震学报,1995,17(1):62-68.
    132 Hurmg Chongfu,Wang Jiading.Principe of Information Diffusing Relevem to Fuzzy Speech Sound Recognition[d].BUSEFAL,1992,49:73-82
    133 黄崇福.信息扩散原理与计算思维及其在地震工程中的应用[D].北京:北京师范大学出版社,1992.
    134 黄崇福,王家鼎.模糊信息分析与应用[M].北京:北京师范大学出版社,1992.
    135 王家鼎,黄崇福.模糊信息处理中的信息扩散方法及其应用[J].西北大学学报(自然科学版),1992,22(4):383-392.
    136 王家鼎,张倬元.典型高速黄土滑坡群的系统工程研究[M].成都:四川科学技术出版社,1999.
    137 刘悦,王家鼎.黄土湿陷性评价中的模糊信息优化处理方法[J].西北大学学报(自然科学版),2000,30(1):78-82.
    138 Huang C EDemonstration of benefit of information distribution for probability estimation [J].Signal Processing,2000,80(4):1037-1048.
    139 袁中夏,王兰民,邓津.电镜图像在黄土结构性严就应用的几个问题[J].工程勘察,2005(4):3-4.
    140 李兰.黄土微结构的试验研究[J].水文地质工程地质,2004(3):17-19.
    141 Benoit B,Mandelbrot.Fraetals:Form,Chanee and Dimension[M].Sam Francisco:W.H. Freeman,1977
    142 谢和平.分形-岩石力学导论.[M]北京:科学出版社,1996
    143 谢和平.分形几何及其在岩土力学中的应用[J].岩土工程学报,1992,14(1):14-24
    144 周萃英,汤连生.分形理论与工程地质学[J].地质科技情报,1994,13(4):85-92
    145 王清,王剑平.土孔隙的分形几何研究[J].岩土工程学报,2000,22(4):496-498
    146 冯杰,郝振纯.分形理论在描述土壤大孔隙结构中的应用研究.地球科学进展.2004,19(6增):270-274.
    147 杨书燕.基于分行理论的土体微结构分析[J].中国港湾建设,2005,135(2):14~20.
    148 Voss R F, Laibowitz R B,Alessandrini E I.Fraetal geometry of percolation in thin gold films[A].In Scaling phenomena in disordered systems(edsr.pynn&Skjeltorp), 1985.279-288.
    149 Moor C A,Donaldson C F.Quantifying soil mieorstruture using fraetals[J].Geotechnique, 1995,1(45):105-116
    150 巫志辉,方彦.原状黄土在增湿时的震陷特征[A].全国第三届土动力学术研讨会论文集[C].上海:同济大学出版社.1990,285-290.
    151 余雄飞,谢定义.原状黄土的增湿结构软化特征对动荷载下变形特征的影响[A].全国土工建筑物及地基抗震学术讨论会论文汇编[C].1986,225-228.
    152 石玉成,李兰.黄土微结构与震陷的关联分析[J].岩石力学与工程学报,2003,22(增2):2829-2833.
    153 杨运来.黄土湿陷机理的研究[J].中国科学,1998,7(1):756-765.
    154 王家鼎,张倬元.黄土自重湿陷变形的脉动液化机理[J].地理科学,1999,21(3):271-276.
    155 杨人凤,张永新,杨云岭.冲击振动联合作用下土的压实机理试验[J].长安大学学报(自然科学版),2003,23(3):64-66.
    156 陈文化,门福录.动力作用下砂土的残余体变及其时域连续模型[J].岩土力学,2004,24(6):947-951.
    157 石玉成,李兰.黄土微结构与震陷的关联分析[J].岩石力学与工程学报,2003,22(增2):2829-2833.
    158 蒋明镜,沈珠江.结构性粘土试样人工制备方法研究[J].水利学报,1997,(1):56-61.
    159 胡再强,沈珠江,谢定义.结构性黄土的变形特性[J].岩石力学与工程学报,2004,23(24):4142-4146.
    160 周健,苏燕,董鹏.软土地层地铁及地下构筑物抗震动力分析研究现状[J].地下空间.2003.23(2):173-178.
    161 谢康和,周健.岩土工程有限元分析理论与应用[M].北京:科学出版社,2002.
    162 Itasca Consulting Group Inc. Fast Lagrangian Analysis of Continua User's Guide [R]. USA:Itasca Consulting Group Inc,2005.
    163 刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社.2005.
    164 刘耀儒,刘元高,周维垣,等.应用三维FLAC方法进行动力分析[J].岩石力学与工程学报,2001,20(增2):1518~1522
    165 祁生林,祁生文,伍法权,等.基于剩余推力法的地震滑坡永久位移研究[J].工程地质学报.2004.12(1):63-68
    166 谢和平,周宏伟,王金安,等.FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报,1999,18(4):397~401
    167 铁道部.铁路路基设计规范(TB10001-99)[R].北京:中国铁道出版社,1999
    168 铁道部.新建时速200公里客货共线铁路设计暂行规定(铁建设函[2003]439号)[R].北京:中国铁道出版社,2003
    169 铁道部.京沪高速铁路设计暂行规定(铁建设[2003]13号)[R].北京:中国铁道出版社,2003.
    170 王其昌.高速铁路土木工程[M].成都:西南交通大学出版社,2000.
    171 王兰民,袁中夏,王峻,等.强夯处理后黄土地基的动力特性与抗震性能[J].岩石力学与工程学报,2003,22(2):2840-2847.
    172 邝健政,昝月稳,王杰,等.岩土注浆理论与工程实例[M].北京:科学出版社,2001
    173 熊厚金,林天健,李宁.岩土工程化学[M].北京:科学出版社,2001.
    174 肖田元,邢京萍.化学灌浆的发展与应用[A].98水利水电地基与基础工程学术交流会论文集[C].天津:天津科学技术出版社,1999,299-306.
    175 牛志荣.地基处理技术及工程应用[M].北京:中国建材工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700